
IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 44 (2011) 035504 (7pp) doi:10.1088/0953-4075/44/3/035504

Creating and observing N-partite
entanglement with atoms
M S Everitt1, M L Jones2, B T H Varcoe2 and J A Dunningham2

1 National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda ku, Tokyo 101-8430, Japan
2 School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK

E-mail: everitt@nii.ac.jp

Received 3 November 2010, in final form 13 December 2010
Published 17 January 2011
Online at stacks.iop.org/JPhysB/44/035504

Abstract
The Mermin inequality provides a criterion for experimentally ruling out local-realistic
descriptions of multiparticle systems. A violation of this inequality means that the particles
must be entangled, but does not, in general, indicate whether N-partite entanglement is present.
For this, a stricter bound is required. Here we discuss this bound and use it to propose two
different schemes for demonstrating N-partite entanglement with atoms. The first scheme
involves Bose–Einstein condensates trapped in an optical lattice and the second uses Rydberg
atoms in microwave cavities.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Entanglement is a central feature of quantum mechanics and
the key resource in a wide range of quantum information
processing tasks. Being able to detect and characterize the
entanglement present in a system is therefore an important
challenge for physicists. The first mathematically sharp
method of detecting entanglement for pairs of particles was
proposed by John Bell in 1964 [1, 2]. His now-famous
inequality provided an unambiguous way of distinguishing
quantum–mechanical predictions from those of local-realistic
models. Multiparticle generalizations of the Bell inequality
were subsequently provided by Mermin [3] and others
[4–6]. These can be used to rule out local-realistic models
for N-particle systems and are also interesting because there
is a close relationship between their violation and the security
of N-partner quantum communications [7].

In general, a violation of these inequalities means that
the particles must be entangled. In fact, by placing a
stricter bound on the inequality [8–10] it is even possible to
determine what class of entanglement is present from
2-entangled to N-entangled states. This method has been
used to experimentally confirm three-body entanglement for
photons [11]. In this paper we discuss the conditions required
to demonstrate N-partite entanglement and show how it could
be generated and detected in atomic systems. We begin by
reviewing the Mermin inequality and then discuss how it

could be applied to two different atomic systems. In the first,
we consider Bose–Einstein condensates (BECs) trapped in
optical lattices where the two states of each atomic qubit are
different spatial modes. In the second we consider Rydberg
atoms interacting in microwave cavities where the two states
are different electronic levels. For both cases we discuss how
all the terms in the Mermin inequality could be measured
and consider some of the practical issues surrounding
their implementation. In addition this technique may be
suitable for other schemes that produce N-partite entanglement
[12–16].

2. Mermin inequality

It is helpful to start with a brief overview of the Mermin
inequality [3]. For this, we consider an N-particle GHZ state
of the form

|!〉N = 1√
2
(| ↑↑ · · · ↑︸ ︷︷ ︸

N

〉 + i| ↓↓ · · · ↓︸ ︷︷ ︸
N

〉), (1)

where ↑ or ↓ in the j th position labels the two relevant states of
the j th particle. Such a state is known to maximally violate the
Mermin inequality. In an experiment, these N particles would
be spatially separated and measurements made on each of
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them. Mermin noted that the GHZ state, |!〉N , is an eigenstate
of the operator

AN = 1
2i




N∏

j=1

(
σ j

x + iσ j
y

)
−

N∏

j=1

(
σ j

x − iσ j
y

)


 (2)

with eigenvalue 2N−1, where σ
j
x and σ

j
y are respectively the x

and y Pauli spin matrices acting on the j th particle. Expanding,
F = 〈#| AN |#〉, for some general N-particle state |#〉, one
finds

F = 〈#| σ 1
y σ

2
x · · · σN

x |#〉 + · · ·
−〈#| σ 1

y σ
2
y σ

3
y σ

4
x · · · σN

x |#〉 − · · ·
+ 〈#| σ 1

y · · · σ 5
y σ

6
x · · · σN

x |#〉 + · · · − · · · , (3)

where each line of (3) contains all distinct permutations of the
operators in the term shown on that line. The only non-zero
terms contain odd numbers of σy operators. For the GHZ state,
we have F = N 〈!| AN |!〉N = 2N−1.

The corresponding value of F for a local hidden-variable
state can be found as follows. Following Mermin, we
consider the case where the measured distribution functions,
Pµ1···µN

(m1 · · ·mN), where µj ∈ {x, y} and mj ∈ {↑,↓}, that
describe the 2N−1 measurements that must be performed to
yield the correlations in (3), can be written in the conditionally
independent form

Pµ1···µN
(m1 · · ·mN)

=
∫

dλρ(λ)
[
p1

µ1
(m1, λ) · · ·pN

µN
(mN, λ)

]
(4)

where pi
µi

(mi, λ) is the probability distribution of results for a
measurement in the µi basis on particle i. This general hidden-
variable form attributes the correlations to some unspecified set
of parameters, λ, common to all N particles, with distribution
ρ(λ). It accounts for correlations in terms of information
jointly available to the particles when they left their common
source. Mermin showed that such a local hidden-variable state
has the bounds [3]

F ! 2N/2, N even,

F ! 2(N−1)/2, N odd.
(5)

We see that the GHZ state, |!〉N , for which F = 2N−1, violates
(5) by an exponential amount.

A violation of inequality (5) demonstrates that the
particles are entangled, but does not guarantee N-partite
entanglement [17]. For this, a tighter bound is needed,
which can be found as follows. We assume that there is,
at most, (N − 1)-partite entanglement in the system. This
means that the state of one of the lattice sites (say the first
one) factorizes and the expectation value of the corresponding
operator factorizes in each term in (3). Then using the fact
that all expectation values disappear if they contain an even
number of σy operators, it is straightforward to show that we
are left with

F = 〈σx〉FN−1 ! 2N−2, (6)

where the last step follows because 〈σx〉 ! 1 and FN−1 =
2N−2. This agrees with the condition found for three particles
in [9]. Any state that violates (6) must have at least N-partite
entanglement.

|N〉

|0〉

BS BS

χ

|↓〉

|↑〉

Figure 1. Schematic diagram of the GHZ state creation procedure.
The scheme takes the form of a Mach–Zehnder interferometer
consisting of two 50:50 beam splitters (BS), but with the addition of
a nonlinearity, χ , on the upper path. If N particles are fed into one
input port and the nonlinearity is applied for time t = π/(2χ), the
output is the GHZ state given by (1).

3. Implementation with BECs

The aim of an experiment would be to measure all the
expectation values in (3) and see firstly whether their sum
violates the bound given by (5), in which case entanglement is
present, and secondly whether it violates the bound given by
(6) in which case N-partite entanglement is present. We now
discuss how such a scheme could be implemented with BECs.

The first step is to create a GHZ state of the form (1).
Various proposals have been made for producing such states
in the laboratory [18–21]. Experiments have successfully
created GHZ states with small numbers of photons [22, 23]
and 9Be+ ions [13, 16, 24], and could in principle be scaled up
to larger numbers. Here we consider the case of BECs where
states of the form (1) can be created using beam splitters and
nonlinear unitary evolution [25]. For BECs, the nonlinearity
arises naturally as a result of collisions between the atoms.

A detailed study of the state preparation scheme is
presented elsewhere [25], but essentially consists of a Mach–
Zehnder interferometer with nonlinear evolution between the
two beam splitters (see figure 1). The input state consists of N
particles at one port and none at the other. If the nonlinearity
is applied only to the upper path of the interferometer,
the nonlinear part of the Hamiltonian has the form Hnl =
χ n̂↑(n̂↑ − 1), where n̂↑ is the number operator for the upper
path and χ is the strength of the nonlinearity. Evolution due
to this Hamiltonian for time t = π/(2χ) then gives state (1)
at the output.

Experimentally, this state creation for BECs would
involve loading a BEC into one trap of a double-well potential.
For now, we consider that the BEC is in a Fock state with N
atoms, i.e. |N〉; however, later we will consider the case of
a mixed state. The first beam splitter is implemented simply
by rapidly reducing the height of the potential barrier between
the two wells, waiting for time t = π/(4J ), where J is the
strength of the tunnelling between the wells, and then rapidly
raising the barriers again [26]. The nonlinearity can then be
‘switched on’ for time t = π/(2χ) by the use of Feshbach
resonances to change the interaction strength, χ , between the
atoms [27]. Finally another beam splitter can be implemented.
This gives a state of the form (1), where the labels ↑ and ↓
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|↑〉

|↓〉

Qubit: 1 2 3 N

Figure 2. The two spatially separated optical lattices. Each pair of
lattice sites (marked by a dashed curve) represents a qubit and
contains a single atom. An atom in the upper trap is denoted |↑〉 and
an atom in the lower trap is denoted |↓〉.

refer to the two potential wells, shown as the upper and lower
outputs from the interferometer in figure 1.

After the state creation process, we have a superposition
of all the atoms in the upper trap and the lower trap. The
two traps are then illuminated with a retro-reflected laser field
that creates a standing wave across them both (see figure 2).
The frequency of this laser is chosen so that the atoms are
trapped in the nodes of the standing wave. By adiabatically
increasing the intensity of the light, the number fluctuations
on each site are progressively squeezed due to the interplay
between the interaction and tunnelling energies. Eventually,
a Mott insulator transition [28] takes place whereby each pair
of upper and lower lattice sites contains precisely one atom.
Each qubit in (1) is now spatially distinct, and we take ↑ to
represent an atom in the upper lattice site and ↓ to represent
one in the lower lattice site.

The next step is to make measurements on this system
that correspond to the terms in (3). This involves making
measurements on each qubit in the basis of the eigenstates of
σx and σy . The eigenstates of σx are |x, +〉 = (|↑〉 + |↓〉)/

√
2

and |x,−〉 = (|↑〉 − |↓〉)/
√

2 with eigenvalues of +1 and
−1 respectively. The eigenstates of σy are |y, +〉 = (|↑〉 +
i |↓〉)/

√
2 and |y,−〉 = (|↑〉 − i |↓〉)/

√
2 with eigenvalues of

+1 and −1 respectively.
These measurements can be achieved by passing the two

sites of each qubit through a beam splitter. We can see this as
follows. The transformation of the single-particle states by a
50:50 beam splitter is

|↑〉 −→ 1√
2
(|↑〉 + i |↓〉) (7)

|↓〉 −→ 1√
2
(i |↑〉 + |↓〉) . (8)

Using this, it is straightforward to show that if we pass the
eigenstates of σy through a 50:50 beam splitter, we obtain
|y, +〉 → |↑〉 and |y,−〉 → |↓〉, where we have ignored any
irrelevant global phase. This means that using a beam splitter
and then detecting whether the particle is in the upper or lower
site is equivalent to a measurement in the σy basis. A detection
result of |↑〉 or |↓〉 gives a measurement outcome in theσy basis
of +1 or −1 respectively.

For measurements in the σx basis, we need a combination
of a phase shift and a beam splitter. We can see this by
considering the eigenstates of σx . The combined procedure
of applying a phase shift of π/2 to the upper site and then
passing the state through a 50:50 beam splitter transforms the
states in the following way: |x, +〉 → |↑〉 and |x,−〉 → |↓〉.
A detection result of |↑〉 or |↓〉 is therefore equivalent to a
measurement outcome in the σx basis of +1 or −1 respectively.

In practice, to measure one of the terms in (3), we would
imprint a phase shift on all the sites for which we want to
make a σx measurement. The procedure for doing this is well
understood and has been experimentally demonstrated [29]. It
involves illuminating the target lattice sites with pulsed off-
resonant laser light. The phase that is imparted is a function
of the detuning of the laser, the laser linewidth, the intensity
of the light, and the pulse duration. An appropriate choice of
these parameters allows a π/2 phase to be imprinted. Next
we would simultaneously implement a 50:50 beam splitter
between each upper site and its corresponding lower site.
This can be achieved simply by rapidly lowering the potential
barrier between the upper and lower lattices, waiting for some
time t = π/(4J ) and then rapidly raising the barriers again
[26]. The measurement outcome depends on the number of
atoms in the lower, N↓, and upper, N↑, traps and is given by

(−1)N↓(+1)N↑ = (−1)N↓ . (9)

So, in fact, we need only measure the number of atoms in the
lower traps. To find the corresponding term in (3), we need
an ensemble average of these measurements and the whole
procedure then needs to be repeated for all the terms in (3).
This would allow one to experimentally determine a value for
F and see whether it violates the bounds given by (5) and (6).

Of course, this all depends on how accurately we are
able to measure N↓. This will be affected by two main
processes: the efficiency of our number counting detectors
and any imperfections in the beam splitting operation that
is used to transform the state into the eigenbases of the σx

and σy operators. The combination of these two effects
will lead to an overall detection efficiency, η < 1. A
straightforward calculation shows that in order to confirm
N-partite entanglement, we require

η " 1 − 1
4N

. (10)

A similar scaling for the detector efficiencies required to
detect macroscopic superposition states has previously been
identified in other work [30]. From (10), we see that the
deviations of the detector efficiencies from unity and the
deviations of the beam splitter reflectivities from 50% must
scale as 1/N . This means that this scheme is likely to only
be practical for small numbers of atoms. However, if we
are only interested in confirming that there is entanglement
present (rather than N-partite entanglement), the condition on
η becomes much less stringent. In this case we have

η "
√

2−(1+1/N) ≈ 1/
√

2, (11)

which should be achievable in experiments. A nice feature of
this is that the condition depends only very weakly on N.

One possible difficulty with this scheme is that it requires
the experimenter to be able to individually address lattice sites.
This is difficult because the lattice sites are spaced by λ/2,
where λ is the wavelength of the laser light, and so they are
too close to easily resolve. There are, however, a number of
suggestions for how this problem may be able to be overcome.
In one experiment, atoms were loaded into every third lattice
site by superimposing a ‘superlattice’ on top of the regular
lattice [31]. Another idea is to change the spacing between
lattice sites by controlling the angle at which the laser beams
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interfere [32]. In such a setup one could quickly separate the
atoms so that they can be addressed individually to imprint
phases or make measurements. A recent experiment has also
shown how it is possible to resolve single atoms in a Mott
insulator state using fluorescence imaging [33].

Other practical issues with implementing this scheme
are decoherence as well as other imperfections in the GHZ
state creation process. It has been shown elsewhere [25] that
it is possible to create good approximations to GHZ states
using the scheme described above even when there is loss
present during the preparation. Because the final state will
not be a perfect GHZ state, maximal violation of the Mermin
inequality (i.e. F = 2N−1) will not be observed. However
significant violations should still be able to be measured. The
degree of violation would be a useful diagnostic of the state
and how good the state preparation scheme is. Decoherence
after the GHZ state has been created is fundamental and
unavoidable. As with all such schemes, this will limit the
size of the entangled state that can be created and measured.
However, the scheme presented here provides a convenient
way of analysing this decoherence process. By measuring the
value of F for the GHZ state after different times, the timescale
of decoherence could be determined since the violation of
the inequality will decrease as loss destroys the entanglement
present. A similar idea was experimentally realized with
mesoscopic superpositions of different microwave coherent
states [34].

So far, we have considered the case that the total number
of atoms, N, is fixed and known. However, in practice, the
input BEC will be a mixture of number states and so each
experimental run will correspond to a different total number of
atoms. This means that the expectation values corresponding
to each term in the expansion (3) will be averages over different
particle numbers. We now show how it is possible to extract
the relevant data to use in equation (3) even though the particle
number is different in each trial.

We suppose that for N atoms in the final state, a single
atom populates each of the first N sites on the optical lattice
in the Mott regime3. In our scheme, we will consider only the
first Nmin sites, where Nmin is the minimum number of atoms
on any run. Importantly, we retain only experimental runs for
which all the σy measurements take place in the first Nmin sites
(see figure 3). This gives us a subset of 2Nmin−1 measurements
from all those taken and we neglect the rest. In order for this
approach to work, we need to show that all the expectation
values in (3) for Nmin are identical to the results obtained if,
for N > Nmin, we measure only a subset consisting of the first
Nmin sites. We can confirm this by calculating the expectation
values directly.

For N atoms, the expectation value for a general term in
(3), where all the σy measurements are in the first Nmin sites,
has the form

N 〈!|

First Nmin sites︷ ︸︸ ︷
σ 1

y · · · σ j
y σ

j+1
x · · · σNmin

x σNmin+1
x · · · σN

x |!〉N = −ij+1,

(12)
3 We take the first N sites for notational simplicity. We could, of course, also
consider that the atoms populate the N middle sites of the lattice with a trivial
extension to the algebra.

N

Nmin

|↑〉

|↓〉

Figure 3. The two optical lattices. In the Mott regime, we assume
that for N atoms, each of the first N pairs of upper and lower lattice
sites contains a single atom. To account for fluctuations in the total
atom number between experimental runs, we consider only the cases
where all σy measurements take place in the first Nmin sites, where
Nmin is the minimum total number of atoms on any experimental run.

where the last step follows because we only have terms where
j is odd. Any permutation of the first Nmin operators does not
change the result.

Similarly, for Nmin atoms, we obtain

Nmin 〈!| σ 1
y · · · σ j

y σ
j+1
x · · · σNmin

x |!〉Nmin
= −ij+1. (13)

Comparing (12) and (13), we see that by making measurements
on |!〉N , we can determine the corresponding expectation
values for |!〉Nmin

. This means that, even when the total
number of atoms varies between experimental runs, we can
always obtain a complete set of 2Nmin−1 terms corresponding
to the expansion in (3) where N = Nmin. In this way, the
value of this expression for a GHZ state is F = 2Nmin−1, and
the bound for (Nmin − 1)-partite entanglement is

F ! 2Nmin−2. (14)

The corresponding bound for the hidden-variable model
follows easily from (4) since the joint probability for N sites
can be reduced to a joint probability for Nmin sites simply by
integrating over mNmin+1, · · · ,mN . This gives

Pµ1···µNmin
(m1 · · ·mNmin)

=
∫

dλρ(λ)
[
p1

µ1
(m1, λ) · · · pN

µN
(mNmin, λ)

]
, (15)

i.e. the first Nmin sites do not depend on the measurement
outcomes of the last N − Nmin sites. The rest of the argument
follows that of Mermin [3] but with N replaced with Nmin. This
gives the hidden-variable bounds as

F ! 2Nmin/2, Nmin even,

F ! 2(Nmin−1)/2, Nmin odd.
(16)

Comparing (16) and (14) with the result for a GHZ state,
F = 2Nmin−1, we see that it is still possible to detect Nmin-
partite entanglements even if the total number of atoms in the
system is uncertain.

4. Implementation with cavity QED

Another possible system for implementing this scheme that is
likely to be more accessible to experiments is Rydberg atoms
in microwave cavities. For this, we consider an N-particle
GHZ state of the form

|!〉N = 1√
2

(
| gg · · · g︸ ︷︷ ︸

N

〉 + | ee · · · e︸ ︷︷ ︸
N

〉
)
, (17)
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where g or e in the j th position denotes that the j th particle is
in the ground or excited state. This state and the subsequent
analysis differ slightly from that discussed in the first part of
the paper. We choose to do the analysis for this particular
state because it is the one most conveniently created by our
proposed experimental scheme for Rydberg atoms.

This GHZ state, |!〉N , is an eigenstate of the operator

AN = 1
2




N∏

j=1

(σ j
x + iσ j

y ) +
N∏

j=1

(σ j
x − iσ j

y )



 (18)

with eigenvalue 2N−1. For a general N-particle state |#〉, one
finds F = 〈#| AN |#〉 which is given by

F = 1 − 〈#| σ 1
y σ

2
y σ

3
x σ

4
x · · · σN

x |#〉 − · · ·
+ 〈#| σ 1

y · · · σ 4
y σ

5
x · · · σN

x |#〉 + · · ·
−〈#| σ 1

y · · · σ 6
y σ

7
x · · · σN

x |#〉 − · · · + · · · . (19)

For the GHZ state (17), we have F = N 〈!| AN |!〉N = 2N−1,
and any hidden-variable state has the same bounds as before,
i.e.

F ! 2N/2, N even,

F ! 2(N−1)/2, N odd.
(20)

The first step to seeking violations of (20) using Rydberg
atoms is to create a GHZ of the form (17). We start with N
atoms of 85Rb, each initially in the Rydberg state 63P. Using
resonant microwave fields, transitions can be driven to the
levels 61D and 62P. We shall refer to 63P as |e〉, the relative
excited state, and 61D as |g〉, the relative ground state. These
form the basis used to construct the GHZ state. The state
62P is referred to as |i〉, an auxiliary state. The state |e〉
is produced using a three-step laser excitation [35]. Zheng
and Guo demonstrate in their paper [36] that by using three
states in this manner with a cavity detuned from the |e〉 ↔ |g〉
transition, it is possible to create an EPR state with a pair
of atoms. This was later demonstrated experimentally by
Osnaghi et al [37]. We extend this scheme to show that by
using the same states and N −1 cavities in a line, it is possible
to produce a GHZ state of N atoms4. An alternative has been
demonstrated by Rauschenbeutel et al [12].

We start with all atoms initially in the state |e〉. These
atoms are produced on demand [38]. Next all atoms are
rotated to the state |+〉 = (|g〉 + |e〉)/

√
2 using a microwave

field resonant with the |e〉 ↔ |g〉 transition; see figure 4. This
corresponds to a rotation about the x-axis on the Bloch sphere.
The Hamiltonian used to implement this is

HI = h̄)(σ̂ + + σ̂−), (21)

where ) is the coupling strength of the atom with the field
and σ̂ + and σ̂− are the atomic raising and lowering operators.
The amplitudes of the atom given as a (t)|g〉 + b (t)|e〉 evolve
according to the equations

a (t) = a0 cos()t) − ib0 sin()t)

b (t) = b0 cos()t) − ia0 sin()t),
(22)

which is equivalent to a rotation about the x-axis.
4 Alternatively we could use atoms at different velocities and a single cavity
so that one atom is present during the passage of the other atoms, which are
only present one at a time, effectively emulating multiple cavities.

a b

a a

c c

b

d d

d

|eee〉 + |ggg〉

1

2 3

Figure 4. This example produces a three-party GHZ state of atoms.
Atoms approach as indicated by arrows to coincide in each cavity
(large circles). Initially all atoms are in the state |e〉. The rotation
zones labelled a take |e〉 to |+〉 and c take |e〉 to |−〉 and |g〉 to |+〉.
Those zones labelled b act on the first atom (travelling horizontally)
to switch |e〉 components of the state to |i〉, the auxiliary state, and
vice versa. The enclosed region is where the GHZ state exists. The
zones labelled d are arbitrary rotations used to study the state before
measurement.

The first atom, which will interact with each other atom
in turn, then passes through another microwave field (labelled
as b in figure 4) which is resonant with the transition |e〉 ↔ |i〉
leaving the first atom in the state (|g〉 + |i〉)/

√
2. The first

atom now interacts with the second in a high-Q (quality factor)
microwave cavity. This cavity is detuned from the |e〉 ↔ |g〉
resonance. The four possible states that may interact are shown
in the left column of table 1. The first two states in the left
column of the table are modelled using a two-atom Tavis–
Cummings model with large detuning. With a zero photon
field [39] this can be solved to give the interaction

|g, e〉 +→ e−iγ t [cos(γ t)|g, e〉 − i sin(γ t)|e, g〉]
|g, g〉 +→ |g, g〉

(23)

where γ = g2/+, g is the atom–field coupling constant and
+ is the detuning. As the field is detuned from the transition,
excited atoms can only virtually excite the field, effectively
coupling the atoms together and allowing an excitation to
be passed between atoms. The zero photon stipulation is
satisfied in the laboratory by cryogenically cooling the cavity,
and possibly by preceding the experiment with a chain of atoms
in the state |g〉 to unload the field. The second two states in the
left column of table 1 each have one atom in the state |i〉, for
which all transitions are so far from the cavity resonance that
we may assume that it does not contribute to the dynamics of
the system. This leaves one atom and the detuned field, which
is modelled using the Jaynes–Cummings model. In the case
of zero photons and large detuning the evolution of these two
states is given by

|i, e〉 +→ e−iγ t |i, e〉
|i, g〉 +→ |i, g〉.

(24)

For creating a GHZ state we choose the interaction time and
detuning such that t = π/4γ . For each interaction this
provides the right-hand side of the truth table 1.
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Table 1. The collisional phase gate. The truth table for the
collisional phase gate introduced in [36].

Input Output

|g, g〉 |g, g〉
|g, e〉 |g, e〉
|i, g〉 |i, g〉
|i, e〉 -|i, e〉

After the interaction with the first atom, each atom
emerging from each cavity is rotated so that |g〉 → |+〉 and
|e〉 → |−〉 = (|g〉 − |e〉)/

√
2. After the first atom emerges

from the final cavity, it enters a microwave field that drives the
transition |i〉 ↔ |e〉 so that the atom is left with no amplitude
in |i〉. The atoms are now in a GHZ state ready for use.
Figure 4 demonstrates the construction of a three-atom GHZ
state. It is also possible to generate larger entangled structures
with more elaborate cavity arrays [40].

Now we need to make measurements on this system
that correspond to the terms in (19). This involves making
measurements on each qubit in the basis of the eigenstates
of σx and σy , i.e. |g〉 ± |e〉 and |g〉 ± i |e〉 respectively. The
rotations take place in the regions labelled d in figure 4. The
rotation in the basis of σx has already been discussed, and only
one other rotation on the Bloch sphere is needed to realize a
rotation in the basis of σy .

The second operation we use is a rotation about the z-axis
of the Bloch sphere, Rz. This can be implemented simply
by applying an electric field to the atom. This effectively
increases the transition energy between the levels of the atom
and results in a modified phase evolution for the two states.
This technique has been experimentally demonstrated with
sodium Rydberg atoms by Ryabtsev et al [41]. They applied
a resonant microwave pulse to perform an x-rotation between
two sodium Rydberg atoms followed by a Stark shift z-rotation
and another x-rotation. This combination of interactions
allowed them to perform Ramsey interferometry of the Rz

operation applied by the Stark shift. Their results confirmed
that they had successfully implemented the phase operation
Rz and that it was coherent [41].

For Rydberg states of alkali metals, the Stark shift varies
approximately quadratically with the electric field strength
[42]

δg,e ∝ −αg,eE
2, (25)

where αg,e is the polarizability of the ground or excited state
of the atom and E is the amplitude of the electric field. The
polarizability of the two states will be different, so the relative
phase shift will be given by

. = ε(αg − αe)E
2, (26)

where ε is a factor calculated by integrating over the pulse
shape of the electric field. Applying the electric field for some
time t, the state of the atom evolves as

a |e〉 + b |g〉 +→ e−i.t a |e〉 + b |g〉 . (27)

This corresponds to a rotation about the z-axis, where .t is
the angle of rotation.

Now, in order to measure an atom in the σx basis, we
simply apply the resonant microwave field to implement a
rotation of the state by π/2 about the y-axis and then measure
the atom to see whether it is in the state |g〉 or |e〉. We can see
that this works because the rotation maps the eigenstates of σx

directly onto the states |g〉 and |e〉. Similarly, to measure in
the σy basis we apply a π/2 rotation about the z-axis (using
the Stark shift), then a π/2 rotation about the y-axis, and then
measure the atom to see whether it is in |g〉 or |e〉. Measuring
Rydberg atoms is discussed by Gallagher [43]. The particular
measurement process that is useful in this experiment, state
selective field ionization, is described in [39].

This scheme will suffer from similar practical limitations
as those outlined above for the BEC scheme. In particular,
decoherence, vibrations, and imperfect rotations in Bloch
space will lead to an imperfect GHZ state being created.
Such considerations will limit this scheme to small numbers
of atoms. However, it should still be possible to detect
violations of the Mermin inequality. In their paper, outlining
the controlled phase gate that we employ here [36], Zheng
and Guo note the effect of errors in the time of arrival of
one of the atoms. They found that for a particular interaction
time t for which ideally an EPR pair is produced, one atom
entering the cavity 0.01t before the other produced a fidelity
of |〈ψEPR|ψ〉|2 ≈ 0.99. We expect that with appropriate
single atom sources much smaller errors in arrival time will
be achievable. Vibrational shifts in the frequency of the
cavity should also be considered. As the interaction is off
resonant with the cavity, this will induce small shifts in the
interaction strength. Assuming that for a good interaction
+ = 10 g, where g is the atom–cavity coupling constant, then
the effective atom–atom coupling constant is γ = g/10. For
a micromaser such as that reported in [39] a g on the order of
10 kHz is typical. A pessimistic estimate of a shift in the cavity
frequency on the order of 1 kHz leads to a shift in the effective
coupling constant of approximately 1%. For up to a ten-
atom GHZ state this leads to a fidelity of |〈ψEPR|ψ〉|2 ≈ 0.99.
From this we conclude that the greater difficulty is producing
atoms on demand and targeting them precisely to encounter
the same cavity field profile. Transient misalignment induced
by vibrations will be particular to the apparatus used, and this
must be determined experimentally.

Finally we ought to comment on how noise affects these
results since it is well known that detector inefficiencies
in particular give rise to the so-called detection loophole
which can undermine our ability to exclude local-realistic
descriptions using Bell-type inequalities. Braunstein and
Mann [44] have considered this problem and shown that if the
noise is sufficiently small, then the signal for violation grows
exponentially faster with N than the noise. In particular, the
noise per detector or per particle needs to be less than about
14%. In the absence of noise, detector efficiencies of around
1/

√
2 ≈ 71% are required. This bodes well for the feasibility

of the detection process. The efficiency of field ionization
detectors used in micromaser systems is currently around 40%
[39]. Improving both the efficiency of collection of electrons
from ionized Rydberg states and the discrimination between
Rydberg states prior to ionization is the subject of ongoing
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research [45], and we are confident that the necessary detector
efficiencies are attainable.

5. Conclusion

We have proposed two schemes for demonstrating exponential
violations of Mermin’s inequality in very different atomic
systems. Besides their significance in tests of quantum
mechanics versus local realism, the schemes we have proposed
could be important tools in unambiguously creating and
identifying genuine N-body entanglement in atomic systems
as well as studying how decoherence affects them. The
experimental techniques required, while challenging, are not
far from what can currently be achieved in the laboratory.
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