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By exploiting the correlation properties of ultracold atoms in a multimode interferometer, we show how

quantum enhanced measurement precision can be achieved with strong robustness to particle loss. While

the potential for enhanced measurement precision is limited for even moderate loss in two-mode schemes,

multimode schemes can be more robust. A ring interferometer for sensing rotational motion with

noninteracting fermionic atoms can realize an uncertainty scaling of 1=ðN ffiffiffiffi
�

p Þ for N particles with a

fraction � remaining after loss, which undercuts the shot-noise limit of two-mode interferometers. A

second scheme with strongly interacting bosons achieves a comparable measurement precision and

improved readout.
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Quantum interferometry aims at improving measure-
ment precision with limited resources by way of quantum
entanglement of the constituent particles, say photons or
ultracold atoms [1–3]. However, entanglement is rapidly
degraded by decoherence, e.g., due to particle loss. This
makes it difficult to employ entanglement practically. Here
we show how this limitation can be circumvented with
robust multimode quantum superposition states.

Interferometers estimate a parameter, e.g., a phase angle
�, by observing an interference pattern. A useful tool for
quantifying the attainable quality of precision with a lim-
ited number of quantaN is the quantum Fisher information
(QFI), FQ. This is the quantum analog of the classical

Fisher information and it is related to the uncertainty of

the phase measurement via the Cramér-Rao bound, �� �
1=

ffiffiffiffiffiffiffi
FQ

p
[4]. For unentangled particles (or independent

single-quanta measurements) in the presence of loss, FQ ¼
N�, where � is the fraction of particles remaining. This
yields the shot-noise limit �� � 1=

ffiffiffiffiffiffiffiffi
N�

p
.

In two-mode interferometers, quantum-entangled input
states can improve this to a maximumQFI ofN2, called the
Heisenberg limit [1,5–7]. This provides the lowest uncer-
tainty allowed by quantum mechanics for linear interfer-
ometry schemes, i.e., when � is a single-particle
observable [8]. The Heisenberg limit is achieved with
maximally entangled states known as NOON states
(jN; 0i þ j0; Ni) [1,6,7]. However, these are difficult to
make [9] and fragile to particle loss, reducing the QFI to
FQ ¼ N2�N [10]. In the presence of only a small amount

of loss (�< 1) the NOON state provides less precision for
large particle numbers than unentangled particles.
Improving the robustness of entangled states is the subject
of much recent work [10–16]. However, even when opti-
mizing the input state for a given loss and particle number
[10–12], the best achievable scaling is FQ � N for large N

[17]. Thus FQ � N2 is unattainable for two-mode schemes

in the presence of loss.
This limitation does not apply to multimode schemes

[18]. If sensitivity scales with mode number and arbitrary
modes are accessible, there are no strict limits on the QFI
for either classical (unentangled) or quantum input states.
Unentangled states still suffer from a shot-noise limit with
the familiar scaling �N, when the particle number is
varied in a given set of modes. Increasing the QFI can
either be achieved by entanglement within the given set of
modes or by accessing more sensitive modes, while the
latter procedure is the more robust against losses. The key
question in this context is how to prepare input states where
mode occupation scales with particle number. For fermions
it is natural to occupy many modes due to Pauli correla-
tions, which forbid the occupation of a single mode by
more than one particle. For bosons, interactions lead to
similar correlations and the occupation of many modes.
Here we demonstrate that a ring interferometer with

noninteracting fermionic atoms can realize a QFI of
FQ ¼ N2�, which retains sub-shot-noise scaling of the

uncertainty in the presence of particle loss. Furthermore,
we show that using strongly interacting bosons produces
a similar precision with improved readout resolution.
Quantum correlations are essential to enhance the sensi-
tivity beyond the shot-noise limit of an unentangled (clas-
sical) input state by providing access to a larger mode
space rather than maximizing entanglement.
Ring interferometer.—Specifically, let us consider a ring

interferometer with ultracold atoms to measure rotation
angles [19]. Individual atoms, with an angular momentum
@k, sense rotation by acquiring a phase shift k�. Here� ¼
!tm is the rotation angle accumulated during the time
interval tm and for a rotation rate !. A single-particle
interferometry scheme could estimate � through compar-
ing, by interference, the phase shifts accumulated by
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different angular momentum modes, say k1 and k2. Since
the phase shift difference is ðk2 � k1Þ�, we obtain a QFI
of FQ ¼ ðk2 � k1ÞN� in the case of N� successfully

repeated measurements. By adjusting the angular momen-
tum difference ðk2 � k1Þ@, the measurement precision can
be amplified without invoking entanglement, similar to
Ref. [20]. We are going to show below how the natural
properties of correlated multiparticle systems allow us to
scale the amplification factor with the particle number in
order to achieve a scaling beyond the shot-noise limit,
where FQ / N2. In contrast to NOON states, this scaling

is not affected by loss.
We now consider a ring interferometer containing N

particles. For the purpose of interferometry, the system
may be prepared in a binary superposition j�i ¼ 1ffiffi

2
p �

ðjK1i þ jK2iÞ, where jKi ¼ PðKÞ
~n C~nj ~ni is the sum over

the multi-index ~n ¼ ð. . . ; n�1; n0; n1; . . .Þ with fixed

particle number,
P

knk ¼ N, and permanents j ~ni ¼Q
kðâyk Þnk=

ffiffiffiffiffiffiffi
nk!

p jvaci, where âyk creates a particle with

angular momentum @k. The notation
PðKÞ implies the

additional constraint
P

knkk ¼ K fixing the total angular
momentum. The precise composition of these states
depends on the interactions and quantum statistics of the
particles involved, and has important consequences for
the robustness properties.

The superposition state is sensitive to rotation via the

interaction term ĤR ¼ �!L̂, with the total angular

momentum L̂ ¼ P
k@ka

y
k ak. This makes it suitable for

rotation sensing [15,21]. After the time interval tm it
evolves into

j�ð�Þi ¼ 1ffiffiffi
2

p ðeiK1�jK1i þ eiK2�jK2iÞ; (1)

where an overall phase was ignored.
We can quantify the ability of the quantum state to

precisely estimate the angle� by the QFI. It is independent
of the measurement procedure and is given by

FQ ¼ 4½h�0ð�Þj�0ð�Þi � jh�0ð�Þj�ð�Þij2�; (2)

for a pure state, where j�0ð�Þi ¼ @j�ð�Þi=@� [22].
For the state given by Eq. (1) we find FQ ¼ ðK1 � K2Þ2,

which gives �� � 1=jK1 � K2j. To reach a scaling of
FQ � N2 we, therefore, require jK1 � K2j ¼ N. For a

two-mode system, where the modes differ by only one
unit of angular momentum, this is only possible with the
NOON state. This restraint does not apply for states de-
scribed by more than two modes, because jK1 � K2j ¼ N
can be achieved with many different configurations. As
will be shown, this allows huge improvements to the
robustness of sub-shot-noise limited measurements.

Particle Loss.—For a system coupled to a zero tempera-
ture environment the evolution of the system in the
presence of particle loss is described by the master
equation [23]

_� ¼ X
k

�

2
½2âk�âyk � �âyk âk � âyk âk��; (3)

where � is the density matrix, _� ¼ @�=@t, âk is the anni-
hilation operator of mode k, and � is the loss rate, which is
taken to be equal for all modes. It was shown in Ref. [11]
that it does not matter whether the loss occurs before,
during or after the phase shift is acquired.
Equation (3) is solved by describing � by N þ 1 density

matrices, �ðN��Þ, having the particle number N � �,

�ðtÞ ¼ XN
�¼0

gðN��ÞðtÞ�ðN��Þ: (4)

Here �ðN��Þ ¼ 1
N��þ1

P1
k¼�1 âk�

ðN��þ1Þâyk is time inde-

pendent and normalized to Tr�ðN��Þ ¼ 1, and gðN��ÞðtÞ is a
time dependent coefficient. Because the �ðN��Þ operate on
distinct orthogonal subspaces, the total QFI for a given loss
rate is given by

FQ�
¼ XN

�¼0

gðN��ÞðtÞFN��
Q ; (5)

where FN��
Q is the QFI of �ðN��Þ [11]. From Eq. (3) it

follows that

_gðN��ÞðtÞ ¼ �ðN � �þ 1ÞgðN��þ1ÞðtÞ
� �ðN � �ÞgðN��ÞðtÞ; (6)

which has the solution gðN��ÞðtÞ ¼ ðN�Þ�N��ð1� �Þ�,
where � ¼ e��t. So FQ is easily determined for all � if

the N þ 1 values of FN��
Q are known. We now compare the

precision of unentangled atoms and NOON states with the
precision of a fermionic and strongly interacting bosonic
superposition state in the presence of loss.
Fermionic system.—Consider an even number N ¼ 2n

of spin polarized fermions in the states j � ni ¼Q
n�1
i¼�n â

y
i jvaci and jni ¼ Q

n
i¼�nþ1 â

y
i jvaci. Each one is a

(shifted) Fermi sea with total angular momentum�n@ and
n@, respectively. The superposition jc Fi¼ 1ffiffi

2
p ðj�niþjniÞ

thus has a QFI of N2 and realizes sub-shot-noise limited
scaling. The state jc Fi can also be written as

jc Fi ¼ 1ffiffiffi
2

p Yn�1

i¼�nþ1

âyi ðây�n þ âyn Þjvaci; (7)

which shows that, effectively, only a single particle
participates in the superposition. While the states j � ni
and jni are degenerate ground states of the kinetic energy

L̂2=ð2mR2Þ at zero rotation, the superposition jc Fi
emerges as the only ground state when the degeneracy is
lifted in a weak external potential that breaks the rotational
symmetry.
To evaluate the performance under loss, we consider the

density matrix after removal of � particles
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�ðN��Þ ¼ ðN��Þ!�!
ðN!Þ

�
� Xn�1

k1<...<k��1¼�nþ1

âk��1
� � � âk1 j�ih�jâyk1 � � � âyk��1

þ 1

2

Xn�1

k1<���<k�¼�nþ1

ðây�nþ âyn Þâk��1
� � � âk1 j�i

� h�jâyk1 � � � âyk��1
ðâ�nþ ânÞ

�
; (8)

where j�i ¼ Q
n�1
i¼�nþ1 â

y
i jvaci is a filled Fermi sea with

N � 1 particles.
Since all terms are represented on mutually orthogonal

subspaces, their QFI can be calculated individually and
summed. We note that the first summation has no off-
diagonal terms, so the QFI is simply zero. The second
summation is a sum of ðN�1

� Þ pure states, which all have

QFI of N2. This leads to FðN��Þ
Q ¼ N��

N N2. Substituting

into Eq. (5) gives the QFI for a given loss,

FQ ¼ N2�: (9)

Significantly, the QFI is N2 for no loss and decreases at the
same rate as unentangled atoms when loss is considered.
This is the expected result, because the state is a single-
particle superposition with a difference in angular momen-
tum of N@. The role of the remaining atoms is to facilitate
the creation of this superposition in the ground state.

Although this scheme gives an excellent precision and
robustness to loss, the readout would require distinguishing
the difference in momentum of a single particle, which is
difficult. Furthermore, an even number of particles in the
initial state needs to be ensured (e.g., by postselection on
the basis of total angular momentum) in order to exploit its
degeneracy. We now consider a scheme using strongly
interacting bosonic atoms with improved readout options
that is also insensitive to the even-odd particle number
parity.

Tonks-Girardeau system.—Bosonic atoms in a tightly
confined wave guide at low densities and strong repulsive
interactions realize the Tonks-Girardeau (TG) gas of im-
penetrable bosons [24]. The TG gas maps one-to-one to
noninteracting spin polarized fermions [25], and thus has
similar properties. The nonrotating ground state, however,
is nondegenerate and thus the previous scheme needs to be
modified. A binary superposition with angular momentum
difference of N@ can be created with the help of a rotating
narrow barrier potential as discussed in detail in Ref. [26].
Here, we calculate the QFI and suggest an interferometry
scheme that can take advantage of the theoretical precision
bound.

Specifically, we consider N bosonic atoms in a one-
dimensional ring trap of circumference L ¼ 2�R at zero
temperature. They are stirred by a barrier of strength b,
which rotates with angular velocity ! ¼ h�=ðmL2Þ,

where � is a phase induced around the ring in the corotat-
ing frame (see Fig. 1). The system is described by the
Hamiltonian

H ¼ X1
k¼�1

E0

�
k� �

2�

�
2
âyk âk þ

b

L

X1
k1;k2¼�1

âyk1 âk2

þ g

2L

X1
k1;k2;q¼�1

âyk1 â
y
k2
âk1�qâk2þq; (10)

where E0 ¼ 2�2
@
2=ðmL2Þ is the smallest nonzero kinetic

energy of a single atom and g > 0 is the interatomic
interaction strength.
With external rotation at � ¼ � and b ¼ 0, the ground

state is degenerate between the states j0i with zero and jNi
with N@ angular momentum, regardless of the interaction

strength. A finite barrier strength 0< b � g
ffiffiffiffi
N

p
=2 lifts the

degeneracy and jc	
B i ¼ ðj0i 	 jNiÞ= ffiffiffi

2
p

become eigen-
states, where jcþ

B i is the ground state. This state has a
QFI of N2 and thus realizes sub-shot-noise limited scaling.
In the TG regime where formally g ! 1, the Bose-Fermi
mapping [25] allows us to map jc	

B i onto a fermionic state
similar to Eq. (7).
A measurement scheme for rotation is shown schemati-

cally in Fig. 1. Step 1 corresponds to the creation of the
initial state, where ! is slowly increased up to !0 ¼
�h=ðmL2Þ, corresponding to � ¼ � (for details see
Ref. [26]). Once the initial state has been created, the state
of the system will not change until the barrier’s rotation
rate is altered as indicated by step 2. The additional rotation
to be measured, �!, is then nonadiabatically applied
(step 3), inducing an additional phase of �� around
the ring. The Hamiltonian describing the system is then

FIG. 1 (color online). Top: A schematic showing the imple-
mentation of the scheme in time. For a description of each step
see the main text. Bottom: A visual representation of the system.
Ultracold atoms are confined to a 1D optical ring potential with a
rotating barrier. The measurement precision is determined in the
presence of particle loss.
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H0 ¼ P1
k¼�1 E0ðk� 1

2 þ ��
2� Þ2âyk âk, where we ignore the

last two terms in Eq. (10), because the barrier height is
small and interactions do not couple states of different total
angular momentum or change jKi when the rotation is
changed. The system is then allowed to evolve for time
tm as shown by step 3. This establishes a phase difference
between the two parts of the superposition and thus mixes
jcþ

B i and jc�
B i. At this point we calculate the QFI.

A possible readout scheme is to remove �! nonadia-
batically leaving the barrier rotating at its original rate, !0

(see step 4 in Fig. 1). The rotation of the barrier is then
adiabatically reduced to a point where the states jcþ

B i and
jc�

B i evolve into j0i and jNi, respectively, (step 5). The
trapping potential is then removed and the atoms are
imaged. The j0i state will have a peak at the center of
the image while jNi will have a dip due to the different
momentum distributions. By adiabatically reducing the
interaction strength g to a small value before removing
the confining potential, the states j0i and jNi can be trans-

formed into ðây0 ÞNjvaci and ðây1 ÞNjvaci, respectively. This
allows for an efficient distinction of the two outcomes. The
QFI can be shown to saturate the classical Fisher informa-
tion for the total angular momentum.

The ring interferometer scheme can, with appropriate
modifications, also measure rotational phases with a

NOON state ½ðây0 ÞN þ ðây1 ÞN�jvaci, which is obtained for

small interactions, or with a state of unentangled particles

½ðây0 þ ây1 ÞN�jvaci, obtained for b 
 g
ffiffiffiffi
N

p
=2.

Using Eq. (5) we now compare the effects of particle
loss (during time tm) on the precision capabilities of the
three states. The spread out momentum distribution of the
TG state is different from fermions and limits numerical
simulations of Eq. (10) currently to 5 particles, where
rescaling of g ensures accurate results in a truncated basis
of 18 momentum modes [26,27]. The QFI for a mixed state
is FQ ¼ Tr½�ð�ÞA2�, where �ð�Þ is the density matrix of

the system and A is the symmetric logarithmic negativity,

defined as @�ð�Þ
@� ¼ 1

2 ½A�ð�Þ þ �ð�ÞA� [22]. In the eigen-

basis of �ð�Þ this is ðAÞij ¼ 2½�0ð�Þ�ij=ð�i þ �jÞ, where
�i;j are the eigenvalues of �ð�Þ and �0ð�Þ ¼ @�ð�Þ=@�.

If �i þ �j ¼ 0 then ðAÞij ¼ 0.

The results are shown in Fig. 2 for N ¼ 5. As expected
the precision of the NOON, fermionic, and TG superposi-
tion states are equivalent when there is no loss, � ¼ 1, and
the precision of the unentangled state is much worse. As
the loss rate increases, however, the unentangled state soon
outperforms the NOON state. Importantly, the fermionic
and TG superposition states outperform the unentangled
state for all loss rates and therefore could prove extremely
valuable for metrology.

For comparison with previous work, we also show the
optimized initial two-mode state of Refs. [10,13] for
N ¼ 5 in Fig. 2. We see that while it outperforms the
NOON state, for stronger loss its precision gradually

approaches that of an unentangled state as the fraction of
particles remaining, �, decreases. Importantly the preci-
sion of the fermionic and TG superposition states are better
than the precision of the optimized two-mode initial state
for all loss rates. Not only this, the optimal two-mode
initial state very much depends on the amount of loss as
the structure of the state changes with � thereby making its
experimental implementation difficult.
Conclusion.—We have shown that robust sub-shot-noise

limited measurements are made possible by strong corre-
lations of fermionic atoms due to the Pauli exclusion
principle, and in TG systems due to strong interactions.
The proposed states not only offer improved scaling of
measurement precision, but also outperform optimized
two-mode states for small particle numbers. This is of
significance for metrology as any state offering an increase
in precision over unentangled states has the potential to
alter the way precision measurements are made.
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