PHYS2170 Mathematical Methods 4

Problems Class 2

1. An electron of charge q = -e and mass m moving with velocity \mathbf{v} in a magnetic field \mathbf{B} and an electric field $\mathbf{E} = E_0 \hat{\mathbf{i}}$ obeys the following equation of motion:

$$m\dot{\mathbf{v}} = q\left[\mathbf{v} \times \mathbf{B} + \mathbf{E}\right]$$
 (initial condition $\mathbf{v}(t=0) = \mathbf{0}$).

- (a) For which direction of **B** does the particle travel in a straight line?
- (b) For which direction of **B** does the motion remain in the x-y plane with y>0?
- 2. The following equations are only solvable for certain points \mathbf{r} . In each case, the solution set is a surface. Identify the surfaces and interpret k, l, m and n. It is best to think geometrically about the vectors wherever possible.

For example: $|\mathbf{r}| = k$. In this case the magnitude of \mathbf{r} is always the same, i.e. the magnitude is k. Hence, the solution is all points \mathbf{r} that are a distance k from the origin: a sphere of radius k.

- (a) $\mathbf{r} \cdot \hat{\mathbf{k}} = l$, where $\hat{\mathbf{k}}$ is the unit vector along the z-axis. [Draw the unit vector $\hat{\mathbf{k}} \dots$]
- (b) $\mathbf{r} \cdot \hat{\mathbf{k}} = m|\mathbf{r}|$
- (c) $|\mathbf{r} (\mathbf{r} \cdot \hat{\mathbf{k}})\hat{\mathbf{k}}| = n$ (tricky)!
- 3. Show that the set of vectors (1,0,1),(1,1,0), and (1,-3,4) lie on a line. Give the equation of the line in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$, where λ is the independent variable parametrizing points on the line.

Draw pictures!!