
PHYS2170 Mathematical Methods 4 (J A Dunningham)

Assignment 2: Solutions. Number of points given in [brackets]. 30 points maximum.

1. We compute the integral over the square, and subtract the integral over the circle. [5]

I! =

∫ 3

−3

dx

∫ 3

−3

dy 2x2 = 2

(
2
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3
33

)
(6) = 216

I◦ =

∫ 3

0

r dr

∫ 2π

0

dθ
(
2r2 cos2 θ

)
= 2

(
1

4
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)
π =

81π

2

⇒ I = I! − I◦ = 216 − 81π

2
.

2. Consider the following line integral: [7]

J =

∫

C

V·dr, V = yexŷi + (xexy + 1) ĵ

where C is the curve from x = 6 to x = 1 along the line y = x3;

(a) Evaluate this integral explicitly. To evaluate this, we replace y = x3, dy = 3x2 dx,
to find [(2)]

J =

∫

C

[yexy dx + (xexy + 1) dy] (take scalar product)

=

∫ 1

6

[
x3ex4

dx +
(
xex4

+ 1
)

3x2 dx
]

(eliminate y)

=

∫ 1

6

[
4x3ex4

+ 3x2
]

dx

=
[
ex4

+ x3
]∣∣∣

1

6
= e − e1296 + 1 − 63 = e − 215 − e1296.

(b) Show by taking the curl that V is conservative. [(1)]

∇ ×V = î (0 − 0) + ĵ (0 − 0) + k̂ (exy + xyexy − xyexy − exy) = 0

(c) Integrate V to find the corresponding potential φ, such that [(2)]

Vx =
∂φ

∂x
, Vy =

∂φ

∂y
.

We need to integrate,

∂φ

∂x
= yexy =⇒ φ = exy + g1(y) (integrate x at fixed y)

∂φ

∂y
= xexy + 1 =⇒ φ = exy + y + g2(x) (integrate y at fixed x),

where g1(y) and g2(x) are, respectively, the constants of integration with respect to
x and y. Since we must obtain the same function φ, we must have g1(y) = y+g2(x).
So, we can take g2(x) to be a constant (zero), while g1(y) = y. Hence we can
write the potential φ as

φ = exy + y.



(d) Calculate J by evaluating φ at the endpoints of C, hence obtaining the same result
as in (a). The result for φ is, of course, the same result we found above in (2b)
(if we identify y = x3 in the result). Hence the integral is, as it should be, exactly
as we found it before. [(2)]

3. By Stokes’ Theorem, [5]

I =

∮

C

W·dr =

∫

S

dS · (∇ × W)

=

∫

S

(
r dr dφ k̂

)
· ∇ ×W (dS in polars)

=

∫

S

r dr dφ (∇ ×W)z =

∫

S

r dr dφ
(
−y2 − x2

)
(z component of curl)

= −
∫

S

r dr dφ r2 = −
∫ 3

0

r3 dr

∫ 2π/3

0

dφ = −1

4
34 2π

3
= −27π

2
.

The integral is taken with radius r = 3, and spans an angle of 2π/3. Because the path
is taken counterclockwise, we need a surface normal of k̂ (right hand rule).

4. [6]

I =

∫

S

{x dy dz + y dx dz + z dx dy}

=

∫

S

(
x î + y ĵ + z k̂

)
·

(
îdy dz + ĵ dx dz + k̂ dx dy

)

︸ ︷︷ ︸
general vector area element dA in cartesian coordinates

=

∫

S

r · dS (identifying the total vector area element)

=

∫

S

r · r̂(r2 sin θdθdφ)

= r3

∫

S

sin θdθdφ = 4πr3 = 32π. [(3)]

Using the divergence theorem,

I =

∫

V

∇ · r dV =

∫

V

3 dV (divergence theorem)

= 3

∫

V

dV = 3
4

3
π23 = 32π. [(3)]

5. Gauss’s Law for the electric field is: [7]

∇·E = ρ,

where ρ is the charge per unit volume at a given point.

(a) Integrating over the an arbitrary volume gives [(1)]
∫

V

∇·E dV =

∫

V

ρ dV ⇒
∮

S

E · dS = Q.

[The integral of the charge density, charge per unit volume, over the whole volume
gives the total enclosed charge Q.



(b) Assume a wire of infinite length aligned in the ẑ direction, with charge per unit
length λ. What direction does the electric field point? [Use cylindrical coordi-
nates (ρ, z, φ)]. Since the system is radially symmetric, there can be no angular
dependence to E. Hence there is no component in the φ̂ direction, where we use
cylindrical coordinates. Because the system is infinite in the z direction, there
can be no dependence on z. By symmetry, there can be no difference in looking
at the wire “right side up” or “upside down”. That is, the solution must be sym-
metric under z → −z. Hence there is no component in the ẑ direction (since this
component would change sign if the wire was flipped upside down. That leaves a
component in the radial direction, parallel to ρ̂, that can only depend on ρ. [(2)]

(c) Now we apply this to a cylinder around the wire: [(2)]

∮

S

E · dS = λZ,

where S is the surface of a cylinder of height Z and radius R, and λZ is the
enclosed charge. Integrating:

λZ =

∮
E · dS =

∫

S

dzρ dφρ̂ · E0ρ̂ =

∫ Z

0

dz

∫ 2π

0

dφ RE0 = 2πZRE0

=⇒ E0 =
λ

2πR

(d) The electrostatic potential ψ is given by E = −∇ψ. Hence, [(2)]

∫ R

∞
E · dr = −

∫ R

∞
∇ψ · dr = −ψ(R) + ψ(∞).

Integrating the electric field yields

−ψ(R) + ψ(∞) =

∫ R

∞

λ

2πρ
ρ̂ · ρ̂dρ =

λ

2π
ln ρ|R∞ =

λ

2π
(ln∞− ln R) .

The potential at ∞ is arbitrary, since what matters is always the relative potential.
Hence we can ignore this infinite constant. Actually, there is no such thing as an
infinite wire; hence far enough away compared to the true length of the wire the
potential will decay as 1/r instead of ln r, and the potential at infinity will vanish.


