PHYS2170 Mathematical Methods 4

Problems Class 8: Solutions

1. Solve the following differential equations:

$$\frac{\partial^2 y}{\partial x^2} = -9\,y,$$

with boundary condition y(0) = 5 and y'(0) = 0. The easiest way is to recognize the two solutions, $y_1(x) = A \sin 3x$ and $y_2(x) = B \cos 3x$, so the general solution is $y(x) = y_1(x) + y_2(x)$. Applying the boundary conditions:

$$y(0) = B = 5$$

 $y'(0) = 3A = 0$

yields the general solution $y(x) = 5 \cos 3x$.

2. The temperature T(t) of a body cooling by radiation (dead star, last night's dinner, etc) obeys the following differential equation:

$$\frac{dT}{dt} = -K T^4.$$

Find the general solution to this differential equation for a given initial condition $T(0) = T_0$.

We can integrate directly:

$$-\frac{dT}{T^4} = K \, dt \quad \Longrightarrow \quad \frac{1}{3} \left[\frac{1}{T(t)^3} - \frac{1}{T(0)^3} \right] = K \, t \Longrightarrow \quad T(t) = \left[\frac{1}{\frac{1}{T_0^3} + 3Kt} \right]^{1/3}$$

3. (a) $\frac{d^2y}{dt^2} = 16y$

i. General solution. Try $y = e^{\lambda t}$:

$$y = e^{\lambda t} \Rightarrow \lambda^2 = 16 \Rightarrow \lambda = \pm 4$$

$$\therefore y(t) = Ae^{4t} + Be^{-4t} = \tilde{A}\sinh 4t + \tilde{B}\cosh 4t.$$

- ii. Basis functions are either (e^{4t}, e^{-4t}) or $(\sinh 4t, \cosh 4t)$.
- (b) $\frac{d^2y}{dt^2} 6\frac{dy}{dt} + 9y = 0$ i. General solution. Try $y = e^{\lambda t}$: $y = e^{\lambda t} \Rightarrow \lambda^2 - 6\lambda + 9 = 0 \Rightarrow (\lambda - 3)^2 = 0 \Rightarrow \lambda = 3$ (twice) $\therefore y(t) = Ae^{3t} + Bte^{3t}$ (use form for repeated roots).
 - ii. Basis functions are (e^{3t}, te^{3t}) .

(c)
$$\frac{d^3y}{dt^3} + 5\frac{d^2y}{dt^2} + 6\frac{dy}{dt} = 0$$

i. General solution. Try $y = e^{\lambda t}$:

$$y = e^{\lambda t} \Rightarrow \lambda^3 + 5\lambda^2 + 6\lambda = 0 \Rightarrow \lambda(\lambda + 3)(\lambda + 2) = 0 \Rightarrow \lambda = 0, -2, -3$$

$$\therefore y(t) = A + Be^{-2t} + Ce^{-3t}$$

ii. Basis functions are $(1, e^{-2t}, e^{-3t})$.