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Problems Class 5: Solutions

1. Recall the definition of the moment of inertia I of a body with uniform mass density
µ about an axis running through the body at point r0,

I = µ

∫
dV R2

⊥,

where R⊥ is the perpendicular (shortest) distance from a point r in the bulk to axis of
rotation.

In cylindrical coordinates aligned with the cylinder, R2
⊥ = ρ2. Since the mass density

can be written as µ = M/(πR2L)), we can write the moment of inertia in cylindrical
polar coordinates as
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2. Consider the line integral

I =

∫
C

[
y dx
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− x dy
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]
,

where the curve C is the semi-circle (of radius 3) from (−3, 0) to (3, 0).

(a) The vector V can be extracted dr = dxî + dyĵ = dr r̂ + r dφφ̂ as

V =
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− x ĵ
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(b) The integral is then
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