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Abstract
The theory of decoherence explains how classicality emerges from an underlying quantum
reality. An additional interpretation to this has been proposed in which scattering events induce
the localization of relative observables (Rau et al 2003 Science 301 1081). An interesting
consequence of this process is that it involves the build-up of certain robust entanglements
between the observables being localized. To date the weakness of this interpretation has been
the lack of a clear experimental signature that allows it to be tested. Here we provide a simple
experimentally accessible scheme that enables just that. We also discuss a Bayesian technique
that could, in principle, allow experiments to confirm the localization to any desired degree of
accuracy and we present precision requirements that are achievable with current experiments.
Finally, we extend the scheme from its initial one dimensional proof of principle to the more
real world scenario of three dimensional localization.

(Some figures may appear in colour only in the online journal)

1. Introduction

The boundary between quantum and classical physics has long
been a perplexing issue for physicists. Why should one set of
rules apply to one size scale and another set of rules apparently
apply to another? More vexing perhaps is the fact that the
boundary that distinguishes the two sets of rules is not sharp,
so it is not always clear which theory should be applied.

A lot of work has been done to understand this boundary
[2–7] and the prevailing view is that it can be interpreted
in terms of decoherence [8–14]. Simply put, this says that
quantum systems tend to interact with their environments
and become entangled with them. The total system including
the environment is therefore properly treated with quantum
physics. However, if we are interested only in the quantum
subsystem and make measurements only on this, we effectively
throw away the information about which environmental states
are correlated with which subsystem states. We then find that
the subsystem appears to behave more and more classically
the more it has interacted with the environment. In effect, by
throwing away information about the quantum correlations we
are left with a system that behaves classically.

Another interpretation that extends this idea was put
forward a few years ago [1, 15]. It showed the emergence of
classicality for relative observables, and it does not require

us to throw away all the information about the quantum
correlations. This is an appealing view since it takes into
account the fact that all reference frames are ultimately relative.
Furthermore, in this interpretation, even classical objects are
entangled with one another but with a special type of robust
entanglement sometimes called ‘fluffy-bunny’ entanglement
[16, 17]. This application of quantum theory is attractive as it
gives one consistent theory that describes both quantum and
classical systems. It is also intriguing that here the emergence
of classicality involves entanglement, which is usually thought
of as a purely quantum feature.

Despite all the pleasing features of this formalism, up until
now it has suffered from the major flaw that it has not been at
all clear how it could be tested experimentally. In this paper
we resolve this issue by providing a simple, experimentally
accessible scheme that could clearly demonstrate this process.
This brings the idea into the realm of a testable physical theory.
We begin by reviewing the scheme [1] for measurement-
induced relative-position localization through entanglement.
We then describe the experimental scheme that presents a
signature for detecting this process. We finish by showing
how the localization can be extended to particles in three
dimensions.
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Figure 1. A schematic showing the setup. Two massive particles are
delocalized over some region d and are illuminated by plane wave
incident light. The scattered light is detected at an angle θ on a
screen located at a distance L away from the particles. For clarity,
the diagram is not to scale: we consider the case where L � d.

2. Localization in one dimension

The setup is shown in figure 1. Two particles are delocalized
over some region d in the x-direction in the sense that their de
Broglie wavelengths are comparable to d in this dimension. We
consider the case of distinguishable massive non-interacting
particles that are tightly confined in the y and z directions.
These two particles will form the sub-systems of the system we
are interested in. They are illuminated with plane-wave light
with wavelength λ incident along the y-axis, which scatters
from them and is detected at an angle θ on a screen located
at a distance L away. We will consider the far-field limit
where L � d. The photons are the environmental states of
our scheme.

The initial wave function of the particles is c(x) where
x represents the relative position of the two particles. Since
the particles are delocalized over d, the position of one
particle relative to the other lies in the range [−d, d]. Strictly,
to give a full spatial description of the system we should
specify the centre-of-mass position as well as the relative
position. However the centre-of-mass remains unentangled
from the relative position coordinate throughout the scattering
process and so can be conveniently neglected [1]. When a
photon of wavelength λ scatters off a particle into angle θ ,
the particle receives a momentum kick in the x-direction of
�p = h sin θ/λ, where h is Planck’s constant. In relative
momentum space the particles therefore receive a kick of
±h sin θ/λ depending on which particle the photon scatters
from and, since we do not know, we get a superposition of both
possibilities. This allows us to write the overall wavefunction
of the system after a photon has scattered as:

�(x, θ ) =
{

1
2
√

2π
c(x)

(
e

i2πx
λ

sin θ + e
−i2πx

λ
sin θ

)
if θ �= 0

c(x)A(x) if θ = 0
. (1)

(a)

(b)

Figure 2. The case of light scattering causing relative localization.
(a) Probability density, P(x), for the relative position of the particles
after the scattering and detection of 150 photons. The position is
given in units of the wavelength, λ, of the scattered light. (b)
Probability density, Q(p) for the corresponding relative momentum
of the particles.

The probability density for detecting a scattered photon at
angle θ �= 0, and the probability density of detecting a
nonscattered photon, θ = 0, are given by:

PS(θ ) = 1

2π

∫ d

−d
|c(x)|2 cos2

(
2πx

λ
sin θ

)
dx (2)

PNS = 1 −
∫ 2π

0
Ps(θ ) dθ =

∫ d

−d
|c(x)|2A2dx. (3)

From these probabilities, we can deduce:

A(x) =
[

1

2π

∫ 2π

0
sin2

(
2πx

λ
sin θ ′

)
dθ ′

]1/2

. (4)

This term represents a nonscattering event that leaves the
photon in the undeflected state. It is necessary because the
total rate of scattering (integrated over all angles) depends on
the separation of the particles, x. Odd as it seems at first sight,
this means that detecting a photon that is not scattered gives
us information about the relative position of the particles. The
A(x) term is required to properly account for this.

To model a scattering event we generate a random number
to see whether the photon is scattered and, if so, at what angle.
If it is not scattered the (unnormalized) new state is c(x)A(x)

and if it is scattered at an angle θ1, the (unnormalized) new
state is given by:

ψ(x, θ1) = c(x) cos

(
2πx

λ
sin θ1

)
.

We then normalize the state and repeat for the next photon.
We choose to start our simulations with a flat distribution,

c(x) = 1/
√

2d because we want to choose the ‘hardest’ case
and show that relative localization builds up even when there
is none to begin with. The probability distribution, P(x), for
the relative position of the two particles is shown in figure 2(a)
for a typical run after 150 photons have been detected and for
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d = λ. We assume that the 150 photons are all incident on the
particles in a sufficiently short time period that we do not need
to consider the dynamics of the particles between detection
events. Initially the distribution is completely flat and we see
that the measurement process has induced localization. We
have checked the variance of each of the peaks in figure 2(a)
and have shown that it varies inversely with the number of
scattered photons.

As mentioned above we choose to start our simulations
with a flat distribution, but this choice does not restrict the
generality of the results and qualitatively similar outcomes
are obtained for different choices. For example, we have
considered other trap shapes such as harmonic potentials,
and found that the trap geometry does not fundamentally
affect the results. The light scattering causes relative-position
localization regardless of the initial state. As regards to the
actual trap used to contain the particles, to highlight the
generality of our scheme we have not specified any particular
experimental realization. The choice of trap will depend of
course on what particles are being used. For example, if we
consider atoms there is a broad literature on different trapping
techniques such as magneto-optic traps (MOTs) [18, 19].

The above analysis is for monochromatic light of
wavelength λ. We have also simulated the localization process
for ambient light. For each scattering event the wavelength of
the photon is selected from a blackbody distribution. We have
used several different temperature blackbody distributions, and
we find that in all cases the relative position localization takes
place.

3. Proposed experiment to test the localization

The distribution shown in figure 2(a) after 150 photons have
been detected has two peaks that are symmetric about the
origin. This is what we would expect since we have an equal
superposition of either particle being to the ‘left’. If the two
particles had a well-defined relative position to begin with, then
there would be only one peak in this distribution as shown, for
example, in figure 3(a). Strictly, in this case we have a mixture
of the two different relative positions. This mixture reflects the
classical uncertainty in our knowledge of the relative position
of the particles based on detecting the scattered photons.
The case where the particles are initially delocalized is quite
different and gives a coherent superposition of the two relative
positions.

The relative-position localization process is analogous
to the build-up of relative phase between two number state
Bose–Einstein condensates when interference patterns are
detected between them [20–22]. Just like in that case we cannot
distinguish from the detected photons whether the position (or
phase of the BECs) was well-defined to begin with or created
by the measurements. We need a way of doing this in order to
experimentally verify that the localization process takes place.
Although the distinction between figure 2(a) and figure 3(a) is
clear, an experimentalist would not have direct access to this
since the detected photons cannot tell these distributions apart.
One possible solution is to look in the conjugate space—in this

(a)

(b)

Figure 3. The same as in figure 2 but with the particles initially
localized before the photons are scattered. (a) There is now only one
peak in the relative position or, strictly, an equally weighted mixture
of the two peaks, both of which give the same relative momentum
distribution. (b) The corresponding relative momentum probability
density is shown as a solid line (labelled Q2) and is compared to the
result in figure 2 shown as a dashed line (labelled Q1).

case relative momentum. A similar idea has been applied to
BECs [23–25].

The relative momentum distributions corresponding to the
relative position distributions in figures 2(a) and 3(a) are shown
as the solid lines in figures 2(b) and 3(b) respectively. For ease
of comparison, the result from figure 2(b) is superimposed on
figure 3(b) as a dashed line. We see that the two distributions
have the same envelope, but the case where localization
is induced has interference fringes. For particles that are
a priori perfectly localized, the distribution in figure 3(a)
would be a delta function and the momentum distribution
would be completely flat. We have chosen the relative position
distribution shown because it is an upper limit to the width
possible based on the photons detected. In other words, it is
the ‘hardest’ case to distinguish from that shown in figure 2(a).
We want to demonstrate that our technique works even in this
worst-case scenario.

The measurement scheme is then quite straightforward.
After scattering the photons from the particles, we want to
distinguish the two relative momentum distributions shown in
figure 3(b). To do this, we switch off any trapping potential
and allow the particles to move freely. By detecting their
positions in the x-direction after some time of flight, we can
infer the x-components of their momenta and hence the relative
momentum of the particles in that direction. By repeating the
whole process from the beginning many times, we should be
able to build up a probability distribution and so distinguish
the two cases. However, the stochastic nature of the process
means that the particles localize to a different relative position
on each run and so the relative momentum fringes are different
each time. If we were to just naı̈vely add the results from each
run, the fringes would wash out. Instead we can use Bayesian
analysis to distinguish the two scenarios.

3



J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 095501 P A Knott et al

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

Run number

P
ro

ba
bi

lit
y

P
l

P
nl

Figure 4. A simulated experiment showing the Bayesian analysis of
the probability Pnl , that the photon scattering caused relative
localization of the particles (solid line) and the probability, Pl , that
they were localized to begin with (dashed line). In our simulation,
we have taken the particles to start off with no well-defined relative
position.

Suppose on a particular run we detected scattered
photons on the screen that meant the relative momentum
distribution was either Q1(p) or Q2(p) depending on whether
or not the scattering process induced relative localization (see
figure 3(b)). To begin with, we do not know whether the
particles are localized or not so we take our prior probability
of them initially being localized, Pl to be the same as the
prior probability of them not initially being localized, Pnl , i.e.
Pl = Pnl = 0.5. Now suppose, upon releasing the particles, we
measure their relative momentum to be p1. This gives us some
information about which scenario is more likely. In particular,
Bayes’ theorem tells us that the updated probabilities are
Pnl ∝ Q1(p1) × 0.5 and Pl ∝ Q2(p1) × 0.5. Normalizing,
we get

Pnl = Q1(p1)

Q1(p1) + Q2(p1)
× 0.5 (5)

and Pl = 1 − Pnl . We can then iterate this process by using
these updated probabilities as the prior probabilities in the
next step. By repeating many times we increasingly refine our
knowledge of which process is occurring.

A sample simulation is shown in figure 4 for the case
that the particles do not initially have a well-defined relative
position. We see that initially Pnl = Pl = 0.5 and that as
more and more runs are performed our knowledge of what
process is occurring is refined. The probabilities initially jump
around for a while before settling down after about 25 runs.
The information in this figure is what would be directly
accessible to experimentalists and so, in this case, they would
be quite certain after about 25 runs that they had observed
measurement-induced relative-position localization.

Of course, every experiment would be different due to
the stochastic nature of the photon scattering events and the
momentum measurements of the particles. So it would be
useful to know how many runs on average are likely to
be required to achieve a certain degree of confidence. In
figure 5 we have averaged the results over 300 simulated
experiments. We see that the curves are now quite smooth
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Figure 5. As in figure 4 but averaged over 300 ‘experiments’ to
indicate the average number of runs that would be required to
achieve a desired degree of confidence.

and that after 20 runs we would expect, on average, to
be about 95% confident that measurement-induced relative-
position localization is occurring.

So far we have assumed perfect precision of the
momentum measurements that allow us to distinguish the
two relative momentum distributions shown in figure 3(b). An
important question is whether this can still be done when real
detectors with imperfect precision are used. To investigate this
we convolve the relative momentum probability densities in
figure 3(b) with Gaussians of different widths, where each
width represents a different resolution of the momentum
measurement. We then repeat the above analysis using Bayes’
theorem, which gives us the results shown in figure 6. Not
surprisingly, it can be seen that as the measurement precision
improves, our knowledge about which process has occurred
increases more rapidly with the number of runs. In order to be
90% sure that the state was initially delocalized after 20 runs,
we need to be able to measure the momentum of the particles
with a resolution of δp = 0.5[h/λ] or less.

As discussed above, we propose that the momentum
of the particles is measured by switching off any trapping
potential and then detecting the particles’ positions in the x-
direction after some time of flight. It is the spatial resolution
of this position measurement that we are concerned with, and
requiring a momentum resolution of δp = 0.5[h/λ] translates
to a detector spatial resolution requirement of approximately
25 μm (this assumes we use Rb-87 atoms, illuminated with
violet light, which are allowed to fly for a time of 5 ms along a
detector of length 10 mm). Using time-of-flight fluorescence
imaging it is possible to spatially resolve the position of a single
atom with resolution close to 1 μm [26], and furthermore,
Bücker et al achieve single atom detection with efficiency
close to unity [27], so our required momentum measurement
should be achievable with current techniques.
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Figure 6. This shows Pnl , the probability that photon scattering
caused relative localization of the particles, as in figure 5, but here
we also include the effect of imperfect measurements. The three
different curves show different values of the precision of the
momentum measurement: the values of δp here are in units of [h/λ].
We can see that a resolution of δp = 0.5[h/λ] is needed for us to be
90% sure that the two particles were initially delocalized after 20
runs have been completed.

4. Extension to three dimensions

We have reviewed a proof of principle for the localization of
particles caused by entanglement. We now extend this scheme
to particles that are allowed to move in three dimensions.
Two distinguishable non-interacting particles are initially
delocalized within a 3D cube of length d = λ. The particles
are illuminated with plane-wave light of wavelength λ incident
along the z-axis, which scatters from them and is detected at
an angle (θ , φ) on a spherical screen located at a distance
L from the particles, as shown in figure 7. The initial wave
function of the particles is c(x, y, z), where x, y and z
represent the relative position of the two particles in Cartesian
coordinates. The wavefunction c(x, y, z) is normalized so that∫ ∫ ∫

D |c(x, y, z)|2 dx dy dz = 1, where D represents the box
dimensions in which the particles are confined. As in the
1D case, we can neglect the centre-of-mass coordinate of the
particles.

We now look at the scattering process: a photon of
wavelength λ scatters off a particle into angle (θ, φ) in
spherical coordinates where θ and φ are the polar and
azimuthal angles, respectively. A deflected photon will impart
the following momentum kick on one of the particles:

�px = h sin θ cos φ/λ

�py = h sin θ sin φ/λ

�pz = h(cos θ − 1)/λ

where h is Planck’s constant. In relative momentum space
the particles therefore receive a kick of ±�p where

θ

φ

Figure 7. This diagram illustrates the experiment in which two
massive particles are delocalized over the volume of a cube with
side length d. Plane-wave light with wavelength λ incident along the
z-axis scatters from the particles and is detected at an angle (θ , φ) on
a spherical screen located at a distance L from the particles. For
clarity, the diagram is not to scale: we consider the case where
L � d.

�p = (�px,�py,�pz). Whether they receive a +�p or
−�p kick depends on which particle the photon scatters from,
but since this cannot be determined we obtain a superposition
of both possibilities.

After one scattering event the overall state of the system
is given by:

�(x, y, z, θ, φ)

=
{ 1

2
√

π
c(x, y, z)

(
cos 2π

λ

x,y,z(θ, φ)

)
if (θ, φ) �= (0, 0)

c(x, y, z)A(x, y, z) if (θ, φ) = (0, 0)
(6)

where:


x,y,z(θ, φ) = [x sin θ cos φ + y sin θ sin φ + z(cos θ − 1)].

The probability density for detecting a scattered photon at
angle (θ, φ) �= (0, 0) is PS(θ, φ), whereas for a nonscattered
photon the probability density is PNS(0, 0):

PS(θ, φ) =
∫ ∫ ∫

D
|�(θ,φ) �=0|2 dx dy dz (7)

PNS =
∫ ∫ ∫

D
|c(x, y, z)|2A2 dx dy dz. (8)

We can then deduce the nonscattering coefficient:

A2(x, y, z)

= 1

4π

∫ 2π

0

∫ π

0
sin θ ′ sin2

(
2π

λ

x,y,z(θ

′, φ′)
)

dθ ′dφ′.

Again this means that detecting a nonscattered photon
can actually give us information about the separation of the
particles. The localization process then works in the same way
as the 1D case. As before, we generate a random number to
see whether the photon is scattered and, if so, at what angle
(θ1, φ1). The (unnormalized) states after the scattering process
are as follows, for photons scattered at angle (θ1, φ1), and non
scattered photons, respectively:
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Figure 8. This plot shows the probability density P(x), represented
by the density and shading of points, for the relative position of the
particles after the scattering and detection of 150 photons. The two
high density dark clouds show that as in the 1D case, light scattering
has caused relative position localization. The position is given in
units of the wavelength, λ, of the scattered light.

�θ1φ1 = c(x, y, z) cos

(
2π

λ

x,y,z(θ1, φ1)

)
�00 = c(x, y, z)A(x, y, z).

We then normalize the state and repeat for the next photon.
We have chosen the initial probability density of the

relative positions of the particles to be a flat distribution. We
find that after successive photons are scattered off the particles,
their relative positions localize, as shown by the probability
distribution of the two particles in figure 8 after 150 photons
have been scattered. Again we assume that the 150 photons are
all incident on the particles in a sufficiently short time period
that we do not need to consider the dynamics of the particles
between detection events. The high probability density regions
in figure 8 are symmetrical about the origin. This reflects the
fact that the two particles are interchangeable, and that the
localization is a result of successive superpositions of positive
and negative relative momentum kicks. This is the desired
result: it shows that scattering induced localization can be
extended to the more realistic case of particles that are allowed
to move in three dimension. As in the one dimensional case, it
is important to note that the localization is strictly in relative
position space: no absolute position localization has occurred.

5. Conclusion and discussion

We have demonstrated a simple scheme that should
enable experimentalists to unambiguously determine whether

scattering events can induce relative position localization for
quantum particles. This is an interesting interpretation for
how ambient scattering events could lead to the emergence
of classical-like behaviour in quantum systems. We have
also extended this scheme from a one dimensional proof of
principle to the more real world scenario of three dimensions
and considered some practical issues for carrying out the
experiment. This idea could have important consequences
for our understanding of the boundary between quantum and
classical physics and the role of relative observables in nature.
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