PHYS2170 Mathematical Methods 4

Problems Class 5: Solutions

1. Recall the definition of the moment of inertia I of a body with uniform mass density
1 about an axis running through the body at point rg,

J:M/dVRi,

where R is the perpendicular (shortest) distance from a point r in the bulk to axis of
rotation.

In cylindrical coordinates aligned with the cylinder, R? = p?. Since the mass density
can be written as u = M/(wR?L)), we can write the moment of inertia in cylindrical
polar coordinates as
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2. Consider the line integral
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where the curve C is the semi-circle (of radius 3) from (—3,0) to (3,0).

(a) The vector V can be extracted dr = dri + dyjf =drr+r dgbq/g as
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(b) The integral is then
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