
PHYS2170 Mathematical Methods 4 (J A Dunningham)

Assignment 1: Solutions. Number of points given in [brackets]. 29 points maximum.

1. The volume can be calculated using the scalar triple product, using the three vectors
emanating from any vertex of the parallelpiped. For example, [3]

V = (v − a) · (b − a) × (d − a) = v · b× d (since a = 0)

= (1,−1, 1) · (0, 0, 3) = 3.

2. (a) V(r) =
(yî− xĵ)e−a(x2+y2)3/2

x2 + y2
=

ρ sin φ î − ρ cos φ ĵ

ρ2
e−aρ3

= −φ̂

ρ
e−aρ3

. [3]

(b) To plot the vector field it is necessary to show how the vector field varies in both
direction and magnitude, from point to point. This means drawing vectors all

over the place!
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(c) In polars: to calculate ∇ × V, note that there is only a φ component to V;
furthermore, this component only depends on ρ. Hence, we only need [looking up
the identity for curl and extracting the relevant component]

∇ ×V = k̂
1

ρ

∂

∂ρ
(ρVφ) = k̂

1

ρ

∂

∂ρ

(
−e−aρ3

)
= 3aρe−aρ3

k̂.

In cartesians it’s a slog. There’s only a z component (To see this, note that the
x and y components of V do not depend on z and that there is no z component
of V; and then stare at the usual determinant). The chain rule has to be applied
many times. [4]

(∇ × V)z =
∂Vx

∂y
− ∂Vy

∂x
=

{[
1

x2 + y2
− y(2y)

(x2 + y2)2
+

y

x2 + y2
(3a/2)(2y)(x2 + y2)1/2

]

− (−)

[
1

x2 + y2
− x(2x)

(x2 + y2)2
+

x

x2 + y2
(3a/2)(2x)(x2 + y2)1/2

]}
e−a(x2+y2)3/2

=

[
2(x2 + y2) − 2x2 − 2y2

(x2 + y2)2
+

3a(x2 + y2)(x2 + y2)1/2

x2 + y2

]
e−a(x2+y2)3/2

= 3a
√

x2 + y2e−a(x2+y2)3/2
.

This is the same as the result in polar coordinates, since ρ =
√

x2 + y2.



3. Given h(x, y) = (x2 + 1)/(1 + x2 + y3).

(a) [3]

∇h =

(
î

∂

∂x
+ ĵ

∂

∂y

)
h = î

2x (1 + x2 + y3) − (1 + x2)(2x)

(1 + x2 + y3)2
+ ĵ

−3y2(1 + x2)

(1 + x2 + y3)2

=
2x y3î − 3y2(1 + x2)ĵ

(1 + x2 + y3)2
.

(b) To find the slope in the direction of −î − ĵ, we need to project the gradient ∇h
along a unit vector in this direction. Hence, [2]

slope = − 1√
2
(̂i + ĵ) · ∇h

∣∣∣∣
x=1,y=2

= −1
1√
2

2x y3 − 3y2(1 + x2)

(1 + x2 + y3)2

∣∣∣∣
x=1,y=2

=
1√
2

−16 + 24

(1 + 1 + 8)2
=

1√
2

8

100
=

2

25
√

2
.

(c) The maximum slope at this point is the magnitude of the gradient at this point,
or [2]

√
∇h · ∇h =

∣∣∣∣
16

100
î − 24

100
ĵ

∣∣∣∣ =

√
162 + 242

100
=

2
√

13

25
.

4. The Laplacian operator, in cartesian coordinates, is ∇2 = ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 . So: [4]

(a) ∇2(x2 +2xy +3ze−(x+y)) = [2+0+0]+ [0+0+0]+
[
3ze−(x+y) + 3ze−(x+y) + 0

]
=

2 + 6ze−(x+y).

(b) ∇2 [e−5x sin 4y cos 3z] = (25 − 16 − 9)e−5x sin 4y cos 3z = 0.

5. Maxwell’s Equations for electric and magnetic fields E and B in free space are

∇ · B = 0 (1)

∇ · E = 0 (2)

∇ × E +
1

c

∂B

∂t
= 0 (3)

∇ × B − 1

c

∂E

∂t
= 0 (4)

(a) Take the curl of Equation ??:

∇ × ∇ × E +
1

c
∇ × ∂B

∂t
= ∇(∇ · E) − ∇2E︸ ︷︷ ︸

identity

+
1

c

∂

∂t
∇ × B

︸ ︷︷ ︸
change derivative order

= 0

0 − ∇2E︸ ︷︷ ︸
use ∇·E=0

+
1

c

∂

∂t

1

c

∂E

∂t︸ ︷︷ ︸
Use Eq. ??

= 0 =⇒ c2∇2E =
∂2

∂t2
E.

This is the full wave equation in three dimensional space (rather than the one
dimensional cousin for a wave on a string, ∂2h

∂t2 = c2 ∂2h
∂x2 ). Note that this is actually

three wave equations, one for each component of E! A similar calculation can be
peformed for B. [3]



(b) If B = B0 sin(k · r− ωt) and E = E0 sin(k · r− ωt), then Equation ?? implies:[3]

∇ × [E0 sin (k · r − ωt)] +
1

c

∂ [B0 sin (k · r − ωt)]

∂t
= 0

[∇ sin (k · r− ωt)] ×E0︸ ︷︷ ︸
E0 constant

+
1

c
B0

∂

∂t
[sin (k · r − ωt)] = 0

[
k × E0 +

1

c
(−ω)B0

]
cos (k · r − ωt) = 0

This must be true for all points r and all times t; hence we must have k × E0 =
ωB0/c. That is, the magnetic and electric fields are polarized perpendicular to
each other and, since we know that k ⊥ E0 from Maxwell Equation (??), and
k = ω/c [this can be found from the wave equation derived in the previous part],
the electric and magnetic fields are equal in magnitude, in these units.


