PHYS2170 Mathematical Methods 4

[2]

Assignment 1: Solutions. Number of points given in [brackets]. 29 points maximum.

1. The volume can be calculated using the scalar triple product, using the three vectors emanating from any vertex of the parallelpiped. For example, [3]

$$V = (\mathbf{v} - \mathbf{a}) \cdot (\mathbf{b} - \mathbf{a}) \times (\mathbf{d} - \mathbf{a}) = \mathbf{v} \cdot \mathbf{b} \times \mathbf{d} \qquad (\text{since} \ \mathbf{a} = \mathbf{0})$$
$$= (1, -1, 1) \cdot (0, 0, 3) = 3.$$

2. (a)
$$\mathbf{V}(\mathbf{r}) = \frac{(y\hat{\mathbf{i}} - x\hat{\mathbf{j}})e^{-a(x^2 + y^2)^{3/2}}}{x^2 + y^2} = \frac{\rho\sin\phi\,\hat{\mathbf{i}} - \rho\cos\phi\,\hat{\mathbf{j}}}{\rho^2}e^{-a\rho^3} = -\frac{\widehat{\phi}}{\rho}e^{-a\rho^3}.$$
 [3]

(b) To plot the vector *field* it is necessary to show how the vector field varies in both direction and magnitude, from point to point. This means drawing vectors all

1	1	1	1	-	-	-	-	Ð	.1-	-	-	-	-	~	~	`	`	`	`
1	1	1	1	-	1	-	-	-		-	-	-	-	`	`	~	`	`	~
1	1	1	1	1	1	^	-	-	_	-	-	-	1	`	`	`	`	`	`
1	1	1	1	1	1	^	-	-		-	1	1	`	`	`	`	`	`	×
1	1	1	1	,	1	1	Ńr	5	-	-		1	`	`	`	`	`	`	×
1	'	'	1	/	1	1	۶	1.0	ъ	-	-	1	`	`	`	`	`	`	Ň
'	'	'	'	/	/	1	/	^	_	-	1	`	~	`	`	`	Ň	`	Ň
1	1	1	1	/	1	/	/	/	_	-	1	1	1	~	1	`	`	١	۰.
'	1	1	1	1	1	1	1	1	~	-	~	1	1	1	٢	١	1	1	1
1	1	1	1	1	1	1	1	1	_	1	<u>\</u>	1	1	1	١	1	1	- 1	1
-Q.	1,	1	1	-(0	0	5,	1	~		-	1	1	-'/	oʻç	5	1	;	1	0,1
١.	١.	١	۸	۸.	N	1	\sim	~	-	-	~	1	1	1	1	1	1	1	1
Υ.	۸	N	N	~	~	~	~	5	۰.	-	-	1	1	1	1	1	1	1	1
×	Ν.	N	\mathbf{r}	`	~	~	0	0	5	-	-	-	1	1	1	1	1	1	1
`	`	`	\sim	`	`	~	~		·	-	-	-	1	1	1	1	1	1	1
×	~	~	~	~	~	~	~	~		-	-	-	-	1	1	1	1	1	1
`	`	`	~	~	~	-	-	-		-	-	-	-	-	-	1	1	1	1
	~	`	`	-	~	~	~	-		-	-	-	-	-	1	1	1	1	1
``		~	~	~	~	-	~ _	-Ð	1	-	-	-	-	-	-	~	1	~	1

over the place!

(c) In polars: to calculate $\nabla \times \mathbf{V}$, note that there is only a ϕ component to \mathbf{V} ; furthermore, this component only depends on ρ . Hence, we only need [looking up the identity for curl and extracting the relevant component]

$$\boldsymbol{\nabla} \times \mathbf{V} = \widehat{\boldsymbol{k}} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(\rho V_{\phi} \right) = \widehat{\boldsymbol{k}} \frac{1}{\rho} \frac{\partial}{\partial \rho} \left(-e^{-a\rho^3} \right) = 3a\rho e^{-a\rho^3} \widehat{\boldsymbol{k}}.$$

In cartesians it's a slog. There's only a z component (To see this, note that the x and y components of \mathbf{V} do not depend on z and that there is no z component of \mathbf{V} ; and then stare at the usual determinant). The chain rule has to be applied many times. [4]

$$\begin{aligned} (\boldsymbol{\nabla} \times \mathbf{V})_z &= \frac{\partial V_x}{\partial y} - \frac{\partial V_y}{\partial x} = \left\{ \left[\frac{1}{x^2 + y^2} - \frac{y(2y)}{(x^2 + y^2)^2} + \frac{y}{x^2 + y^2} (3a/2)(2y)(x^2 + y^2)^{1/2} \right] \right\} \\ &- (-) \left[\frac{1}{x^2 + y^2} - \frac{x(2x)}{(x^2 + y^2)^2} + \frac{x}{x^2 + y^2} (3a/2)(2x)(x^2 + y^2)^{1/2} \right] \right\} e^{-a(x^2 + y^2)^{3/2}} \\ &= \left[\frac{2(x^2 + y^2) - 2x^2 - 2y^2}{(x^2 + y^2)^2} + \frac{3a(x^2 + y^2)(x^2 + y^2)^{1/2}}{x^2 + y^2} \right] e^{-a(x^2 + y^2)^{3/2}} \\ &= 3a\sqrt{x^2 + y^2} e^{-a(x^2 + y^2)^{3/2}}. \end{aligned}$$

This is the same as the result in polar coordinates, since $\rho = \sqrt{x^2 + y^2}$.

3. Given $h(x, y) = (x^2 + 1)/(1 + x^2 + y^3)$.

(a)

$$\nabla h = \left(\hat{\boldsymbol{i}} \frac{\partial}{\partial x} + \hat{\boldsymbol{j}} \frac{\partial}{\partial y} \right) h = \hat{\boldsymbol{i}} \frac{2x \left(1 + x^2 + y^3 \right) - \left(1 + x^2 \right) (2x)}{(1 + x^2 + y^3)^2} + \hat{\boldsymbol{j}} \frac{-3y^2 (1 + x^2)}{(1 + x^2 + y^3)^2} \\ = \frac{2x y^3 \hat{\boldsymbol{i}} - 3y^2 (1 + x^2) \hat{\boldsymbol{j}}}{(1 + x^2 + y^3)^2}.$$

(b) To find the slope in the direction of $-\hat{i} - \hat{j}$, we need to project the gradient ∇h along a unit vector in this direction. Hence, [2]

slope =
$$-\frac{1}{\sqrt{2}}(\hat{i}+\hat{j})\cdot\nabla h\Big|_{x=1,y=2} = -1\frac{1}{\sqrt{2}}\frac{2x\,y^3 - 3y^2(1+x^2)}{(1+x^2+y^3)^2}\Big|_{x=1,y=2}$$

= $\frac{1}{\sqrt{2}}\frac{-16+24}{(1+1+8)^2} = \frac{1}{\sqrt{2}}\frac{8}{100} = \frac{2}{25\sqrt{2}}.$

(c) The maximum slope at this point is the magnitude of the gradient at this point, or [2]

$$\sqrt{\nabla h \cdot \nabla h} = \left| \frac{16}{100} \hat{i} - \frac{24}{100} \hat{j} \right| = \frac{\sqrt{16^2 + 24^2}}{100} = \frac{2\sqrt{13}}{25}$$

- 4. The Laplacian operator, in cartesian coordinates, is $\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$. So: [4]
 - (a) $\nabla^2(x^2 + 2xy + 3ze^{-(x+y)}) = [2+0+0] + [0+0+0] + [3ze^{-(x+y)} + 3ze^{-(x+y)} + 0] = 2 + 6ze^{-(x+y)}.$
 - (b) $\nabla^2 \left[e^{-5x} \sin 4y \cos 3z \right] = (25 16 9)e^{-5x} \sin 4y \cos 3z = 0.$
- 5. Maxwell's Equations for electric and magnetic fields \mathbf{E} and \mathbf{B} in free space are

$$\boldsymbol{\nabla} \cdot \mathbf{B} = 0 \tag{1}$$

[3]

$$\boldsymbol{\nabla} \cdot \mathbf{E} = 0 \tag{2}$$

$$\boldsymbol{\nabla} \times \mathbf{E} + \frac{1}{c} \frac{\partial \mathbf{B}}{\partial t} = 0 \tag{3}$$

$$\boldsymbol{\nabla} \times \mathbf{B} - \frac{1}{c} \frac{\partial \mathbf{E}}{\partial t} = 0 \tag{4}$$

(a) Take the curl of Equation ??:

$$\nabla \times \nabla \times \mathbf{E} + \frac{1}{c} \nabla \times \frac{\partial \mathbf{B}}{\partial t} = \underbrace{\nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E}}_{\text{identity}} + \underbrace{\frac{1}{c} \frac{\partial}{\partial t} \nabla \times \mathbf{B}}_{\text{change derivative order}} = 0$$

$$\underbrace{0 - \nabla^2 \mathbf{E}}_{\text{use } \nabla \cdot \mathbf{E} = 0} + \frac{1}{c} \frac{\partial}{\partial t} \underbrace{\frac{1}{c} \frac{\partial \mathbf{E}}{\partial t}}_{\text{Use Eq. ??}} = 0 \implies c^2 \nabla^2 \mathbf{E} = \frac{\partial^2}{\partial t^2} \mathbf{E}.$$

This is the full wave equation in three dimensional space (rather than the one dimensional cousin for a wave on a string, $\frac{\partial^2 h}{\partial t^2} = c^2 \frac{\partial^2 h}{\partial x^2}$). Note that this is actually *three* wave equations, one for each component of **E**! A similar calculation can be peformed for **B**. [3]

(b) If $\mathbf{B} = \mathbf{B}_0 \sin(\mathbf{k} \cdot \mathbf{r} - \omega t)$ and $\mathbf{E} = \mathbf{E}_0 \sin(\mathbf{k} \cdot \mathbf{r} - \omega t)$, then Equation ?? implies:[3]

$$\nabla \times [\mathbf{E}_0 \sin (\mathbf{k} \cdot \mathbf{r} - \omega t)] + \frac{1}{c} \frac{\partial [\mathbf{B}_0 \sin (\mathbf{k} \cdot \mathbf{r} - \omega t)]}{\partial t} = 0$$

$$\underbrace{[\nabla \sin (\mathbf{k} \cdot \mathbf{r} - \omega t)] \times \mathbf{E}_0}_{\mathbf{E}_0 \text{ constant}} + \frac{1}{c} \mathbf{B}_0 \frac{\partial}{\partial t} [\sin (\mathbf{k} \cdot \mathbf{r} - \omega t)] = 0$$

$$\begin{bmatrix} \mathbf{k} \times \mathbf{E}_0 + \frac{1}{c} (-\omega) \mathbf{B}_0 \end{bmatrix} \cos (\mathbf{k} \cdot \mathbf{r} - \omega t) = 0$$

This must be true for all points \mathbf{r} and all times t; hence we must have $\mathbf{k} \times \mathbf{E}_0 = \omega \mathbf{B}_0/c$. That is, the magnetic and electric fields are polarized perpendicular to each other and, since we know that $\mathbf{k} \perp \mathbf{E}_0$ from Maxwell Equation (??), and $k = \omega/c$ [this can be found from the wave equation derived in the previous part], the electric and magnetic fields are equal in magnitude, in these units.