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1. Ordinary Differential Equations PHYS2170

1 Ordinary Differential Equations

1.1 Introduction

The order of an ODE is the highest derivative, while the degree of the ODE is the highest
power of the dependent function f . For example, the following is a third order ODE of
second degree:

dy

dx
y + 6

d3y

dx3
= sin 3x. (1)

The first term has two powers of the dependent function y, and the second term has three
derivatives, hence third order. This is an inhomogeneous ODE, because we have an additional
function of x (on the right hand side).

This simplest ODE is the first order linear (first degree) homogeneous ODE,

df

dx
= αf(x), or

df

dx
− αf(x) = 0. (2)

This is homogeneous because every term in linear in f or linear in some derivative of f . This
can be solved immediately (by assuming f = eλx, substituting into (2), and solving to find
λ = α ), and the general solution is

f = Aeλx. (3)

A is the constant of integration, and we need a boundary condition to find the specific
solution.

• Generally, an nth order ODE requires the specification of n boundary condi-
tions, one for each derivative that must be integrated and gives rise to a constant
of integration.

The boundary condition picks out which function of the class of solutions is desired, and
the ODE “propagates” the information on the boundary throughout the whole space.

The ODE above can also be written more generally as:

df

dx
− αf = 0 (4a)

(
d

dx
− α

)
f = 0 (4b)

Lf = 0, (4c)

where we have defined the linear differential operator

L ≡ d

dx
− α. (5)

This notation is very useful, for we can thus write ODE’s very compactly. For example, we
can write the following ODE

d2f

dx2
− 6

df

dx
+ 12f = sin x (6)
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1.2 Forced first order ODEs PHYS2170

as
Lf = sin x, (7)

if we define the linear operator (of second order) to be

L ≡ d2

dx2
− 6

d

dx
+ 12. (8)

1.2 Forced first order ODEs

An inhomogeneous differential equation has a “forcing term”, e.g.the function f(t) below:

dy

dt
+ α y = f(t). (9)

The general solution to this equation is:

y(x) = yC(x) + yp(x), (10)

where yC(x) is the complementary function, which satisfies the homogeneous ODE

dyC

dx
+ αyC = 0, (11)

and yp is the particular integral. This approach applies for linear ODE’s of any order:

• The solution to any linear inhomogenous ODE

Ly = f(t), (12)

where L is a linear operator of any order, can be written as the sum of a com-
plementary function and the particular integral.

For some ODE’s (e.g.first order ODE’s with constant coefficients, as above), the particular
integral can be solved exactly. In other cases the typical strategy is to guess a solution of the
form of the forcing function. Typical functions that show up are polynomials, exponential
functions, and sinusoidal (sin and cos) functions. The general solution to a first order
homogeneous ODE with constant coefficient α (Eq. 9) is

y(t) = y(0)e−αt +

∫ t

0

e−α(t−s) f(s)ds. (13)

Note that in this case s is a dummy variable of integration. The complementary function
decays with an exponential, while the forcing function gives impulses at all times t′ before
the current time, and these pulses decay with the same exponential function. All of these
contributions are added together (integrated).
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1.3 Second Order homogeneous ODE’s PHYS2170

1.3 Second Order homogeneous ODE’s

To solve a second order ODE, e.g.

d2y

dx2
+ ω2y = 0, (14)

we again (as almost always!!) assume y = eλt. Substitution gives λ = ±iω, and thus the
general solutions are y = e±iωx. Since we are typically dealing with real functions it is easier
to write the general solution in terms of sine and cosine functions:

y = A sinωx+B cosωx. (15)

1. There are two derivatives in a second order ODE.

2. There are two constants of integration (here, A and B) in a second order ODE.

3. There are two linearly independent eigenfunctions (here, they are sinωx and cosωx)
that comprise the general solution to a second order ODE.

The eigenfunctions are often called basis functions. There is a very strong analogy between
the basis functions of the solution space of an ODE and the basis vectors (for example, î, ĵ, k̂)
of a vector space.

Example 1:

1. Show that the general solution to

dy

dx
− k2y = 0 (16)

is either∗

y = Aekx +Be−kx or y = C sinh kx+D cosh kx. (17)

Note that here there are two equally valid sets of basis functions (either exponentials
or hyperbolic functions). This is analogous to vectors, where we have many possible
sets of basis vectors (cartesians, polars, etc) from which to choose.

Example 2: Consider the following ODE,

d2y

dt
+ 2

dy

dt
+ 5y = 0. (18)

Assuming y = eλt and substituting, we find the following characteristic polynomial P (λ),
which must equal zero:

P (λ) ≡ λ2 + 2λ+ 5 = 0. (19)

Solving this quadratic equation yields two roots (as we should have, for a second order ODE),

y = −1 ± 2i. (20)

∗Recall that sinhx = (ex − e−x)/2 and coshx = (ex + e−x)/2.
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There are two eigenfunctions, of the form y = e−t±2it = ete±2it. Since we are typically
considering y to be a real function, it is easier to express e±2it in terms of sinusoidal functions,
so that the general solution is

y(t) = e−t (A sin 2t+B cos 2t) . (21)

Two boundary conditions are needed to specifiy A and B. For example, initial conditions
y(0) = 5 and y′(0) = 0 leads to y(t) = 5e−t cos 2t.

Example 3: A general second order ODE with constant coefficients has the form

a
d2y

dt
+ b

dy

dt
+ cy = 0, (22)

where a, b, c are constants. Again we assume y = eλt and upon substituting we find the
characteristic equation,

P (λ) ≡ aλ2 + bλ+ c = 0. (23)

The two roots can be solved by the quadratic equation, λ = (−b±
√
b2 − 4ac)/2a, and there

are three possibilities:

1. b2 > 4ac: two real roots λ1, λ2, and the characteristic equation factors into the form
(after dividing through by a)

(λ− λ1)(λ− λ2) = 0. (24)

The two eigenfunctions are eλ1t, eλ2t and the general solution is y = Aeλ1t +Beλ2t.

2. b2 < 4ac: two complex roots, which can be written as λ = α ± iβ with α = −b/(2a)
and β =

√
b2 − 4ac/(2a). The eigenfunctions are of the form eαt e±iβt, as we found

above, or one can use eαt sin βt and eαt cosβt if desired. Hence, the general solution is
y = eαt(A sin βt+B cosβt).

3. b2 = 4ac: two identical roots! In this case the characteristic equation factors into the
form

(λ− λ0)(λ− λ0) = 0, where λ0 = − b

2a
. (25)

The general eigenfunctions for repeated roots λ0 are eλ0t, teλ0t, and the general solution
is y = Aeλ0t +Bteλ0t.

1.4 Linear Superposition

Consider a linear homogeneous differential equation,

Lu = 0, (26)

where L is a linear operator. This can be any linear operator, involving any number of
derivatives and also including non-constant coefficients. If u1 and u2 are linearly independent
solutions to the differential equation, i.e.

Lu1 = 0, Lu2 = 0, (27)
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1.5 General homogeneous ODE’s with constant coefficients PHYS2170

then a1u1 + a2u2 is also a solution, where a1 and a2 are constants. This can be seen by
substitution:

L(a1u1 + a2u2) = L(a1u1) + L(a2u2) (28a)

= a1Lu1 + a2Lu2 (a1, a2 constants) (28b)

= a1(0) + a2(0) = 0. (28c)

Hence, once we have found all linearly independent solutions, the general solution is the
superposition of all of these solutions. This is also true for partial differential equations, and
will be very useful later.

1.5 General homogeneous ODE’s with constant coefficients

Much of what we have learned above can be applied to homogeneous ODE’s of any order
(with constant coefficients). Consider the following ODE

an
dny

dxn
+ an−1

dn−1y

dxn−1
+ an−2

dn−2y

dxn−2
+ . . .+ a1

dy

dx
+ a0y = 0. (29)

We can also write this as
Ly = 0, (30)

where the linear operator in this case is

L ≡ an
dn

dxn
+ an−1

dn−1

dxn−1
+ an−2

dn−2

dxn−2
+ . . .+ a1

d

dx
+ a0 (31)

Again we substitute y = eλx into the ODE, and arrive at the characteristic equation

P (λ) ≡ anλ
n + an−1λ

n−1 + . . .+ a1λ+ a0 = 0. (32)

This is an nth order polynomial equation, which has n roots. That is the equation can,
in principle (for example, Maple and Mathematica can always generate these roots) be
written in the form

(λ− λ1)(λ− λ2)(λ− λ3) . . . (λ− λn) = 0, (33)

where the n roots are λ1, λ2, . . . , λn. The eigenvalues are generally complex (note that com-
plex numbers will always come in pairs), and the general solution is given by the superposition
of n independent eigenfunctions:

y(x) =
n∑

i=1

Aiyi(x). (34)

For each root λi that appears uniquely, the eigenfunctions are yi(x) = eλix. If a root is
repeated g times, then that root has g eigenfunctions, given by

yi(x) = eλix, xeλix, . . . , xg−1eλix. (35)

Example 4: Find the general solution to the following ODE for the shape of a string y(x):

y′′′′ − 9y′′ = 0. (36)
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Substituting y = eλx we find the following characteristic equation:

λ4 − 9λ2 = 0. (37)

This can be factored immediately to see the roots:

λ2(λ2 − 9) = λ2(λ− 3)(λ+ 3) = (λ− 0)2(λ− 3)(λ+ 3) = 0. (38)

Hence, λ = +3 and λ = −3 appear as unique roots, while λ = 0 is repeated twice. The
eigenfunctions for the repeated roots are e0x and xe0x, or just 1 and x, while the other
eigenfunctions are y = e±3x. Thus, the general solution is given by

y(x) = A+Bx+ Ce3x +De−3x. (39)

2 Partial Differential Equations

2.1 PDE’s: Introduction

Recall that ODE’s took boundary conditions at a point, and propagated them along the
space or time axis. PDE’s describe functions of more than one variable, for example space
and time, u(x, t). By analogy with ODE’s, we will see that PDE’s propagate entire functions
into a domain of time or space. For example, one can specify the initial shape of a string (at
time t = 0) for all x, and then propagate this function (the shape) forward in time.

In this module we will only consider linear PDE’s with constant coefficients. To see how
a PDE arises naturally, consider the propagation of a wave pulse h(x, t) moving at constant
speed. In this case, the height at time t+ δt at point x is given by the height that was a bit
farther back, at x− vδt, at time t:

h(x, t+ δt︸ ︷︷ ︸
now

) = h( x− vδt︸ ︷︷ ︸
here earlier

, t). (40)

Taylor expanding, we find

∂h

∂t
= −v∂h

∂x
, or






∂h

∂t
+ v

∂h

∂x
= 0

(
∂

∂t
+ v

∂

∂x

)
h = 0

(41)

This is a simple first order PDE that is satisfied by any wave pulse moving at constant speed.
Notice that this can be satisfied by a pulse of any shape. By direct substitution you can
verify [Check!!] that the general solution to this PDE is

h(x, t) = g(x− vt), (42)

where g(z) is any differentiable function. That is, one can reduce the function of two variables
h(x, t) to a function of a single variable, g(z), as long as one makes the identification z =
x− vt. This does not solve the PDE exactly, but restricts the class of solutions enormously.
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2.2 Main PDE’s PHYS2170

Example 5: Solve the PDE

∂f

∂t
+ 3

∂f

∂x
= 0, with f(x, 0) = e−3x2

. (43)

This is a travelling wave with speed v = 3, so the general solution is

f(x, t) = g(x− 3t). (44)

At time zero we have g(x− 3 ∗ 0) = g(x) = e−3x2

. Hence the general solution at all times is
given by restoring the time dependence to g(x− 3t):

f(x, t) = g(x− 3t) = e−3(x−3t)2 . (45)

1. We found the class of solutions, f(x, t) = g(x − vt). This is analogous to finding the
functional form y = Aeλt for a first order ODE dy

dt
= λy.

2. Then we applied the initial condition, which was a function of x at time zero, to find
the specific function g(z). This is analogous to applying an initial condition at a point,
y(0), to find the specific A for the ODE.

2.2 Main PDE’s

1. Wave Equation: This arises in many areas of physics. For a wave on a string,
specified by a height function h(x, t), one can solve Newton’s laws “F = ma” to find

T
∂2h(x, t)

∂x2︸ ︷︷ ︸
Force

= ρ
∂2h(x, t)

∂t2︸ ︷︷ ︸
m×a((perlength))

. (46)

Here, T is the tension, ∂2h/∂x2 is the local curvature, and ρ is the mass per unit length.
Rearranging, we have the familiar form for the wave equation,

∂2h(x, t)

∂x2
=

1

c2
∂2h(x, t)

∂t2
Wave Equation, (47)

where the wave speed is given by c =
√
T/ρ. This arises in electrodynamics as well,

for the electric and magnetic vector fields:

∇
2E(r, t) =

1

c2
∂2E(r, t)

∂t2
. (48)

This is in fact three wave equations, one for each component Ex, Ey, Ez of the elec-
tric field, and the single space derivative has been replace by the three dimensional
Laplacian operator.

2. Diffusion Equation The local concentration of diffusing particles c(x, t), or the tem-
perature field T (x, t) in an equilibrating heat conductor, is specified by the diffusion
equation:

∂c(x, t)

∂t
= D

∂2c(x, t)

∂x2
Diffusion Equation, (49)

7



2.3 Some general solutions PHYS2170

where D is the diffusion coefficient. In three space dimensions this would be written
as

∂c(r, t)

∂t
= D∇

2c(r, t). (50)

3. Laplace’s Equation In steady state, the concentration field above has no time deriva-
tive, and hence satisfies (in two dimensions) the equation

∂2c(x, y)

∂x2
+
∂2c(x, y)

∂y2
= 0 Laplace Equation. (51)

This is also satisfied by the electrostatic potential in free space, φ(r, t), where now
second derivatives with respect to x, y, z appear:

∇
2φ(r) = 0. (52)

In this module we will only deal with differential equations for functions of two in-
dependent variables, such as c(x, t), φ(x, y), h(x, t); but in physical situations spatial
variables typically come in three dimensions, and the same techniques that we will use
generally apply.

4. Other common linear PDE’s include:

∇
2φ(r) =

ρ(r)

ǫ0
Poisson Equation (53a)

−~
2

2m
∇

2ψ(r, t) = i~
∂ψ

∂t
Schrödinger Equation (53b)

2.3 Some general solutions

Before jumping into the technology of solving PDE’s, let’s look at some general solutions
and features.

2.3.1 D’Alembert’s Solution to the Wave Equation

The wave equation can be written as follows:

∂2u(x, t)

∂x2
=

1

c2
∂2u(x, t)

∂t2
(54)

∂2u

∂t2
− c2

∂2u

∂x2
= 0 (55)

(
∂2

∂t2
− c2

∂2

∂x2

)
u = 0. (56)

Now we can factor the derivative operator to obtain two equivalent expressions for the wave
equation:

(
∂

∂t
− c

∂

∂x

) (
∂

∂t
+ c

∂

∂x

)
u =

(
∂

∂t
+ c

∂

∂x

)(
∂

∂t
− c

∂

∂x

)
u = 0. (57)
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2.3 Some general solutions PHYS2170

You can check this by explicitly expanding everything out, and recalling that it doesn’t
matter what order you take the derivatives in, i.e. ∂2u

∂x∂t
= ∂2u

∂t∂x
. Note that each term is in

fact the linear operator for a first order PDE that is solved by a wave pulse of speed ±c. So,
the left hand version of the equation is satisfied if

(
∂

∂t
+ c

∂

∂x

)
u = 0, (58)

which corresponds to a wave pulse travelling at speed c, with solution u = f(x − ct). The
right hand version of Eq. (57) is satisfied if

(
∂

∂t
− c

∂

∂x

)
u = 0, (59)

which corresponds to a wave pulse travelling at speed −c,with solution u = g(x+ ct). Hence
the general solution to the wave equation is

u(x, t) = f(x− ct) + g(x+ ct), (60)

where f(z) and g(z) are arbitrary functions. The functions are undetermined, and we requires

two boundary conditions (typically u(x, 0) and ∂u(x,0)
∂t

) to determine them.

The general procedure is thus:

(i) Write down the general solution u = f(x− ct) + g(x+ ct).

(ii) Substitute the general solution into the initial conditions. For example, if the the initial

conditions are u(x, 0) = p1(x) and ∂u(x,0)
∂t

= p2(x), then we can write:

f(x) + g(x) = p1(x) (61)

−cf ′(x) + cg′(x) = p2(x). (62)

(iii) Solve for f(x) and g(x).

(iv) Restore the time into the solutions you have found, that is, let f(x) → f(x − ct)
(substitute x − ct for x) and let g(x) → g(x+ ct) (substitute x + ct for x) and hence
write down the desired solution.

The wave equation is a hyperbolic differential equation (because of the similarity to the
equation for a hyperbola, which is x2 − y2 =constant.

2.3.2 Laplace’s Equation

The Laplace Equation looks like the wave equation, with an imaginary speed! Consider
Laplace’s equation for a function u(x, y):

∂2u

∂x2
+
∂2u

∂y2
= 0. (63)

9
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This is essentially a wave equation with speed given by c2 = −1. Hence the solution is a
superposition of wave pulses travelling at “imaginary” speeds c = ±i:

u(x, y) = f(x+ iy) + g(x− iy), (64)

where f(z) and g(z) are any functions of a complex variable z = x + iy. Notice that if we
choose g(z) = f ∗(z) = f̃(x− iy), then

u(x, y) = 2Re(f), (65)

where Re(f) is the real part of f , satisfies Laplace’s equation. Similarly, if we choose
g = −f ∗, we find that

u(x, y) = 2i Im(f), (66)

where Im(f) is the imaginary part of f , satisfies Laplace’s equation. Hence, the real and
imaginary parts of any function f(z) of a complex number z = x + iy satisfy Laplace’s
equation! This is a very useful trick to know at times!

Example 6: Find a solution to Laplace’s equation if u(x, 0) = e−2x2

. We can see that two
possible solutions are

f± = e−2(x±iy)2 , (67)

since these two solutions have “speed” ±i, and setting y = 0 recovers the desired boundary
condition (up to constants that must be determined by another boundary condition). Hence
we could write the general solution as

u(x, y) = f+(x, y) + f−(x, y) = Ae−2(x+iy)2 +Be−2(x−iy)2 (68)

= e−2(x2−y2)
[
Ae2ixy +Be−2ixy

]
(69)

= e−2(x2−y2) [C cos 2xy +D sin 2xy] . (70)

As usual, we can write exponential of imaginary argument as sin and cos functions, for
convenience. Note that:

1. There are two constants, either A and B or C and D, determined by two boundary
conditions, which are typically functions specified on the boundaries.

2. The general solution involves both exponentials and sinusoidal functions. This is typ-
ical of solutions to Laplace’s equation.

3. Laplace’s equation is an elliptic PDE: recall the equation for an ellipse, x2

x2

0

+ y2

y2

0

= C,

where C is a constant.

2.3.3 Diffusion equation

You can easily verify [Check yourself !!] that a solution to the diffusion equation (not the
only one or a general one!!) is

c(x, t) =
1√

4πDt
e−x2/(4Dt). (71)

10



3. Solving PDE’s: Separation of Variables PHYS2170

This is most easily verified by direct substitution into the diffusion equation,

∂c

∂t
= D

∂2c

∂x2
. (72)

This is the solution which obeys the initial condition

c(x, 0) = δ(x), (73)

where δ(x) is the Dirac delta function that is zero for all x 6= 0, and has a single spike at the
origin. The result will be a lump of material at the origin (for example, sugar in solution)
that gradually spreads out and flattens with increasing time. The diffusion coefficient D
controls how fast the spreading out occurs.

The diffusion equation is a parabolic equation, because of the similarity to a parabola,
which is described by the equation y = x2 + C.

3 Solving PDE’s: Separation of Variables

3.1 Main idea: Laplace’s Equation as an example

The most common technique for solving PDE’s is separation of variables This does not give
all solutions, but is quite general and is usually the first line of attack. Consider solving
Laplace’s equation

∂2u

∂x2
+
∂2u

∂y2
= 0. (74)

The main steps are (the idea is the same for all PDE’s):

1. Assume that the dependence on x and y factors, so that we can write

u(x, y) = f(x)g(y). (75)

2. Substitute into the PDE. Noting that

∂

∂x
[f(x)g(y)] = f ′g, (76)

where f ′ ≡ ∂f
∂x

, we can substitute Eq. (75) into Eq. (74) and then divide through by
fg to obtain

1

f

d2f

dx2
+

1

g

d2g

dy2
=
f ′′

f
+
g′′

g
= 0, (77)

where f ′′ and g′′ imply taking two derivatives of the functions f and g with respect to
their arguments, x and y respectively.

3. Since f ′′/f is a function of x and g′′/g is a function of y, and this relation must hold
for all x and y, f and g must satisfy the following coupled ODE’s:

(I)
f ′′ = −k2f
g′′ = +k2g

or (II)
f ′′ = +k2f
g′′ = −k2g,

(78)

11
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where k2 is called the separation constant. Which sign of k2 is taken depends on the
situation. The general solution is thus

(I)
f(x) = A sin kx+B cos kx
g(y) = Ceky +De−ky (II)

f(x) = Aekx +Be−kx

g(y) = C sin ky +D cos ky.
(79)

4. Hence the general solution is given by

u(x, y) =

{
[A sin kx+B cos kx]

[
Ceky +De−ky

]
(I)[

Aekx +Be−kx
]
[C sin ky +D cos ky] (II).

(80)

5. Once the general solution has been found, the boundary conditions can be applied to
find the separation constant k, and the arbitrary constants A,B,C,D. Which solution
is chosen (oscillatory in x and exponential in y, or vice versa) must be determined
according to the boundary conditions.

Example 7: Solve ∇
2φ = 0 in two dimensions, on a flat domain 0 ≤ x ≤ 1, 0 ≤ y ≤ 1,

with boundary conditions

φ(0, y) = φ(1, y) = φ(x, 1) = 0, φ(x, 0) = sin πx. (81)

To solve, we note that the boundary condition is sinusoidal in x. Hence, we expect the
solution to be sinusoidal in x and exponential in y, and thus of the form

φ(x, y) = (A sin kx+B cos kx)(Ceky +De−ky). (82)

Applying φ(x, 0) = sin πx implies:

φ(x, 0) = (A sin kx+B cos kx)(C +D) = sin πx. (83)

This implies that B = 0 and k = π. Moreover, we can now set A = 1 without losing
generality (or just absorb the definition of A into C and D. Upon setting A = 1 we thus
have

φ(x, 0) = sin πx(C +D) = sin πx ⇒ C +D = 1. (84)

Now notice that the two boundary conditions φ(0, y) = φ(1, y) = 0 are automatically satisfied
because of the sinusoidal function sin πx. This leaves us with the final boundary condition,
φ(x, 1) = 0. Upon substituting the general solution into this boundary condition we find:

φ(x, 1) = sin πx(Ceπ +De−π) = 0 ⇒ Ceπ +De−π = 0 (85)

The boundary conditions thus give two simultaneous equations, Eq. (84,85), that must be
solved to find the coefficients C and D. Solving, we find

C = − e−π

2 sinh π
, D =

eπ

2 sinh π
, (86)

and upon substituting and rearranging [Check yourself !!], the general solution can be written
as

φ(x, y) =
sin πx sinh π(1 − y)

sinh π
. (87)
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3.2 Wave Equation: general solution

We can solve the wave and diffusion equations in the same way. For the wave equation, for
example

∂2h

∂x2
=

1

c2
∂2h

∂t2
. (88)

We assume a solution of the form h(x, t) = f(x)g(t). Substituting, we find

f ′′

f
=

1

c2
g′′

g
= −k2, (89)

where as before, the only solution is when f ′′/f and g′′/g are both constants. In this case
we choose a negative separation constant, although there are some (rare) physical situations
where a positive separation constant is physically sensible. The solutions are sinusoidal,
given by

f(x) = A sin kx+B cos kx, g(t) = C sin ckt+D cos ckt. (90)

The general solution is thus

h(x, t) = (A sin kx+B cos kx)(C sin ckt+D cos ckt). (91)

As before, we choose k, A,B, C,D according to the boundary conditions (or, in this case,
typically one is given initial conditions in time).

Example 8: Find the most general solution to the wave equation for a string held at
a separation of length L, whose endpoints are held fixed, i.e. h(0, t) = h(L, t) = 0. The
solution is sinusoidal functions in x and t, of the form

h = (A sin kx+B cos kx)(C sin ckt+D cos ckt). (92)

The boundary conditons are:

h(0, t) = B(C sin ckt +D cos ckt) = 0 (93)

h(L, t) = (A sin kL+B cos kL)(C sin ckt +D cos ckt) = 0. (94)

From the first condition we must have B = 0. Hence, the second

h(L, t) = A sin kL(C sin ckt+D cos ckt) = 0. (95)

We may take A = 1 as before. Thus, for this boundary condition to be satisfied at all times
we must have sin kL = 0, which is equivalent to the condition

kL = nπ =⇒ k =
nπ

L
, n = 1, 2, 3, ... (96)

Hence, any k parametrized by all integers n yields a possible solution. These solutions
are sinusoidal functions of different period, which are linearly independent. By linear super-
position, we may add all of these together to find the most general solution:

h(x, t) =
∞∑

n=1

sin
nπx

L
(An cos

cnπt

L
+Bn sin

cnπt

L
). (97)

13
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Example 9: Find the solution to the fixed end condition above, with initial condition
h(x, 0) = 2sinπx/L and ∂h(x,0)

∂t
= 0.

From the general solution above we see that there is only one k value, corresponding to
n = 1 or k = π/L. Hence the general form is just

h(x, t) = sin
πx

L
(A cos

cπt

L
+B sin

cπt

L
). (98)

The initial conditions are

h(x, 0) = sin
πx

L
(A ∗ 1 +B ∗ 0) = 2 sin

πx

L
(99)

∂h(x, 0)

∂t
= c sin

πx

L
(A ∗ 0 −B ∗ 1) = 0 (100)

(101)

Hence, A = 2, B = 0, and the solution is

h(x, t) = 2 sin
πx

L
cos

cπt

L
. (102)

For more complicated initial conditions, we will need to write the initial conditions as
a Fourier series, and then we can resolve all the coeffiecients An and Bn. This will be the
subject of the final section.

3.3 Diffusion: general solution

Now we can solve the diffusion equation in the same way. Begin with the diffusion equation
for the concentration c(x, t) of a diffusing species in solution, for example:

∂c

∂t
= D

∂2c

∂x2
. (103)

Separating variables and letting c(x, t) = f(x)g(t), we find

1

D

g′

g
=
f ′′

f
= −k2, (104)

where we have chosen a negative separation constant†. The general solution is thus

c(x, t) = e−Dk2t(A sin kx+B cos kx), (105)

where, as usual, k, A,B are determined by the boundary and initial conditions. As before,
we can always write a general solution as a superposition of solutions for different k (or n,
in the case where k is parametrize by an integer):

c(x, t) =
∑

k

e−Dk2t(Ak sin kx+Bk cos kx), (106)

where separate Ak and Bk must be determined for each k.

†A postive separation constant will yield solutions that grow exponentially in time; these are usually, but
not always, unphysical solutions.

14
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4 Solving PDE’s: Fourier Series Methods

This is a powerful technique, and used, in practice, all the time. In fact, when you perform
a scattering experiment [perhaps the most important experimental probe in physics] you are
actually performing a Fourier analysis!

4.1 Fourier Series

The Fourier Series for a function f(x) with period L:

f(x) =
a0

2
+

∞∑

n=1

an cos

(
2nπx

L

)
+

∞∑

n=1

bn sin

(
2nπx

L

)
(107)

an =
2

L

∫ L/2

−L/2

f(x) cos

(
2nπx

L

)
dx (108)

bn =
2

L

∫ L/2

−L/2

f(x) sin

(
2nπx

L

)
dx. (109)

The inversion formula are derived by integrating each side of the Fourier Series by
cos 2mπx/L and sin 2mπx/L, and integrating:

∫
f(x) cos

2mπx

L
dx =

∫
cos

2mπx

L
dx

[
a0

2
+

∞∑

n=1

an cos

(
2nπx

L

)
+

∞∑

n=1

bn sin

(
2nπx

L

)]

(110)

The, we use the following:

∫ L/2

−L/2

dx cos
2mπx

L
dx a0 = 0 (111)

∫ L/2

−L/2

dx cos
2mπx

L
dx sin

(
2nπx

L

)
= 0 even * odd function (112)

∫ L/2

−L/2

dx cos
2mπx

L
dx cos

(
2nπx

L

)
=

{
0 (n 6= m)

L/2 n = m.
(113)

Hence only one term survives from the sum in the original integral (the mth cosine term),
and

∫
f(x) cos

2mπx

L
dx =

L

2
am. (114)

The same procedure can be performed for the sine coefficients, bn

Notes:

1. Make use of even and odd functions!!

even function x, x3, sin 3x, . . . f(x) = f(−x) (115)

odd function 3, x2, cos 4x, . . . f(x) = −f(−x). (116)
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Table 1: Solutions to the fundamental PDE’s. In all cases the most general solution is obtained by adding together (according to
linear superposition) the solutions for all k, A,B that are allowable by the boundary conditions. For example, h(x, t) =

∑
k hk(x, t),

where k = nπ/L,Bk = 0, is the most general solution for a wave on a string with boundary conditions h(0, y = h(L, y) = 0. The
choice of solutions to Laplace’s equation depends on the boundary conditions.

Laplace Wave Diffusion

∂2φ

∂x2
+
∂2φ

∂y2
= 0

∂2h

∂x2
=

1

c2
∂2h

∂t2
∂c

∂t
= D

∂2c

∂x2

φk(x, t) hk(x, t) ck(x, t)

(A sin kx+B cos kx)(Ceky +De−ky) (A sin kx+B cos kx)(C sin ckt +D cos ckt) e−Dk2t(A sin kx+ B cos kx)

or

(Aekx +Be−kx)(C sin ky +D cos ky)

16
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These have the properties

∫ L

−L

(even) = 2

∫ L

0

(even) (117)

∫ L

−L

(odd) = 0 (118)

(even) × (odd) = (odd) (119)

(odd) × (odd) = (even) (120)

(even) × (even) = (even). (121)

Hence, Fourier series for even functions (6, x2, cosh(x), . . .) contain only cosine function,
Fourier series for odd functions (x, tanh x, . . .) contain only sine functions. Functions
that are neither even nor odd (e−x, (x+ 3x2 − 6)2, . . .) contain both sines and cosines.

2. The integration is over a period, and can be split up any way that is convenient:

∫ L

0

,

∫ L/2

−L/2

,

∫ .1+L

.1

, . . . . (122)

3. Note the analogy to vector spaces. E.g. for an even function f(x) and a vector V

f(x) =
∞∑

n=1

an cos knx V =
3∑

i=1

aiêi êi = (̂i, ĵ, k̂) (123)

cos knx êi (124)

an ai (125)
∫
f(x) cos kmx = 2

L
am V · êj = aj (126)

infinite dimensions 3 dimensions (127)

Example – Square Wave As an example, let’s calculate the Fourier representation of a
square wave, specified by

f(x) =

{
−1 (−L/2 < x < 0)

0 (x < 0 < L/2).
(128)

Then, this function can be made periodic by just repeating it along the x-axis. The first
trick to note is that f(x) is an odd function. That is, it satisfies f(−x) = −f(x). Hence,
there are no cosine terms (they’re even, so the coefficients an, including a0, will vanish), and
the series is just

f(x) =
∞∑

n=1

bn sin

(
2nπx

L

)
. (129)
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The coefficients are given by

bn =
2

L

∫ L/2

−L/2

f(x) sin

(
2nπx

L

)
dx. (130)

= 2
2

L

∫ L/2

0

f(x) sin

(
2nπx

L

)
dx, (131)

where to get to the second line I have used the fact that the product f(x) sin 2nπx/L is an
even function, so I can just integrate over half of the period and multiply by two. You don’t
need to use this trick if you don’t want; you can always omit that extra factor of two and
integrate over the whole range. Now we substitute the function f(x) = 1 (which is true for
0 < x < L/2), so that

bn =
4

L

∫ L/2

0

sin

(
2nπx

L

)
dx =

4

L

(
−L
2nπ

) [
cos

(
2nπx

L

)]L/2

x=0

(132)

=
−4

2nπ

[
cos

(
2nπL/2

L

)
− cos

(
2nπ0

L

)]
=

−4

2nπ
(cosnπ − 1). (133)

Now, for even n, we have cosnπ−1 = 1−1 = 0. For odd n we have cosnπ−1 = −1−1 = −2.
Hence we have

bn =
4

nπ
(n odd, i.e.n = 2m+ 1), (134)

where m is any integer m = 0, 1, 2, . . . (this is just another way to write an odd number).
The series can then be written as

f(x) =






∑

n odd

4

nπ
sin

(
2nπx

L

)

∞∑

m=0

4

(2m+ 1)π
sin

(
2(2m+ 1)πx

L

)
.

(135)

(either way of writing the solution is fine).

One common trick is to use Fourier series solutions to define infinite series. For example,
if we choose x = L/4, we must have f(x = L/4) = 1. That is, we must have

f(L/4) = 1 =
∑

n odd

4

nπ
sin

(
2nπL/4

L

)
=

∑

n odd

4

nπ
sin

(nπ
2

)
. (136)

Now, for n = 1, 5, 9, . . . we have sin nπ/2 = 1, while for n = 3, 7, 11, . . . we have sinnπ/2 =
−1. Alternatively, let’s write the sum in terms of m = 1, 2, 3, . . ., so that

1 =
∞∑

m=0

4

(2m+ 1)π
sin

(
(2m+ 1)π

2

)
=

∞∑

m=0

4

(2m+ 1)π
(−1)m+1 (137)

π = 4
∞∑

m=0

1

(2m+ 1)π
(−1)m. (138)

[To get the (−1)m+1, note that sin(2m+1)π/2 is +1 when (2m+1)π/2 = π/2, 5π/2, 9π/2, . . .,
that is, when m = 0, 2, 4, . . .. Similarly, sin(2m+ 1)π/2 is −1 when m = 1, 3, 5, . . .]. Alter-
natively (and probably easier!!) you can write out the first four or five terms and “guess”
the pattern.
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4.2 Solving PDE’s using Fourier Series

One of the most useful features is using Fourier series to solve PDE’s. For example, consider
the evolution of a wave on a string with speed c, with a shape at time zero given by

y(x, t = 0) =

{
−1 −L

2
< x < 0

0 < x < L
2
,

,
∂y

∂t

∣∣∣∣
t=0

= 0 (139)

i.e. a square wave. Solutions to the wave equation have the form

y(x, t) =






sin kx cosωt

cos kx cosωt

sin kx sinωt

cos kx sinωt,

(140)

with ω = ck [check this!].

The Fourier series for the initial condition is

y(x, t = 0) =
∑

nodd

4

nπ
sin

(
2πnx

L

)
(141)

This implies that, among the possible solutions we should keep solutions involving sin knx
functions:

y(x, t) =
∑

nodd

(An sinωnt+Bn cosωnt) sin knx (kn = 2πn/L). (142)

Demanding ∂y
∂t

∣∣
t=0

= 0 implies

∂y

∂t

∣∣∣∣
t=0

=
∑

nodd

ωnAn sin knx (kn = 2πn/L) = 0. (143)

Since all the cosine and sine functions are independent functions, we must have An = 0 for
all n. Demanding the initial condition match the Fourier Series implies Bn = 4/(nπ), so
that the general solution is

y(x, t) =
∑

nodd

4

nπ
cosωnt sin knx (kn = 2πn/L). (144)

This procedure can be used on the wave, Laplace, and diffusion equations:

1. Write the Fourier series for the initial condition u(x, 0) (wave or diffusion equation) or
the shape along a boundaries u(x, 0) (Laplace’s equation).

2. Using separation of variables, identify the particular combination of functions that are
possible solutions to the PDE, given the Fourier Series. For example, if the Fourier
series involves sine functions, then the solution is a linear superposition of

un(x, t) = sin knx×






Ane
−Dk2

nt diffusion equation

An cos cknt+Bn sin cknt Wave equation

An cosh knt+Bn sinh knt Laplace’s equation.

(145)
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3. Use the initial Fourier series, together with any other conditions, to calculate An and,
if necessary, Bn, noting that the basis functions sin knx are independent functions, and
the conditions must hold for them separately.
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