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Quantum mechanics allows entanglement enhanced measurements to be performed, but loss remains an
obstacle in constructing realistic quantum metrology schemes. However, recent work has revealed that entangled
coherent states (ECSs) have the potential to perform robust subclassical measurements [J. Joo et al., Phys. Rev.
Lett. 107, 083601 (2011)]. Up to now no read-out scheme has been devised that exploits this robust nature of
ECSs, but we present here an experimentally accessible method of achieving precision close to the theoretical
bound, even with loss. We show substantial improvements over unentangled classical states and highly entangled
NOON states for a wide range of loss values, elevating quantum metrology to a realizable technology in the near

future.
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I. INTRODUCTION

Quantum metrology aims to harness the power of quantum
mechanics to make ultraprecise measurements [1]. This has
many important applications [2] including gravitational wave
detection [3,4], quantum lithography [5,6], and biological
sensing [7-10]. A crucial advantage of quantum metrology is
in providing comparable precision with a significantly lower
particle flux, an important requirement for many of these
technologies, such as in biological sensing [11], where dis-
turbing the system can damage the sample, or in gravitational
wave detection, where the lasers in the interferometer interact
with the mirrors enough to degrade the measurement [12—-14].
Quantum metrology is also a stepping stone towards more
advanced quantum technologies as state preparation, manipu-
lation, and measurement are common requirements of techno-
logical applications of quantum theory [15-17]. Furthermore,
measurements are fundamental in physics and future success
depends in part on the effectiveness of the measuring devices
available.

It is known that an interferometer that utilizes a stream
of independent particles is capable of measurement precision
at the shot noise limit (SNL) 1/./n [18] where n is the
total number of particles used in the probe state. However,
by making use of quantum mechanical properties this can
be improved to the Heisenberg limit 1/n [6,19-21]. The
problem with such an approach is that quantum states are
notoriously fragile to particle losses [22], which typically
collapse a state and destroy the phase information. A number
of clever schemes have been devised with some robustness
to loss, which still capture subclassical precision such as
the NOON chopping strategy [23] and unbalanced NOON
states [24]. While these states achieve subclassical precision
with a small amount of loss, for realistic losses likely to be
experienced in an experiment they soon lose their advantage
and are outperformed by unentangled measurement schemes.

A class of states that show the potential for a great
improvement over these alternatives are the entangled coherent
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states (ECSs) [25-30]. Indeed Joo et al. [31] used the
quantum Fisher information (QFI) to show that ECSs can
beat unentangled states and NOON states for most loss
rates—including the higher loss rates inaccessible by other
schemes. Nevertheless a big problem that has stalled this
avenue for advancement is the lack of any read out that can
use an ECS to measure a phase to a high precision when loss is
present. We present here a scheme that overcomes the former
difficulties to attain precision close to the ultimate limit given
by the QFI in a lossy system. Furthermore all the steps of this
scheme are feasible with current or near future technologies,
demonstrating that subclassical measurements robust to loss
are realistically achievable.
The QFI for a general state p is given by [32-34]:

Fp = Tr(pA?), (1

where A is found from solving the symmetric logarithmic
derivative dp/d¢ = 1/2[Ap + pA]. The precision in the phase
measurement (more specifically the lower bound on the
standard deviation) is given by the quantum Cramér-Rao
bound [32]:

1
ViFo

where © is the number of times that the measurement is
independently repeated. This gives the best possible precision
with which a state can measure a phase. For NOON states
and unentangled states the quantum Cramér-Rao bound gives
us the Heisenberg and shot noise limits respectively [35,36].
Joo et al. [31] used the QFI to numerically show that with
and without loss the ECS can achieve better precision than
unentangled, NOON, and some other candidate states. Zhang
et al. [37] added to this by deriving an expression for the QFI
with loss for arbitrary amplitude o, and confirmed the potential
of ECSs for robust quantum metrology. They formulated
the QFI for ECSs as being comprised of two parts so that
Fo = Fy + F., where Fy represents the part of the state
that allows Heisenberg limited precision, while F,; observes
classical SNL precision. This reveals the power of ECSs:
unlike other quantum states the ECSs can retain at least SNL
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FIG. 1. (Color online) The general scheme for measuring a phase
using an entangled coherent state. Loss is modeled by the addition of
a beam splitter in each arm (with a vacuum port). The final detectors
D1 and D2 can be chosen to maximize precision as discussed in
the text. The inset shows the homodyne measurement with reference
state |y,) that we will use for D1 and D2 when there is loss.

precision with high loss, a feature that should be, but has not
yet been, exploited.

II. SIMPLE SCHEME WITHOUT LOSS

Figure 1 illustrates the interferometer we employ. The first
task is to create the ECS [38], and for this we will use
the method proposed by Gerry et al. [27]. We take for the
lower input an even cat state [39-42], which contains only

even numbers of photons: |y;) = N](lom/«/i) + |—a0/«/§))
where ] = 1/+/2 + 2¢71*1" and for the upper input we use

a coherent state |o;) = |a0/\/§). After the first 50:50 beam
splitter in Fig. 1 we then have the ECS:

[¥1)1,2 = Ni(lao,0) + 10,00))- 3)

Other methods of creating an ECS have been proposed but
these schemes require nonlinear interferometers [27,43,44],
which are tough to make experimentally as a strong source
of Kerr nonlinearity is required. Producing the cat state |y;),
which we use to create our ECS, is likely to be easier in com-
parison [45,46]. For example, in Ref. [47] a superposition is
made of a Rydberg atom in a cavity: |g) + |e). A coherent state
is then introduced and the Jaynes-Cummings Hamiltonian [48]
is applied to give |a)(|g) + |e)) = |a)|g) + |ae'®)|e). The
Rydberg atom is then transformed and measured, and if we
take ¢ = m we are left with the even cat state. These methods
for creating cat states also need an effective nonlinearity, but
the important advantage here over nonlinear interferometers
is that the cat state is created off line whereas it is necessary
to implement the nonlinearity of the interferometer within the
scheme itself. In principle we could have a device that waits
for a cat state to be successfully created, and then inputs it into
the interferometer to be used for the phase estimation.

We first consider a parity measurement scheme, which
performs well without loss [28,31,49]. After creating the ECS
we apply a linear phase shift ¢ to mode 1, giving:

U=e|¢(d!§ al)

1) ——— [¥a) = Mi(lae?,0) + [0,a0)).  (4)
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Ignoring loss for the moment, the next step is to send this state
through a second beam splitter, which gives us the state:

2 S mnyp i(m+n)p —1)"
Moty A C )

/2’”+”m!n!

where m and n are the number of photons incident on detectors
D1 and D2, respectively, which we take here to be photon
number resolving detectors. The probability of detecting (m,n)
photons at (D1, D?2) is then given by:

m,n=0

cos? (o

sin2 & -;n)tﬁ

for n even

6
for n odd. ©

P(m,n) x

We therefore must know if the output at detector D2
is even or odd in order to determine the phase (this will
become important when we introduce loss). We explain in
the Appendix how the probability distribution in Eq. (6) can
be used to determine the phase and calculate the precision of
this phase measurement. It can be shown that this scheme, with
no loss, allows us to beat the best possible precision obtainable
using NOON states of comparable sizes and also unentangled
states.! For small oy we do not saturate the QFI, but we
significantly improve upon the best possible measurement
using a NOON state [31]. For large o this scheme comes
very close to saturating the QFI, but it is shown in Ref. [31]
that in this region ECSs show only a small advantage over
NOON states.

III. INTRODUCING LOSS

We model loss by the addition of beam splitters after
the phase shift [18,24,31] as shown in Fig. 1, which have
probability of transmission 7, and therefore the fraction of the
population lost is u = 1 — n. After these beam splitters we
have the state:

|wl>el$1,2,e2= Nl[|a0uei¢’a0nei¢,070) + |070aa0naa0M>]-

where oy, = a9,/ and og, = ap,/i. Tracing over the loss
modes el and e2 we get:

p = Ni(laoye'®,0) (aoye'®,0] + |0,a0,) (0, 0y
+ e [arg e 0) (0,00, | + [0,0t0,) (o€’ 0]]).

This mixed state points to a potential problem when using
an ECS for metrology. The exponential suppression of the of-
diagonal coherence of the ECS, combined with the diminished
oy, leads to a rapid drop in phase precision for small loss. The
result of this is that with the simple parity measurement scheme
discussed above and used in Ref. [31] the ECSs lose phase
precision with loss significantly faster than NOON states. This
is shown in Fig. 2(b) for oy = 4, where the blue dashed line is
for NOON states 6y r, and the dark green solid line is for the
ECS with the parity measurement é¢gp.

'We take equivalently sized NOON and ECS states so that N =
2N ol

053812-2



ATTAINING SUBCLASSICAL METROLOGY IN LOSSY ...

0.06

0.05

O N

0.03

Sensitivity 00

—_%,,

T

0.4 0.5 0‘.6' . 0.7 0.‘.8. 0.9
(a) Transmission probability 1

—

0.1

0.08

0.06

0.04

Sensitivity 60

0.02

0.2 0‘.4. . 0.6 B 0.8 1
(b) Transmission probability 1

FIG. 2. (Color online) The measurable phase precision for ECSs
with amplitudes (a) «p = 1.1307 (which has an average photon
number of 1) and (b) ¢y = 4 using our measurement scheme are
shown by the purple crossed lines 8¢ £y,. The red solid, blue dashed,
and black dotted-dashed lines give the QFI of the ECS é¢gF, the
NOON state d¢yr, and unentangled states §¢y r, respectively, all
of equivalent size: N = 2/\/12|ozo|2 [therefore in (a) the NOON and
unentangled states are the same]. In (b) the dark green solid line
shows the simple parity measurement of the ECS d¢xp. For both
small and large o our scheme provides the best phase precision for
the majority of loss rates, and for larger oy we come close to saturating
the QFI. The black solid line in the inset in (b) shows the QFI of the
even ECS, demonstrating how we can obtain a higher precision than
the NOON states for most loss rates simply by modifying our input
state. The other lines in the inset are the same as in the main figure.

Nonetheless p can be written in another form, which reveals
the great advantage of ECSs:

p = cilY ) (Wil + el ) (Y|, @)
where ¢, = %(1 + e"“"f“2) and

=) = Millaoge',0) £ 10,0,)]- ®)

The resulting state is a mixture of two pure ECSs, which
both contain phase information. If this were to be compared
with the mixed state for a NOON state with loss, then one
would find that the loss component of the NOON state
contains no phase information. Despite this, the simple parity
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measurement scheme discussed above cannot determine ¢
when there is loss and this just contributes noise to the signal
from the no-loss state.

IV. ROBUST SCHEME WITH LOSS

We will now present a scheme that can be used to recover
the lost phase information that has so far eluded measurement.
The key is to use extra reference coherent states above and
below the main interferometer, which can be used to perform
homodyne measurements and recover the phase information.
The measurement scheme is shown in the inset of Fig. 1. For
measurement D1 we simply take |y,)1, = |o1). But due to the
probabilities in Eq. (6) we must know whether even or odd
numbers of particles are output at D2. Thus if we mix this
state with |y,)2, = |r1) then, as we don’t know the number of
photons in a coherent state, we no longer know if the state had
even or odd numbers. In this case the Heisenberg limited phase
information provided by the entangled state washes out and
we no longer get quantum enhancement (we can still measure
the phase but at the shot noise limit at best). We therefore take
ly2)s = Na(ler) 4 |—a1)) where Ny = 1/v/2(1 4 e721*11),
which always contains an even number of photons, and
therefore allows us to retain quantum enhancement.

The state directly after the phase shift, when we include the
reference states used in the final detectors, is

W) 15,1220 = Ni(lr,0€'®,0, 1) + lor1,0,0,2)).
After loss we have the state
p =[P (Piy| + [Doy) (P2y] ©))
+ e (D1,) (Do) | + [P2y) (P1yD), (10)

where |®1,) = Nilay,a0,e?,0,y2) and |®,,) =
Moy ,0,00,,2). We can then send p, through the remainder
of the interferometer, giving the probabilities at the outputs as

P(#) = (#P1,) (D1, #) + (#]D2y) (Do, |#)
+ e P [(#D),) (D 1#) + (#]Day) (Bry )],

where |#) = |k,l,m,n) 15142426, the state with k particles in
the first number resolving detector, / in the second and so on.
The barred states |®;,) and |®,) can be found by sending
|®1,) and |®,,) through the remainder of the interferometer.

We must then optimize over «; to find the best precision
these schemes can achieve: for different loss rates it is
advantageous to use different sized reference states. The
precision with which this scheme can measure the phase also
depends on the (approximate) phase being measured ¢, as
is true for most schemes, but it is relatively insensitive to the
phase over a significant range. Nonetheless this should not pose
much of a problem as we can just put a variable phase shift in
mode 2, which allows us to vary the phase difference so that
effectively ¢ can be whatever we choose. After optimizing over
o and ¢ we then obtain the results in Fig. 2(a) for g = 1.1307
(which has an average photon number of 1). It can be seen
that our state now outperforms the NOON and unentangled
states for all values of loss up to n = 0.47. The significant
precision enhancement for small « is evident here, as well as
the robustness to loss. Figure 2(b) then shows the results for

053812-3



P. A. KNOTT, W. J. MUNRO, AND J. A. DUNNINGHAM

the larger amplitude ECS of oy = 4. We can see that for larger
o our scheme beats the competitors for most n values. We
note here that our scheme does not beat the SNL in scaling, as
this is impossible when any loss is present [50,51]. What we
do show is that when modest particle numbers are used our
scheme can provide a more precise measurement than what is
possible using uncorrelated states.

Figure 2(b) also illustrates the agreement between our
precision measurement and the Fisher information given by
Zhang et al. [37], shown as the solid red line §¢ppr. We can
see that our scheme, in agreement with the Fisher information,
loses out to the NOON states initially, but before long our
scheme exploits the presence of the phase in the loss terms and
shows great improvement over the NOON and unentangled
states for most loss values. Furthermore, for larger amplitude
o we come close to the ultimate precision for the ECS given by
the Cramér-Rao bound. The vast improvement of our scheme
over the parity measurement is clear in Fig. 2(b), revealing the
precision gained in including the extra reference states in the
measurement.

We now show how our scheme can be improved further
to overcome the rapid initial loss of coherence, which results
in our state losing out to the NOON state in the small loss
regime. If we change our upper input state |o;) to another
cat state |y1) = N (Jao/v/2) + |—ao/+/2)) then after the first
beam splitter we will have an ECS that only contains even
numbers of photons. The QFI for this even ECS is shown in the
inset of Fig. 2(b): we now only marginally lose to the NOON
state, in a very small region. This significant improvement in
precision for low loss is due to a reduced suppression of the
off-diagonal coherence. We can now tailor our input states
for different loss values to produce a scheme that achieves
higher precision than NOON states and unentangled states for
the vast majority of loss rates, including the experimentally
relevant rates which can be up to a few times 10% [52].

V. CONCLUSION

Up to now it has not been at all clear how the full
potential of ECSs as robust states for quantum metrology,
as demonstrated by their QFI, can be exploited. Previous
measurement schemes were unable to access the full phase
information stored in the ECS after loss, and the suppression
of the off-diagonal coherence had the effect of making ECSs
even worse than NOON states. However, we have presented
here a more advanced measurement scheme that not only
recovers the phase information with loss, but also comes close
to saturating the QFIL. Moreover we have shown that the input
can be tailored so that we can always achieve higher precision
than the NOON state. This allows us to achieve subclassical
precision measurements that outperform the alternative states
for the majority of loss rates, including the rates thought
to be realistic in an experiment. Furthermore, our scheme
uses quantum resources that have already been created in the
laboratory, bringing entanglement enhanced measurements in
lossy systems within reach of current technology.
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FIG. 3. (Color online) The basic interferometer with input states
lo;) and |y;) and detectors D1 and D2, which measure m and n
particles respectively.

APPENDIX

In this Appendix we explain our measurement scheme,
and how it allows us to calculate a phase, and the precision
with which the phase can be obtained. Figure 3 shows
the interferometer we are considering. We take the input
states to be |y1) = Ni(Jao/V2) + |—ao/~/2)), where N =
1/vV/2 +2e7 1 and |o;) = |oto/~/2). After the first 50:50
beam splitter we then have the ECS:

[V1)1.2 = Ni (|, 0) +10,0)) - (A1)

As in the main text we can calculate the probability of
detecting (m,n) photons at (D1, D2):

P ) 2 M for n even (A2)
m,n|¢g)
sin? "¢ for n odd.

2

Here, unlike in the main text, we have explicitly written this as
a conditional probability: the probability of detecting m and n
photons at detectors D1 and D2, respectively, given that the
phase is ¢.

We can now begin our simulation by selecting a phase ¢
that an experimenter wishes to measure (the experimenter does
not have access to this value of ¢). This allows us to calculate

30 T T T

n
&)
T
1

N
(=)
T
1

Probability Density
3 3

-0.1 -0.05 0 0.05 0.1
Phase ¢

FIG. 4. (Color online) An example probability distribution P(¢)
after an ECS size ¢ = 3 was sent through the interferometer 100
times in order to determine the phase.
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the conditional probability of detecting (m,n) particles at the
output ports, given that the phase is ¢o: P(m,n|¢g). We then
select a random number from this distribution which gives
us values (m,n;): these are the simulated outputs that the
experimenter will measure as they send an ECS through the
interferometer.

The experimenter must now try to determine the phase from
their measured values (m,n1). To do this, they use Bayes’
theorem:

P(a|b) o P(bla). (A3)

The experimenter, who has access to the probability distribu-
tion in Eq. (A2), can therefore calculate

P(¢lmy,ny) o P(my,ni|¢). (A4)

As the probability distribution sums to one, they can
normalize this distribution to be left with P(¢|m,n;): the

PHYSICAL REVIEW A 89, 053812 (2014)

probability distribution for different phases ¢ given that
(my,n1) has been measured. In our simulation we repeat these
steps, allowing the experimenter to gain more knowledge
about the phase. With each new measurement the experimenter
can use Bayesian inference to update their knowledge of the
phase.

After a number of repeats, the experimenter is left with
a probability distribution P(¢), which is the probability
distribution for ¢, given all previous measurements at D1
and D2. An example probability distribution P(¢) is shown
in Fig. 4. We are concerned with the precision with which
the experimenter can measure the phase, and to find this we
simply calculate the standard deviation of the peak about ¢,
giving us the phase precision §¢. Taking an average over many
simulations we can find the §¢ values that are presented in the
main text.
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