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A defining feature of quantum mechanics is that it allows systems to exist in a superposition

of different eigenstates of certain observables such as position or spin. However,

superpositions of other quantities such as mass or charge are not seen in nature. It is

thought that this disparity is partly due to the fact that it is much easier to carry out

interference experiments for certain observables than others. Here we present an

interferometry scheme that should allow us to observe interference between the vacuum and

a single photon or atom. We begin by presenting a scheme for a Hadamard gate that

operates in the Fock state basis and then show how, by creating an interferometer from two

such gates, interference between a single particle and the vacuum could indeed be observed.

This would provide evidence of a superposition of different particle numbers.

1. Introduction

An important part of quantum mechanics is the existence of superselection rules for

certain quantities (Wick et al. 1952). These are invoked to explain why, in practice,

we do not observe certain superpositions such as states with different charge or mass.

However, the need for these superselection rules was challenged by Aharonov and Susskind

(Aharonov and Susskind 1967) in the 1960s when they proposed a thought experiment

to observe coherent superpositions of different charge states. Their work showed that in

order to observe the coherence, it is important that there is an appropriate reference frame

(Aharonov and Susskind 1967; Kitaev et al. 2004; Mirman 1969; Bartlett et al. 2006;

Dowling et al. 2006; Terra Cunha et al. 2007). For some quantities, reference frames are

readily available: to observe coherences between different spin or polarisation states, for

example, we only need a well-defined spatial axis as our reference. This means that such

superpositions are commonly observed. But, for other quantities, the appropriate reference

frames are much less obvious and so it is much harder to observe a superposition.

Interestingly, this does not mean they cannot be observed provided an appropriate

reference frame can be found.

Other authors have extended the ideas of Aharonov and Susskind and applied them

to different systems (Kitaev et al. 2004; Mirman 1969; Bartlett et al. 2006; Paterek

et al. 2010). Recent work, for example, has considered whether it might be possible to

observe interference fringes that are due to a superposition of an atom and a molecule

(Dowling et al. 2006; Terra Cunha et al. 2007), that is, two states with different mass. Here
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we address the problem of whether we can observe superpositions of different Fock states

for both atomic and optical systems. There has been a lot of interest lately in the related

question of whether a single particle can be entangled and whether this entanglement can

be used in quantum information schemes (Tan et al. 1991; Hardy 1994; Santos 1992; Tan

et al. 1992; Björk et al. 2001; Dunningham and Vedral 2007; Dunningham et al. 2009).

In this paper we consider the specific case of a superposition of a single particle (atom or

photon) and the vacuum, that is,

|ψ〉 =
1√
2
(|0〉 + |1〉), (1)

and present the details of a specific interferometric scheme that could be used to observe

this superposition.

We stress that state (1) is quite different from the one created by passing a single

particle through a 50:50 beam splitter. A typical two-port beam splitter is a semi-reflective

mirror that reflects part of the incident light and transmits the remainder. In general, this

performs the following unitary transformation on the input state, |ψin〉,

|ψout〉 = eiHBS |ψin〉, (2)

where HBS is the interaction Hamiltonian for the beam splitter given by

HBS = θ
(
eiφa†

inbin + e−iφainb
†
in

)
. (3)

The physical beam splitter can be described by any choice of θ and φ depending on its

setup and fabrication, where θ is a measure of the transmittivity and φ gives the phase

shift due to the coating of the mirror (Kok 2007). In our case, we consider 50:50 beam

splitters with θ = π/4 and φ = 0. Correspondingly, the incoming creation operators can

be shown to be transformed in the following way

a†
out =Ua†

inU
†

= cos θa†
in + ie−iφ sin θb†

in, (4)

b†
out = ieiφ sin θa†

in + cos θb†
in, (5)

with similar expressions for the annihilation operators. Thus, using Equations (4) and (5)

we can easily calculate the transformation of any input to the beam splitter, for example

|1〉a|0〉b = a†
in|0〉a|0〉b−→a†

out|0〉a|0〉b

=
1√
2

(
ib†

in + a†
in

)
|0〉a|0〉b

=
1√
2

(
i|0〉a|1〉b + |1〉a|0〉b

)

=
1√
2

(
i|0〉a|1〉b + |1〉a|0〉b

)
. (6)

Where the two modes a and b are the ones depicted in Figure 1. However, we will drop

the subindices in the states and use the convention that the state that appears on the left

of a product of states is associated with the left input or output of the beam splitter, and
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Fig. 1. Incoming and outgoing modes in a beam splitter.

similarly for the right. Consequently, using this convention, the transformation resulting

in Equation (6) can be written as

|1〉|0〉−→ 1√
2

(
i|1〉|0〉 + |0〉|1〉

)
. (7)

The most notable difference between this state and (1) is that the beam splitter conserves

particle number whereas state (1) does not.

Superpositions of the form of (1) could be achieved by the action of a Hadamard gate

(H) in the Fock basis {|0〉, |1〉}:

|0〉 H−→ 1√
2

(
|0〉 + |1〉

)
(8)

|1〉 H−→ 1√
2

(
|0〉 − |1〉

)
. (9)

In fact, any unitary operation that transforms |0〉 and |1〉 into two orthogonal states that

are each equally weighted superpositions of |0〉 and |1〉 will do. We could then observe the

superposition by means of an interferometer. In other words, after the first Hadamard

gate, we apply a phase shift, and then a second Hadamard. If the probability of detecting

a particle or not at the output can be coherently controlled by adjusting the phase shift,

that is a signature that a superposition of the form of (1) has been created. So the key

element to our scheme is a Hadamard gate that operates in the basis {|0〉, |1〉}. Before we

go on to discuss how this might be realised, we will first introduce a technique that will

form an important part of the scheme.

2. Quantum state truncation

Quantum state truncation (QST) was first put forward by Pegg and coworkers (Pegg

et al. 1998) and involves creating truncated versions of quantum superpositions condi-

tioned on particular measurement outcomes. To take a particular example, suppose we

had a coherent state with amplitude α and phase θ, that is, |αeiθ〉c. This coherent state can

be written as a superposition of Fock states,

|αeiθ〉c = e−|α|2/2
∞∑

n=0

(αeiθ)n√
n!

|n〉. (10)

Throughout this paper, we will use a subscript c to denote coherent states; kets without

a subscript are taken to be Fock states. Now suppose we want to keep only the first two

terms of the superposition, that is, the ones corresponding to |0〉 and |1〉. We can achieve

this by using the QST scheme shown in Figure 2(a), which works as follows. We feed
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Fig. 2. Quantum state truncation scheme.

(a) The Fock states |0〉 and |1〉 are fed into a 50:50 beam splitter (BS1) and one output is

combined with the coherent state |αeiθ〉c at a second 50:50 beam splitter (BS2). Depending on the

measurement outcomes at detectors A and B, it is possible to achieve a truncated version of the

coherent state at the output.

(b) For simplicity, in the remainder of the paper, the quantum state truncation scheme will be

depicted as a ‘black box’, as in (b).

a single particle and a vacuum state, respectively, into the two inputs of a 50:50 beam

splitter (BS1 in Figure 2(a)). One of the outputs is then combined with our coherent state

at a second beam splitter (BS2). The outputs from BS2 are recorded at detectors A and

B, and if one particle is detected at A and none at B, then the remaining (and as yet

unaccounted for) output from BS1 is the truncated state that we wanted, that is,

|ψout〉 =
1√

|α|2 + 1

(
|0〉 + αeiθ|1〉

)
. (11)

We can see this result by explicity calculating how the input state is transformed by the

setup shown in Figure 2(a). The initial state is

|ψin〉 = |αeiθ〉c|1〉|0〉 =
(
|0〉 + αeiθ|1〉 + · · ·

)
|1〉|0〉, (12)

where we have expanded the coherent state in the Fock basis and ignored any overall

normalisation. The last two kets (qubits) are then transformed by BS1 to give
(
|0〉 + αeiθ|1〉 + · · ·

) (
i|1〉|0〉out + |0〉|1〉out

)
, (13)

where the second qubit is directed towards BS2 and the last qubit is directed towards the

output mode. Next, the first two qubits are transformed by BS2 to give the outputs at A

and B. This gives,

|0〉A|0〉B |1〉out

+ |0〉A|1〉B
(
−|0〉out + αeiθ|1〉out

)

+ i|1〉A|0〉B
(
|0〉out + αeiθ|1〉out

)
+ · · · (14)

We can see from this that if we detect one particle in A and none in B, the output state

must be projected onto |0〉 + αeiθ|1〉, which, when normalised, is precisely the truncated

state given by Equation (11).
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This QST procedure will be very useful when we consider a scheme for observing

superpositions between a single particle and the vacuum. It is therefore convenient to

represent it more compactly as a ‘black-box’, as shown in Figure 2(b). This will greatly

simplify our diagrams. We should point out that beam splitters have been experimentally

demonstrated for atoms as well as photons (Carnal and Mlynek 1991; Keith et al. 1991;

Riehle 1991), so we should be able to apply the QST scheme to atoms. Indeed every step

of the interferometry scheme that we will present is equally applicable to (bosonic) atoms

as to photons.

3. Hadamard gate

Let us now consider how we could implement a Hadamard gate in the Fock basis {|0〉, |1〉}.
As we shall see, this choice of basis complicates matters. For this reason, we do not think

that this is a useful basis for performing quantum information processing protocols.

However, it is interesting to consider it for more fundamental reasons. One possible

scheme for implementing a Hadamard gate in the Fock basis is shown in Figure 3 and

consists of three 50:50 beam splitters (labelled BS1, BS2 and BS3), two ordinary mirrors,

a π phase shift and two nonlinear crystals (labelled χ). The nonlinear crystals give a

phase shift to the state that depends nonlinearly on the number of particles. We take the

Hamiltonian for the nonlinearity to be

Hχ = !χa†2a2 = !χn̂(n̂ − 1), (15)

where a is the annihilation operator corresponding to the mode on which the nonlinearity

acts and n̂ is the corresponding number operator. We will take χ = π/2, which means

that there is no phase shift if there are 0 or 1 particles in the mode, but a phase shift of π

if there are 2 particles. We can confirm that this setup performs a Hadamard operation

by directly calculating how it transforms the input states.

We begin by considering the upper part of the setup consisting of the interferometer

made up of BS1 and BS2. For now, we take the input state to be |0〉 (we will consider

|1〉 shortly). The other input to BS1 is given by performing QST on the coherent

state |eiθ1〉c, which has an amplitude of α = 1. We have seen that this gives |0〉 +

eiθ1 |1〉. So the overall input state to BS1 is |0〉(|0〉 + eiθ1 |1〉), where we are ignoring

the normalisation, and will use the convention that the left-hand ket represents the

left-hand path at each point in the scheme. We can now propagate this state through

the setup

|0〉(|0〉 + eiθ1 |1〉) BS1−→ |0〉|0〉 +
eiθ1

√
2

(
|1〉|0〉 + i|0〉|1〉

)

π,mirrors−→ |0〉|0〉 +
eiθ1

√
2

(
i|1〉|0〉 + |0〉|1〉

)

χ−→ |0〉|0〉 +
eiθ1

√
2

(
i|1〉|0〉 + |0〉|1〉

)

BS2−→ |0〉(|0〉 + ieiθ1 |1〉)out. (16)
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Fig. 3. The Hadamard gate scheme. This consists of three 50:50 beam splitters (BS1, BS2, and

BS3), two nonlinearities (χ), a π phase shift (π) and conditional measurements made at the outputs

of BS3. It also makes use of the quantum state truncation scheme shown in Figure 2. The overall

transformation that this interferometer performs is given by Equations (24) and (25).

The mirrors give a π/2 phase change due to reflection and we see that the nonlinearity in

this case has no effect since there is, at most, one particle on each path.

We can carry out a very similar analysis for the input |1〉. This gives

|1〉(|0〉 + eiθ1 |1〉) BS1−→ 1√
2

(
|0〉|1〉 + i|1〉|0〉

)
+

ieiθ1

√
2

(
|0〉|2〉 + |2〉|0〉

)

π,mirrors−→ −1√
2

(
i|0〉|1〉 + |1〉|0〉

)
− ieiθ1

√
2

(
|0〉|2〉 + |2〉|0〉

)

χ−→ −1√
2

(
i|0〉|1〉 + |1〉|0〉

)
+

ieiθ1

√
2

(
|0〉|2〉 + |2〉|0〉

)

BS2−→ −|1〉(i|0〉 + eiθ1 |1〉)out. (17)

We see that these two transforms give us something close to what we want in the sense

that we get two different orthogonal output states depending on the input state and these

are equally weighted superpositions of |0〉 and |1〉. The problem is that in these, each of

the output states of the second qubit is coupled to a different state of the first qubit. This

would not matter if we were only interested in using either |0〉 or |1〉 separately as our

input. However, we want to be able to input arbitrary superpositions of these two states

c0|0〉 + c1|1〉, for which the output would be

c0|0〉 + c1|1〉 H−→ c0|0〉(|0〉 + ieiθ1 |1〉) − c1|1〉(i|0〉 + eiθ1 |1〉), (18)
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and in this case, our second qubit at the output path is entangled with the first qubit at

the other output from BS2. If we trace over the first qubit, we get a mixed state of |0〉
and |1〉 as our output at the second qubit, which is not what we want. To avoid this,

we need to wash out this which-way information by a nonunitary operation. We do this

by combining the first qubit with another state at BS3. We then detect the number of

particles at the outputs and retain only the cases where we detect one particle at the

left-hand detector and none at the right-hand one. This is reminiscent of the QST scheme

described above. Let us now consider how this works for the cases of the two different

input states. From (16), just before BS3 the total state is

|eiθ2〉c|0〉(|0〉 + ieiθ1 |1〉)out = (|0〉 + eiθ2 |1〉 + · · ·)|0〉(|0〉 + ieiθ1 |1〉)out. (19)

The first two qubits are transformed by BS3 to give
[

|0〉|0〉 +
1√
2
eiθ2

(
|0〉|1〉 + i|1〉|0〉

)
+ · · ·

]
(|0〉 + ieiθ1 |1〉)out. (20)

So if we detect one particle in the left detector (1st qubit) and none in the right detector

(2nd qubit), we are left with the state

i√
2
eiθ2 (|0〉 + ieiθ1 |1〉)out. (21)

We see that the output state is no longer correlated to another qubit, that is, the which-way

information has been washed out.

If we repeat the same analysis for the state |1〉, from (17), we get that the input to BS3

is

−|eiθ2〉c|1〉(i|0〉 + eiθ1 |1〉)out. (22)

If, as before, we detect one particle in the left detector and none in the right detector, we

are left with the state

− 1√
2
(i|0〉 + eiθ1 |1〉)out. (23)

Again, we have washed out the which-way information. The transformations brought

about by the scheme depicted in Figure 3 can therefore be summarised as

|0〉 −→ i√
2
eiθ2 (|0〉 + ieiθ1 |1〉)out (24)

|1〉 −→ − 1√
2
(i|0〉 + eiθ1 |1〉)out, (25)

which is equivalent to a Hadamard gate. These transformations could be put into the

form of (8) and (9) with straightforward phase shifts, but this is not necessary, and we

will just use them in the forms shown in (24) and (25).

Since the success of our scheme is conditioned on detecting particular values for some

of the modes, not every run will give us the desired output. The probability of success

depends on the probabilities of success for the two quantum state truncation stages as

well as for the wash-out process. We have a probability of 1/(2e) for a quantum state
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Fig. 4. An alternative way of implementing the Hadamard gate using cross phase modulation

(XPM).

truncation to succeed if it is fed with an equally weighted superposition of the vacuum

and one photon state in the coherent state, that is, for a |eiθ〉c state (Pegg et al. 1998).

This is true for ideal photodetectors, nevertheless, even if we had photodetectors with

efficiency of η = 0.5, we would still have a probability of 0.9/(2e) of succeeding, which is

very favorable. Likewise, the success probability for the wash-out stage is obtained from

the coefficient for the |1〉|0〉 state in the output of BS3. Since we have

|eiθ2〉c|0〉 BS3−→ e−1/2

(
|0〉|0〉 +

1√
2

(
|0〉|1〉 + i|1〉|0〉

)
+ · · ·

)
(26)

|eiθ2〉c|1〉 BS3−→ e−1/2

(
1√
2

(
|1〉|0〉 + i|0〉|1〉

)
+ · · ·

)
, (27)

we get a probability of 1/(2e) of success for ideal photodetectors. Consequently, the

probability of success for the full apparatus is (1/(2e))3 = 6.2 × 10−3, that is, the scheme

will succeed in approximately 3 out of 500 attempts. We can significantly increase this

probability with a little extra effort. For instance, we can double the success probability

in the QST stages if we do not disregard the output state when we detect 1 particle in B

and none in A in Figure 2(a) and instead we subject it to a phase shift of π.

The scheme we have discussed for a Hadamard gate in the Fock basis is just one

possible realisation and there may be simpler schemes. One example is to use a cross-

nonlinearity that depends on the number of particles in different modes, as depicted in

Figure 4. The idea behind this scheme is that the relations in Equations (8) and (9) could

be realised by means of a controlled phase shift applied to a truncated state obtained

using the QST scheme. This controlled phase should apply no phase shift to a truncated

state if a |0〉 is received as the control input qubit and should apply a π phase if a |1〉
state is received instead. The scheme in Figure 4 does exactly that by using a cross phase

modulation effect between the Fock state and the coherent state and, finally, truncating

the latter. The Hamiltonian of the cross phase modulation is

H = !χa†ab†b, (28)

where a and b are the anihilation operators for the two different modes and χ is a

coefficient related to the strength of the nonlinearity. If we take χ = π, the scheme shown

in Figure 4 would give the following transformations (for α = 1):

|0〉|eiθ〉c
H−→ 1√

2
|0〉

(
|0〉 + eiθ|1〉

)
(29)
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Fig. 5. (a) The general Hadamard interferometery scheme. An input state in the basis {|0〉, |1〉} is

transformed with a Hadamard gate, a phase shift φ and then a second Hadamard gate.

(b) The scheme can be simplified if we are only interested in a specific case that can demonstate

the superposition of a single particle and the vacuum. In this case quantum state truncation is

used to give the superposition state (similar to the output of the first Hadarmard in (a)). This state

then undergoes a phase shift and a Hadamard transformation.

|1〉|eiθ〉c
H−→ 1√

2
|1〉

(
|0〉 − eiθ|1〉

)
. (30)

We could then wash out the which-way information contained in the first qubit using the

same procedure as described above. This gives us an alternative way of constructing the

Hadamard gate, which, at least schematically, seems simpler. For now, however, we will

concentrate on the first scheme as shown in Figure 3. This is because we would like our

scheme to be applicable to (bosonic) atoms as well as photons, and it is not clear how

the cross nonlinearity could be easily achieved for atoms. We should point out that our

scheme is restricted to bosons because it relies on having coherent states of the particles,

which are not physical for fermions. We also make use of the property that two bosons

from different arms of a beam splitter bunch in the Hadamard transform (17).

4. Interferometer

The signature of a superposition of a particle and the vacuum (as in states (24) and

(25)) is interference between the two components. We could observe this interference by

combining two Hadamard gates with a phase shift φ between them to create a simple

interferometer as shown in Figure 5(a). If we find that the probability of detecting the

final state in Figure 5(a) depends on the value of φ, then this will confirm the coherence

of the superposition of |0〉 and |1〉 after the first Hadamard.

The problem with this ‘simple’ interferometer is that it hides a lot of complexity:

each Hadamard is implemented by the scheme shown in Figure 3 and the whole scheme

involves two quantum state truncations and two procedures to wash out the which-way

information. So it is quite complicated schematically, to say nothing of how it might

be realised experimentally. We can, however, simplify things considerably if we just

consider a particular input to our interferometer, say the vacuum |0〉. In this case, the

first Hadamard gate in Figure 5(a) creates a coherent superposition of one particle and

the vacuum. However, the same thing could be achieved by taking advantage of the QST
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scheme again since it can truncate a coherent state to leave us just with a superposition of

one particle and the vacuum. Consequently, the input state and first Hadamard gate can

be replaced by a coherent state and the QST gate, respectively, as shown in Figure 5(b).

This simpler scheme should be enough to observe interference fringes between the |0〉 and

|1〉 states and so confirm their superposition. We will now describe how this works.

After the input state |eiθ〉c has been truncated and a phase shift φ has been applied to

it (that is, the first two steps in Figure 5(b)), we end up with the state

1√
2

(
|0〉 + ei(θ+φ)|1〉

)
. (31)

This is then passed through a Hadamard gate using the scheme shown in Figure 3. We

have seen that this gate performs the transformations given by Equations (24) and (25),

so the final state is

1√
2

(
|0〉 + ei(θ+φ)|1〉

) H−→ i

2
eiθ2

(
|0〉 + ieiθ1 |1〉

)
− 1

2
ei(θ+φ)

(
i|0〉 + eiθ1 |1〉

)

= ieiθ2

(
1 − ei(θ+φ−θ2)

2

)
|0〉 − eiθ2eiθ1

(
1 + ei(θ+φ−θ2)

2

)
|1〉

= eiθ2ei
θ+φ−θ2

2

[(
ei

θ+φ−θ2
2 − e−i

θ+φ−θ2
2

2i

)
|0〉

−eiθ1

(
ei

θ+φ−θ2
2 + e−i

θ+φ−θ2
2

2

)
|1〉

]
(32)

where we can neglect the global phase factored out in the last step since overall phases in

the state vector are unobservable and have no physical consequences. The final state can

therefore be written as

sin

(
φ + θ − θ2

2

)
|0〉 − eiθ1 cos

(
φ + θ − θ2

2

)
|1〉. (33)

This state depends on all four phases φ, θ, θ1 and θ2. However, the magnitudes of the

coefficients of |0〉 and |1〉 depend only on φ + θ − θ2, that is, they are independent of θ1.

This is what we might expect since the the coefficients depend on the relative phase of

the two paths ‘inside’ the interferometer, that is, the input to the Hadamard (θ + φ) and

the reference state input to BS3 (θ2).

From (33), the probabilities of measuring one or zero particles at the output of the

interferometer are

P1 = cos2

(
φ + θ − θ2

2

)
(34)

P0 = sin2

(
φ + θ − θ2

2

)
, (35)

respectively. This looks promising as we have interference fringes at the output that

depend on the applied phase φ. However, the fringes also depend on θ and θ2, which

presents a problem. To see interference fringes, we need to repeat the experiment many

times for each value of φ in order to find the values of P0 and P1. However, the phases
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Fig. 6. The full scheme for demonstrating interference between a single particle and the vacuum as

given in Figure 5(b). Importantly, as discussed in the text, the phase of the input to the QST

scheme on the left and the input to the which-way wash-out scheme at BS3 have their phases

fixed. This is achieved by creating them from a common source at BS4.

of coherent states that are independently produced are not fixed and vary randomly from

run to run. This means that on the ensemble average we need to average over all phases

θ and θ2 and, consequently, the interference fringes will wash out.

We can overcome this problem by fixing their relative value, that is, θ − θ2 by creating

them from the same source. In Figure 6, we show how this could be achieved by

introducing another beam splitter (BS4) to create the states |eiθ〉c and |eiθ2〉c so that their

phase is the same on every run, that is, θ−θ2 = 0. In this case, the output probabilities are

P1 = cos2

(
φ

2

)
(36)

P0 = sin2

(
φ

2

)
. (37)

This means that inference fringes should be able to be built up over an ensemble of runs

since the position of the fringes now depends only on the controllable parameter φ. This

suggests that we should be able to use this scheme to observe the interference of different

Fock states.

5. Mixed states

So far it seems that in order to observe a superposition of the form of (1), we need to

start with a superposition in the Fock basis (that is, a coherent state). This seems like a

circular argument. However, in this section, we show that we do not need superpositions

in the Fock basis as our initial states. In fact, we can use mixed state inputs.
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The mixed state,

ρ = e−|α|2
∞∑

n=0

|α|2n
n!

|n〉〈n| (38)

is formally equivalent to a coherent state with amplitude |α| averaged over all phases, that

is,

ρ =
1

2π

∫ 2π

0
||α|eiθ〉〈|α|eiθ| dθ, (39)

since

1

2π

∫ 2π

0
||α|eiθ〉〈|α|eiθ| dθ

=
1

2π

∫ 2π

0
e−|α|2/2

∞∑

n=0

(|α|eiθ)n√
n!

|n〉e−|α|2/2
∞∑

m=0

(|α|e−iθ)m√
m!

〈m| dθ

= e−|α|2
∞∑

n=0

∞∑

m=0

|α|n+m

√
n!

√
m!

(
1

2π

∫ 2π

0
eiθ(n−m) dθ

)
|n〉〈m|

= e−|α|2
∞∑

n=0

|α|2n
n!

|n〉〈n|, (40)

where in the last step we have used the fact that the integral in parentheses evaluates

to δnm. This means that if ρM = ρ1 ⊗ ρ2 ⊗ . . . is the input density matrix to our full

interferometer shown in Figure 6 with mixed states

ρ1 = e−2
∞∑

n=0

2n

n!
|n〉〈n| (41)

ρ2 = e−1
∞∑

n=0

1

n!
|n〉〈n| (42)

instead of coherent states and UI represents the evolution operator for this interferometer,

then the output density matrix would be

ρM
UI−→ UIρMU†

I =
1

(2π)2

∫ 2π

0

∫ 2π

0
dθ1dθ2UIρCU

†
I , (43)

where ρC is the input density matrix using the coherent states |
√

2eiθ2〉c and |eiθ1〉c.
Therefore, the output is just what we calculated earlier for these inputs, but averaged over

all phases θ1 and θ2 . From (33), we see that we get the output

ρ = sin2

(
φ

2

)
|0〉〈0| + cos2

(
φ

2

)
|1〉〈1|, (44)

where we have used the fact that relative values of θ and θ2 are fixed, that is, θ − θ2 = 0

and we have averaged over θ1 and θ2. The output state is therefore a mixture of a

single particle and the vacuum. However, the interesting thing is that the probabilities

of detecting either one or no particles at the output are not affected, that is, they are
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Fig. 7. Mixed state ρ1 as input to the interferometer and QST stage addition.

just the same as those given in (36) and (37) even though our inputs are mixed states.

But does this result still mean that we have a superposition of a single particle and the

vacuum inside the interferometer? In itself, no, but we can argue that this interpretation

is consistent with our results if we think more carefully about the state where the phase

φ is applied. In order to do this, it is convenient to modify the scheme shown in Figure 6

slightly by adding a QST step after the −π/2 phase shift on the lower output from BS4.

This modification is shown in Figure 7. It is easy to see that this does not affect the final

output from the interferometer because it just throws away all cases where there were two

or more particles on that path. However, the post-selection procedure at BS3 achieved

the same effect.

If we consider the particular mixed state ρ1 given by Equation (41) as the input to the

50:50 beam splitter BS4 in Figure 7, then the output state after the QST on each path

can be shown to be

ρ1 −→ 1

4

(
|0, 0〉〈0, 0| + |1, 1〉〈1, 1| + |0, 1〉〈0, 1| + |1, 0〉〈1, 0| + |0, 1〉〈1, 0| + |1, 0〉〈0, 1|

)
. (45)

We can see that this state is not entangled by taking the partial transpose and checking

that there are no negative eigenvalues (Horodecki et al. 1996). This means that the upper

path after the QST operation is not entangled with the lower (reference) path after the

QST operation. This is important because it means that when the phase φ is applied to

the upper path, it should depend only on the state on that path (that is, it is completely

independent of the reference path). However, we know that the output from the full

scheme (44) depends coherently on the phase that is applied. This suggests that the state

on the path where φ is applied is a superposition of number states. If we had a number

state or a mixture of number states at that point, the phase would not alter the state, that

is,

ρ =
∑

n

Pn|n〉〈n| φ−→
∑

n

Pne
inφ |n〉〈n| e−inφ = ρ, (46)
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where Pn are general probabilities. So what is going on? The total state (45) is mixed and

yet the output from the scheme shown in Figure 6 suggests that the upper path is in a

superposition of a single particle and the vacuum. The answer is that the upper path is

in a mixed state on average and we need to think about what happens run by run.

One way of consistently interpreting these conclusions is that on a given run the output

state of BS3 after the two QST operations is

1

2

(
|0〉 + eiθ|1〉

) (
|0〉 + eiθ|1〉

)
, (47)

where θ is a random phase and the left and right qubits represent the upper and

lower paths, respectively. On a single shot, we have a superposition of a single particle

and the vacuum where the phase φ acts on the upper path. However, averaging over

all phases gives us the mixed state (45). Normally, these two interpretations would be

indistinguishable since an interference pattern needs to be built up over many detections

and the fringes would wash out. In the present case, however, we have arranged things

so that the lower path keeps track of the random phase on each run. We can see this

from (47) where the lower state has a record of the same random phase that appears in

the upper path. This allows us to reconstruct the interference pattern indicating that we

had a superposition of different Fock states inside the interferometer. This emphasises the

importance of the lower (reference) path, since without it no interference pattern would

be seen.

6. Conclusions

We have proposed an experimentally feasible scheme that should enable us to see

interference between a single particle and the vacuum. This scheme is applicable to both

optical and atomic mixed states, which means we do not need to assume superpositions of

different Fock states in order for it to work. It would be interesting to see if similar schemes

could be realised for a broader range of physical systems or if there are fundamental

limitations that prevent this.

The output from the interferometer shown in Figure 6 is a mixed state, so it is important

to note that our scheme does not prepare superpositions of different Fock states that could,

for example, then be used in other protocols. However, the probability of detecting one

or no particles at the output depends coherently on a controllable external phase. This

is consistent with the interpretation that there was a coherent superposition inside the

interferometer at the point at which the phase φ was applied.

What we have presented is really a ‘proof of principle’ that evidence consistent with

non-number-conserving superpositions could be observed in low energy non-relativistic

experiments. There may well be simpler schemes for doing this. It certainly is a fascinating

idea and it will be interesting to see how far its applicability can be extended to other

superpositions that violate superselection rules.
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