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Abstract

In optical interferometry path-entangled states such as NOON states

have shown to give quantum-enhanced precision measurements, but

these states are notoriously fragile to particle losses, which typically

collapse the quantum state and destroy the phase information. A

class of inherently robust states that show the potential for great

improvements over the alternatives are the entangled coherent states

(ECSs). We show that these states allow substantial improvements

over unentangled ‘classical’ states and highly-entangled NOON states

for a wide range of loss values. We then describe a measurement

scheme that can be used to measure these states with a precision close

to the theoretical bound given by the quantum Fisher information.

We then look at the quantum mechanisms that lead to precise mea-

surements. In optical interferometry multi-mode entanglement is of-

ten assumed to be the driving force behind quantum enhanced mea-

surements. Recent work has shown this assumption to be false, and

here we show that when photon losses occur multi-mode entanglement

is actually detrimental to obtaining quantum enhanced measurements.

We specifically apply this idea to a superposition of coherent states,

demonstrating that these states show a robustness to loss that al-

lows them to significantly outperform their competitors in realistic

systems. A practically viable measurement scheme is then presented

that allows measurements close to the theoretical bound, even with

loss.

In this thesis we also consider superpositions of spin coherent states

and their application to quantum metrology. Compared to optical

states, spin systems have a distinctly different process of decoherence



known as non-Markovian dephasing, which has shown to give greatly

improved robustness to loss. We see that spin cat states give an

enhanced scaling over the shot noise limit, even with dephasing, whilst

being realisable with current technology.
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Chapter 1

Introduction

1.1 Metrology: the science of measurement

“To measure is to know” - Lord Kelvin

At the heart of scientific endeavor is the act of measurement, as is clear from

the world’s great scientific discoveries: from the refutation of the ether by Michel-

son & Morley (1887), to the surprise discovery of the cosmic microwave back-

ground radiation by Penzias & Wilson (1965) and the recent Higgs-like particle

discovery at CERN (Aad et al., 2012; Chatrchyan et al., 2012). The attribution

of major scientific breakthroughs to measurements is clear in these experimen-

tal cases, but even the great theoretical achievements - from Einstein’s special

relativity (Einstein et al., 1905) to the prediction of the Higgs boson (Englert

& Brout, 1964) - are nothing without having been motivated, or confirmed, by

experiments, which rely on measurements for their results. For these reasons,

the progression of science, and in particular physics, is intricately linked with the

progression of the measurements that we can make. Furthermore, the precision

with which we can measure determines the depths to which we can delve, and so

the measurement devices we use have to become increasingly precise to facilitate

new discoveries.

If precision is so important, then what are its bounds? If we take the simple
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1. INTRODUCTION

example of counting the number of raindrops that fall on a tin roof per second1,

then the precision with which this can be measured scales with the number of

raindrops N as 1/
√
N . This probabilistic uncertainty is due to the Gaussian dis-

tribution of the falling raindrops: the number of drops per second fluctuates about

the average, with the precision given by the standard deviation of these fluctu-

ations. Whilst counting raindrops might be fun, knowing the precision of this

measurement isn’t often particularly important. If we take the Michelson-Morley

experiment however (Michelson & Morley, 1887), then knowing the precision is

paramount, but due to the Gaussian distribution of the light used in their inter-

ferometry experiment (which will be described in due course), the precision takes

the same form: we can measure our movement through the ether (or not) to a

precision of 1/
√
N , where N is the number of photons used. This bound is known

as the shot noise limit (SNL), and will be discussed in detail in this thesis.

The SNL suggests that to increase the precision of our measurements we

simply have to increase the number of resources, e.g. photons, that we use.

This may be possible in many examples, but there are a number of cases where

this strategy is not possible. For example, imagine that you wish to probe a

living cell, or more specifically you wish to track the path of a lipid granule as

it diffuses through the cytoplasm of a yeast cell (Taylor et al., 2013). In this

case if you increase the power of your probe, you damage the sample, and so,

somewhat ironically, that which you wish to measure has been destroyed by your

measurement. It is sometimes possible to keep the power constant but run the

experiment over a longer time period. But in this case this is useless, as the lipid

granule will pass by before you can track it.

Another example is in the huge international efforts to directly measure grav-

itational waves (GWs) (Aasi et al., 2013). This example again uses light, which

in this case is used to measure the stretching and squeezing of spacetime as a

GW passes by. The problem here is not destroying the phenomenon you wish

to measure (a photon cannot bend spacetime, at least not at terrestrial energy

scales); the problem is the absurdly small length changes that the GW produces,

which are in the order of 10−22m. The laser power needed here is in the 100W

1This example of rain drops was found in Wolfgramm (2011).
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1.2 The power of quantum mechanics

range, and this is enough to distort the measuring apparatus itself. Is there an-

other option, other than increasing the power of the lasers? The solution to this

problem lies in the hidden powers of quantum mechanics.

1.2 The power of quantum mechanics

Figure 1.1: The Solvay conference in 1927, which was attended by most of the

founders of quantum mechanics (public domain image).

The spectacularly confusing and remarkably well proven theory of quantum

mechanics was developed in the first half of the 20th century by a host of great

thinkers (many of whom attended the Solvay conference in 1927 as shown in

Fig. 1.1). By describing the world in terms of discrete ‘quanta’, this remarkable

theory was able to solve deep problems in physics, such as the photoelectric

effect (Einstein, 1905). But quantum mechanics proved to be far more obscure

than anyone had expected, which justifies Richard Feynman famously saying “I

think I can safely say that nobody understands quantum mechanics” (Feynman,
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1. INTRODUCTION

1967). The said obscurities are plentiful, including wave-particle duality, quantum

superposition, the collapse of the wavefunction, and most importantly for our

purposes, quantum entanglement.

Quantum entanglement is one of the cornerstones of quantum mechanics, and

can lead to a multitude of effects unfathomable to a pre-quantum era physicist.

It is at the heart of the some of the most controversial and exciting physics of the

20th century, such as the EPR paradox (Bell, 1964; Einstein et al., 1935) which

investigates the strange nonlocality within quantum mechanics, and Schrödinger’s

famous alive and dead cat (Schrödinger, 1980).

Entanglement is a property of correlations between two or more quantum

subsystems. So what does it mean for a number of subsystems to be entangled

with one another? This is a surprisingly difficult question to answer: a far easier

question is what it means for subsystems to not be entangled (Barnett, 2009).

For simplicity we will deal with just a pair of quantum states, |λ〉a and |γb〉, where

the subscripts denote subsystems a and b. An unentangled composite state of

these two can be written as the tensor product

|Ψ〉 = |λ〉a ⊗ |γ〉b (1.1)

If the state of the composite system cannot be written as a tensor product in

this way then it is entangled1! For a simple example, we can look at the Bell

state

|Φ+〉 =
1√
2

(|0〉a ⊗ |0〉b + |1〉a ⊗ |1〉b) (1.2)

It is easy to see that this state cannot be written as a tensor product of states a and

b and therefore this is an entangled state. This state can be thought of as a pair

of qubits (two level quantum systems), with qubit a belonging to Alice and qubit

b to Bob. Alice and Bob can take their states as far apart as they like, to either

end of the galaxy if they wish, and the state will still be given by equation 1.2.

What would happen if Alice measured her state? A measurement would cause

1We can extend this to mixed states: a state ρ is separable (i.e. not entangled) if it can

be written as ρ =
∑

i piρ
A
i ρ

B
i , where ρAi and ρBi are states on subsystems A and B, and pi are

positive valued probabilities (Laloë, 2012).
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1.2 The power of quantum mechanics

the state to collapse into |0〉a⊗ |0〉b or |1〉a⊗ |1〉b , and so if Alice’s measurement

recorded 0, then any subsequent measurement by Bob will necessarily give the

value 0. This is the case even if Alice and Bob have space-like separation and

this spooky action at a distance has caused much controversy and intrigue over

the years (Einstein et al., 1935) 1.

The remarkable properties of entangled states can be exploited in a range of

ways, many of which are being scrupulously investigated in the field of quantum

information science in such topics as quantum key distribution, quantum telepor-

tation, and quantum computation. But our main use of entanglement will be in

solving the problem explained above, namely in beating the SNL in metrology to

achieve high precision measurements that are unattainable using classical physics

alone. The field of quantum metrology uses entanglement to obtain a precision

that scales with the number of particles as the Heisenberg limit, 1/N , a
√
N

improvement on the SNL. We can thus increase our precision without increasing

the number of particles we use, and this does indeed solve the above problem

and allow us to probe GWs (Aasi et al., 2013), biological samples (Taylor et al.,

2013), and a whole range of other systems (Carlton et al., 2010; Eckert et al.,

2008; Pototschnig et al., 2011; Tey et al., 2008; Wolfgramm et al., 2013), without

disastrous effects being inflicted upon the sample or equipment.

Despite the recent uses of quantum metrology to enhance measurements in

Aasi et al. (2013) and Taylor et al. (2013), attaining sub-classical measurements

is still an extremely difficult task. This is due to the fragile nature of quantum

systems, which decohere upon interacting with their surroundings, suppressing

the quantum effects which we wish to exploit. In this thesis we will explore a

number of states that show the potential for greater robustness to decoherence,

and we show how the classical limits can be breached and improved upon in a

range of realistic scenarios. We will explore the classical and quantum limits

to precision measurements, and even present a new class of states that allow

the previously held quantum ‘limits’ to be improved upon in optical, as well as

atomic, systems.

1Strictly speaking, it can only be determined that the correlations are quantum mechani-

cal by measuring the subsystems in different bases. If the measurement results violate Bell’s

inequality (Bell, 1964), then the correlations are quantum mechanical.
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1. INTRODUCTION

1.3 Thesis overview

This thesis is structured as follows. We begin in Chapter 2 with an aside from

quantum metrology in which we describe a mechanism where photon scattering

causes the relative localisation of particles. We show how this mechanism can be

tested experimentally, and then extend the formalism to three dimensions.

Chapter 3 then introduces the main topic of this thesis: optical quantum

metrology. The basic Mach-Zehnder interferometer is introduced, and we show

how quantum states can be used to surpass the classical limit in precision phase

measurements. We then introduce an intrinsically robust class of states: the

entangled coherent states.

In chapter 4 we study the effects of loss on entangled coherent states, and

show how they have the potential for robust sub-classical measurements. We

then describe a measurement scheme that can be used to measure a phase shift

using an entangled coherent state with a precision close to the theoretical bound

given by the quantum Fisher information.

Chapter 5 begins by asking the question of whether multi-mode entanglement

in an interferometer is necessary to make quantum-enhanced measurements. We

introduce previous work showing that multi-mode entanglement is not necessary,

then we elaborate on this by demonstrating that, when loss is included, in a

number of well known examples multi-mode entanglement leads to more fragile

states. We introduce a number of single-mode superposition states that surpass

their multi-mode-entangled alternatives.

In chapter 6 we move away from optical quantum metrology to look at mag-

netic field sensing with spin systems. We show that, unlike in optical systems,

the decoherence mechanism in spin systems still allows precision measurements

that beat the classical limits in scaling. We present a practical scheme of creat-

ing superpositions of spin coherent states that can measure a magnetic field to

a quantum-enhanced precision, and we describe a measurement scheme that can

be used to read out the phase information that utilises present day or near future

technology.
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Chapter 2

Relative position localisation

caused by entanglement

We begin this thesis with a digression into a subject quite removed from the

technology driven area of quantum metrology. However, this will not be a fruit-

less digression, as both quantum metrology and the relative position localisation

scheme we describe here share a number of features and jointly utilise a number

of research techniques. Therefore, this section, as well as being interesting in it-

self, will be used as a pedagogical chapter to help introduce the ideas of quantum

superposition, state collapse, decoherence, and Bayes’ theorem.

Section 2.2 of this chapter uses the work of Rau et al. (2003), and the rest of

the chapter is work done by the author in collaboration with Julien Sindt. This

work has been published in the paper Knott et al. (2013).

2.1 The quantum to classical transition

The apparent inconsistencies between the quantum and classical worlds have long

been a stumbling point in the construction of quantum mechanics as a complete

theory. Bohr’s view of drawing a strict line between the two introduces unsolvable

problems of where exactly the border should be, while the many worlds interpreta-

tion only postpones the key questions (Zurek, 2002). The theory of decoherence

(Mazzola et al., 2010; Zurek, 1991, 2002), described as “environment-induced,

dynamical destruction of quantum coherence” (Breuer & Petruccione, 2002), has
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2. RELATIVE POSITION LOCALISATION CAUSED BY
ENTANGLEMENT

come a long way in explaining why macroscopic objects do not in general have

quantum properties. The basic idea of decoherence begins with a quantum sys-

tem which interacts with its surroundings (‘the environment’), allowing us to

treat the system and environment with quantum physics. We then trace over the

environmental modes (this will be described later), which results in information

being lost to the environment and the loss of quantum correlations. However,

decoherence is notoriously difficult to apply because of the complex nature of the

coupling between system and environment, and furthermore it has this undesir-

able feature of requiring some quantum correlations to be discarded (Knott et al.,

2013; Rau et al., 2003).

An additional interpretation to decoherence was put forward in Rau et al.

(2003) which involves a very simple mechanism that does not require the aban-

donment of all quantum effects. Indeed, in this scheme the classical property of

localisation can be explained in terms of entanglement. This effectively destroys

the quantum-classical boundary itself as it proposes that even classical objects

are entangled, be it with a special type of robust entanglement sometimes called

‘fluffy-bunny’ entanglement (Dunningham et al., 2005; Wiseman et al., 2004).

The interpretation also emphasises the importance of relative position, as in the

measurement-induced localisation that we explain below, no absolute localisation

takes place.

2.2 Review of one dimensional localisation

We will now review the scheme in Rau et al. (2003) for measurement-induced

relative-position localisation in one dimension through entanglement, shown schemat-

ically in Fig. 2.1. Two distinguishable massive non-interacting particles are delo-

calised over some region d in the x-direction, and are tightly confined in the y and

z directions. The particles are illuminated with plane-wave light of wavelength

λ, incident along the y-axis. The scattered light is detected at an angle θ on a

screen located at a distance L from the particles (where L� d).

For consistency with the 3D case discussed below, we will use wavefunction for-

malism in our analysis rather than the Dirac notation used in Rau et al. (2003).
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2.2 Review of one dimensional localisation

Figure 2.1: A schematic showing the proposed experiment in which two massive

particles are delocalised over some region d and are illuminated by plane wave

incident light. The scattered light is detected at an angle θ on a screen located

at a distance L away from the particles. For clarity, the diagram is not to scale:

we consider the case where L� d.

The initial wave function of the particles is c(x) where x represents the rela-

tive position of the two particles. The centre-of-mass coordinate of the particles

can be neglected as it remains unentangled from the relative position coordinate

throughout the scattering process. When a photon of wavelength λ scatters off a

particle into angle θ, the particle receives a momentum kick in the x-direction of

∆p = h sin θ/λ, where h is Planck’s constant. In relative momentum space the

particles therefore receive a kick of ±h sin θ/λ depending on which particle the

photon scatters from and, since we do not know (because L � d), we get a su-

perposition of both possibilities. This allows us to write the overall wavefunction

of the system after a photon has scattered as a superposition of plane waves

Ψ(x, θ) ∝ e
2πi∆px

h + e
−2πi∆px

h (2.1)

∝ cos(
2πx

λ
sin θ).
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Figure 2.2: The case of light scattering causing relative localisation. (a) Proba-

bility density, P (x), for the relative position of the particles after the scattering

and detection of 150 photons. The position is given in units of the wavelength, λ,

of the scattered light. (b) Probability density, Q(p) for the corresponding relative

momentum of the particles.

The complete normalised state is given by

Ψ(x, θ) =


1√
2π
c(x) cos

(
2πx
λ

sin θ
)

if θ 6= 0

c(x)A(x) if θ = 0

(2.2)

The term defined as

A(x) =

[
1

2π

∫ 2π

0

sin2

(
2πx

λ
sin θ′

)
dθ′
]1/2

, (2.3)

represents a nonscattering event that leaves the photon in the undeflected state

(it is easier to see how A is found by considering the probabilities below).

The probability density for detecting a scattered photon at angle θ 6= 0, and
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2.3 The proposed experiment to test the localisation

the probability density of detecting a nonscattered photon, PNS, are given by

PS(θ) =

∫ d

−d
|Ψ(x, θ 6= 0)|2dx =

1

2π

∫ d

−d
|c(x)|2 cos2

(
2πx

λ
sin θ

)
dx (2.4)

PNS =

∫ d

−d
|c(x)|2A2 dx = 1−

∫ 2π

0

Ps(θ) dθ.

To model a scattering event we generate a random number to see whether

the photon is scattered and, if so, at what angle. If it is not scattered the

(unnormalised) new state is c(x)A(x) and if it is scattered at an angle θ1, the

(unnormalised) new state is given by

ψ(x, θ1) = c(x) cos

(
2πx

λ
sin θ1

)
.

We then normalise the state and repeat for the next photon.

We would now like to simulate the localisation procedure proposed in Rau

et al. (2003). We choose to start our simulations with a flat distribution, c(x) =

1/
√

2d, i.e. a completely delocalised state over region d. Fig. 2.2 shows the

probability distribution, P (x), for the relative position of the two particles for a

typical run after 150 photons have been detected. We can see that the initially

completely flat distribution has evolved into twin peaks that are symmetric about

the origin, showing relative position localisation of the two particles.

We have found that the rate at which the particles localise can be illustrated

by looking at the variance of each probability density peak, given by

σ2(x) =

∫ d

−d
|c(x)|2x2 dx−

(∫ d

−d
|c(x)|2x dx

)2

.

Fig. 2.3 shows how the variance is related to the number of photons fired at the

particles by variance ∝ (number of particles)−1.

2.3 The proposed experiment to test the local-

isation

We have reviewed a scheme (Rau et al., 2003) in which photon scattering causes

localisation of particles in one dimension. We will now propose a method to

experimentally confirm that the scattering process has caused the localisation.

29



2. RELATIVE POSITION LOCALISATION CAUSED BY
ENTANGLEMENT

100 200 300 400 500 600 700 800
0

0.5

1

1.5

2

2.5

3

3.5 x 10−4

Number of Photons

Va
ria

nc
e 

of
 e

ac
h 

pe
ak

 [λ
]

Figure 2.3: This figure shows how the variance of each probability density peak

decreases as the number of photons fired at the particles increases. The general

shape of the graph is variance ∝ (number of particles)−1.

Our wish is to confirm that the final state shown in Fig. 2.2 was indeed

caused by the scattering process. If the state was already localised to begin with,

instead of seeing two peaks in the probability distribution we would only see one

(Fig. 2.4(a)). While it is easy for us to distinguish between the two cases shown

in Fig. 2.2 and Fig. 2.4(a), it is not straightforward for an experimentalist to

distinguish between them as measuring the angles at which the photons scatter

cannot tell the two distributions apart.

To distinguish between them, we must look at the momentum of the parti-

cles. The relative momentum distributions corresponding to the relative position

distributions in Figs 2.2(a) and 2.4(a) are shown as the solid lines in Figs 2.2(b)

and 2.4(b) respectively. For ease of comparison, the result from Fig. 2.2(b) is

superimposed on Fig. 2.4(b) as a dashed line. We see that the two distributions

have the same envelope, but the case where localisation is induced has interfer-

ence fringes. For particles that are a priori perfectly localised, the distribution in

Fig. 2.4(a) would be a delta function and the momentum distribution would be

completely flat. We have chosen the relative position distribution shown because
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Figure 2.4: (a) The same as in Figure 2.2 but with the particles initially localised

before the photons are scattered: there is now only one peak in the relative posi-

tion probability density. (b) The solid line (labeled Q2) shows the corresponding

relative momentum probability density for the initially localised particles in (a).

This is compared with the relative momentum probability density for the initially

delocalised particles in Figure 2.2, which is shown as a dashed line (labeled Q1).

31



2. RELATIVE POSITION LOCALISATION CAUSED BY
ENTANGLEMENT

it is an upper limit to the width possible based on the photons detected. In other

words, it is the ‘hardest’ case to distinguish from that shown in Fig. 2.2(a). We

want to demonstrate that our technique works even in this worst-case scenario.

The measurement scheme is then quite straightforward. After scattering the

photons from the particles, we want to distinguish the two relative momentum

distributions shown in Fig. 2.4(b). To do this, we switch off any trapping po-

tential and allow the particles to move freely. By detecting their positions in

the x-direction after some time of flight, we can infer the x-components of their

momenta and hence the relative momentum of the particles in that direction. By

repeating the whole process from the beginning many times, we should be able

to build up a probability distribution and so distinguish the two cases. However,

the stochastic nature of the process means that the particles localise to a different

relative position on each run and so the relative momentum fringes are different

each time. If we were to just näıvely add the results from each run, the fringes

would wash out. Instead we can use Bayesian analysis, which stems from Bayes’

theorem, to distinguish the two scenarios1. The theorem is stated as

P (A|B) =
P (B|A)P (A)

P (B)
, (2.5)

where P (A|B) is the conditional probability of event A occurring given that B has

occurred, and P (A) (P (B)) is the probability of A (B) occurring. This formula

therefore allows you to update your knowledge about the chances of an event

A occurring, given that you know that event B has occurred - this is known as

Bayesian analysis.

We will now describe how Bayes’ theorem can be used in our experiment in

order to distinguish the two relative momentum distributions shown in Fig. 2.4(b).

Suppose on a particular run we detected scattered photons on the screen that lead

us to conclude that the relative momentum distribution was either Q1(p) or Q2(p)

1Bayes’ theorem was discovered by the 18th century English Presbyterian minister Thomas

Bayes (McGrayne, 2011; Routledge, 2013), but lay hidden to the scientific community before

being re-discovered and published by another Presbyterian minister, Richard Price, in 1763

(Bayes & Price, 1763). Despite its simplicity, Bayes theorem is now used in fields as diverse as

artificial intelligence, insurance calculations, code breaking, gambling, and of course in quantum

information (Knott et al., 2013; McGrayne, 2011; Pezze & Smerzi, 2008).
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2.3 The proposed experiment to test the localisation

depending on whether or not the scattering process induced relative localisation

(see Fig. 2.4(b)). To begin with, we do not know whether the particles are

localised or not so we take our prior probability of them initially being localised,

Pl, to be the same as the prior probability of them not initially being localised,

Pnl, i.e. Pl = Pnl = 0.5. Now suppose, upon releasing the particles, we measure

their relative momentum to be p1. This gives us some information about which

scenario is more likely. In particular, Bayes’ theorem tells us that the updated

probabilities are Pnl ∝ Q1(p1)× 0.5 and Pl ∝ Q2(p1)× 0.5. Normalising, we get

Pnl =
Q1(p1)

Q1(p1) +Q2(p1)
(2.6)

and Pl = 1 − Pnl. We can then iterate this process by using these updated

probabilities as the prior probabilities in the next step. By repeating many times

we increasingly refine our knowledge of which process is occurring.

A sample simulation is shown in Fig. 2.5 for the case that the particles do not

initially have a well-defined relative position. We see that initially Pnl = Pl = 0.5

and that as more and more runs are performed our knowledge of what process

is occurring is refined. The probabilities initially jump around for a while before

settling down after about 25 runs. The information in this figure is what would

be directly accessible to experimentalists and so, in this case, they would be

quite certain after about 25 runs that they had observed measurement-induced

relative-position localisation.

Of course, every experiment would be different due to the stochastic nature of

the photon scattering events and the momentum measurements of the particles.

So it would be useful to know how many runs on average are likely to be required

to achieve a certain degree of confidence. In Fig. 2.6 we have averaged the results

over 300 simulated experiments. We see that the curves are now quite smooth

and that after 20 runs we would expect, on average, to be about 95% confident

that measurement-induced relative-position localisation is occurring.

It is instructive to investigate the precision requirements of the experiment

we are proposing. Specifically we look at the smallest momenta that can be

resolved by the apparatus, δp, and compare this with actual experiment simula-

tions. Fig. 2.7 shows us that in order to be 90% sure that the state was initially
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Figure 2.5: A simulated experiment showing the Bayesian analysis of the proba-

bility Pnl, that the photon scattering caused relative localisation of the particles

(solid line) and the probability, Pl, that they were localised to begin with (dashed

line). In our simulation, we have taken the particles to start off with no well-

defined relative position.
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Figure 2.6: As in Figure 2.5 but averaged over 300 ‘experiments’ to indicate the

average number of runs that would be required to achieve a desired degree of

confidence.

delocalised after 20 runs, we need to be able to measure the momentum of the

particles with a resolution of δp = 0.5[h/λ] or less. If we assume our proposed

experiment to use Rb-87 atoms and a time of flight detector (Bücker et al., 2009;

Fuhrmanek et al., 2010) of length 10mm, then the required momentum resolution

of δp = 0.5[h/λ] translates to a spatial resolution requirement of approximately

25µm. Using time-of-flight fluorescence imaging (Bücker et al., 2009; Fuhrmanek

et al., 2010) it is possible to spatially resolve the position of a single atom with

resolution close to 1µm (Fuhrmanek et al., 2010), and furthermore, Bücker et. al.

achieve single atom detection with efficiency close to unity (Bücker et al., 2009),

so our required momentum measurement is achievable with current techniques.

2.4 Extension to three dimensions

In section 2.2 we recapped a scheme in which two particles, confined to a 1D

line, can be localised by bombardment by photons. We now extend this scheme

to a more ‘real world’ scenario where the particles are allowed to move in three
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Figure 2.7: The plot shows the number of experimental runs used to build up

our knowledge of the system on the x axis, and the probability that the atoms in

our experiment were initially delocalised on the y axis. The three different curves

show different values of the precision of momentum measurement: the values of

δp here are in units of [h/λ]. We can see that a resolution of δp = 0.5[h/λ] is

needed for us to be 90% sure that the two particles were initially delocalised after

20 runs have been completed.
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2.4 Extension to three dimensions

dimensions. Two distinguishable massive non-interacting particles are initially

delocalised within a 3D cube of length d = λ, in the sense that their de Broglie

wavelengths are comparable to d in this dimension. The particles are illuminated

with plane-wave light of wavelength λ incident along the z-axis, which scatters

from them and is detected at an angle (θ,φ) on a spherical screen located at a

distance L from the particles, as shown in Fig. 2.8. The initial wave function of

the particles is c(x, y, z), where x,y and z represent the relative position of the

two particles in Cartesian coordinates. The wavefunction c(x, y, z) is normalised

so that
∫ ∫ ∫

D
|c(x, y, z)|2dxdydz = 1, where D represents the box dimensions in

which the particles are confined. As in the 1D case, we can neglect the centre-of-

mass coordinate of the particles.

We now look at the scattering process: a photon of wavelength λ scatters off

a particle into angle (θ, φ) in spherical coordinates where θ and φ are the polar

and azimuthal angles, respectively. A deflected photon will impart the following

momentum kick on one of the particles:

∆px =
h

λ
sin θ cosφ

∆py =
h

λ
sin θ sinφ

∆pz =
h

λ
(cos θ − 1)

where h is Planck’s constant. In relative momentum space the particles therefore

receive a kick of ±∆p where ∆p = (∆px,∆py,∆pz). Whether they receive a +∆p

or −∆p kick depends on which particle the photon scatters from, but since this

cannot be determined we obtain a superposition of both possibilities.

After one scattering event the state of the system is

Ψ(x, y, z, θ, φ) =


1

4
√
π
c(x, y, z)

(
e
i2π
λ

Γx,y,z(θ,φ) + e
−i2π
λ

Γx,y,z(θ,φ)
)

if (θ, φ) 6= (0, 0)

c(x, y, z)A(x, y, z) if (θ, φ) = (0, 0)

where

Γx,y,z(θ, φ) = [x sin θ cosφ+ y sin θ sinφ+ z(cos θ − 1)] . (2.7)
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The nonscattering coefficient is given by

A2(x, y, z) =
1

4π

∫ 2π

0

∫ π

0

sin θ sin2

(
2π

λ
Γx,y,z(θ

′, φ′)

)
dθ′dφ′. (2.8)

We now describe the localisation process, which works in the same way as

the 1D case. The probability density for detecting a scattered photon at angle

(θ, φ) 6= (0, 0) is PS(θ, φ), whereas for a nonscattered photon the probability

density is PNS(0, 0)

PS(θ, φ) =

∫∫∫
D

|Ψ(θ,φ) 6=0|2dxdydz (2.9)

PNS =

∫∫∫
D

|c(x, y, z)|2A2 dxdydz

Counterintuitively, this means that detecting a nonscattered photon can actually

give us information about the separation of the particles (Knott et al., 2013).

A random number is then generated to see whether the photon is scattered

and, if so, at what angle (θ1, φ1). The (unnormalised) states after the scattering

process are as follows, for photons scattered at angle (θ1, φ1), and non scattered

photons, respectively

Ψθ1φ1 = c(x, y, z) cos

(
2π

λ
Γx,y,z(θ1, φ1)

)
(2.10)

Ψ00 = c(x, y, z)A(x, y, z).

We then normalise the state and repeat for the next photon.

We have chosen the initial probability density of the relative positions of

the particles to be a flat distribution. We find that after successive photons

are scattered off the particles, their relative positions localise, as shown by the

probability distribution of the two particles in Fig. 2.9 after 150 photons have been

scattered. We assume that the 150 photons are all incident on the particles in a

sufficiently short time period that we do not need to consider the dynamics of the

particles between detection events. The symmetry of the high probability density

regions about the origin in Fig. 2.9 reflects the fact that the two particles are

interchangeable, and that the localisation is a result of successive superpositions

of +ve and −ve relative momentum kicks. This is the desired result: it shows
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Figure 2.8: This diagram illustrates the experiment in which two massive particles

are delocalised over the volume of a cube with side length d. Plane-wave light

with wavelength λ incident along the z-axis scatters from the particles and is

detected at an angle (θ,φ) on a spherical screen located at a distance L from the

particles. For clarity, the diagram is not to scale: we consider the case where

L� d.

that scattering induced localisation can be extended to the more realistic case of

particles that are allowed to move in three dimension. As in the one dimensional

case, it is important to note that the localisation is strictly in relative position

space: no absolute position localisation has occurred.

2.5 Chapter conclusion

In this chapter we have described an experiment that could be used to confirm

that localisation of particles can be caused by photon scattering. The technol-

ogy needed to implement this scheme has already been developed (Bücker et al.,

2009; Fuhrmanek et al., 2010) and furthermore the required momentum measure-

ment precision is currently achievable. We expect that the proposed experiment
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Figure 2.9: This plot shows the probability density P (x), represented by the

density and shading of points, for the relative position of the particles after the

scattering and detection of 150 photons. The two high density dark clouds show

that as in the 1D case, light scattering has caused relative position localisation.

The position is given in units of the wavelength, λ, of the scattered light.
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will provide evidence that particles confined to one dimension can undergo a

process whereby quantum entanglement causes classical localisation in relative

position space. We have also extended the scheme from a one dimensional proof

of principle to the more real world scenario of three dimensional relative posi-

tion localisation, giving further weight to an exciting new explanation of how the

uneasy gap between the classical and quantum worlds can be bridged.

41



2. RELATIVE POSITION LOCALISATION CAUSED BY
ENTANGLEMENT

42



Chapter 3

Beating the classical limit with

quantum metrology

In this chapter we turn back to the main topic of this thesis: quantum metrology.

We will begin by describing how the classical limit can be obtained in optical

quantum metrology. We then show how quantum entanglement can be used to

beat this bound and obtain the ‘Heisenberg limit’, which is the ultimate precision

with which a quantum system can measure a linear phase shift. The problems

with using entangled states are then discussed, which will provide motivation for

later chapters of this thesis in which we seek nonclassical states that overcome

these difficulties.

This chapter serves as an introduction to the various states we will utilise for

quantum metrology, and therefore, with the exception of section 3.4, is not our

original work.

3.1 The Mach-Zehnder interferometer

We will begin by explaining the archetypal quantum metrology device for optical

systems: the Mach-Zehnder interferometer, as shown in Fig. 3.1. The first step

in this device is to produce a beam of photons from a light source and then split

the beam into two paths with a beam splitter (beam splitters will be described

shortly). Next, one of the paths undergoes a linear phase shift φ, which we wish

to measure, and then the two paths are recombined at a second beam splitter.
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φ
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D2

Beam
Splitter

Beam
Splitter

Input 1

Input 2
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ab
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Figure 3.1: A Mach-Zehnder interferometer which can be used to measure a phase

φ. Photons are sent through the beam splitters and the linear phase shift, and

are then measured at the photon number counting detectors D1 and D2.

The resulting output can be measured by detectors D1 and D2, which are used

to extract the phase information. The phase can correspond to a large range

of physical phenomena, from a length change in the interferometer arms caused

by a gravitational wave (Abadie et al., 2012), to a time delay picked up from

measuring a material sample: this formalism is very general. A famous use of

interferometry came in 1887, when Michelson and Morley used a folded Mach-

Zehnder interferometer, as shown in Fig. 3.2, to show that the speed of light is a

constant regardless of the speed and direction that you are traveling (Michelson &

Morley, 1887). This remarkable experiment paved the way for Einstein’s special

relativity and subsequently general relativity.

To analyse the precision attainable in optical interferometry we begin by send-

ing a single photon through the Mach-Zehnder interferometer in Fig. 3.1. A single

photon is described in Fock notation as |1〉, which can also be seen as the creation

operator, â†, acting on the vacuum:

|1〉 = â†|0〉. (3.1)

We describe an input of one photon in each port by

|1, 1〉 = â†b̂†|0, 0〉a,b, (3.2)
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Figure 3.2: The Michelson interferometer, which is mathematically equivalent to

a Mach-Zehnder interferometer, was used to show that the speed of light is a

constant regardless of the speed and direction that you are traveling (Michelson

& Morley, 1887) (public domain image).
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where the subscript refers to paths a and b, and therefore our desired input of

a single photon entering the upper port of the interferometer is |Ψ0〉 = |1, 0〉.
The beam splitter is described by the unitary operator ÛB = e−iθ(e

iφb â†b̂+e−iφb b̂†â),

where for a 50:50 beam splitter1 we take θ = π/4, and are able to choose the

arbitrary phase to be φb = −π/2, giving: ÛB = e−
π
4

(â†b̂−b̂†â). The effect of the

50:50 BS on the creation operators can be found to be

â† → ÛBâ
†Û †B =

1√
2

(â† + b̂†) (3.3)

b̂† → ÛB b̂
†Û †B =

1√
2

(b† − â†).

This means that the beam splitter ÛB acts on the input state |Ψ0〉 = |1, 0〉 as

follows:

|Ψ1〉 = ÛB|1, 0〉 = ÛBâ
†|0, 0〉 = ÛBâ

†Û †BÛB|0, 0〉 (3.4)

= ÛBâ
†Û †B|0, 0〉 =

1√
2

(â† + b̂†)|0, 0〉

=
1√
2

(|1, 0〉+ |0, 1〉).

Thus the effect of the beam splitter on a single photon is to create a superposition

of the photon over the two paths. Next we apply the linear phase shift, Ûφ = ein̂aφ,

where n̂a = â†â count the number of photons on path a. This gives

|Ψ2〉 = Uφ|Ψ1〉 =
1√
2

(eiφ|1, 0〉+ |0, 1〉). (3.5)

After passing through the rest of the interferometer our final state is |Ψ3〉 =

ÛB|Ψ2〉. We can then find the probability to detect a photon at detector D1 to

be

PD1 = |〈1, 0|Ψ3〉|2 = sin2 (φ/2) (3.6)

and similarly PD2 = cos2 (φ/2). Soon we will show how these probabilities can

be used to find the phase φ, but first we would like to consider the precision

with which the phase can be measured. If we send a stream of N particles

1More generally we can take η = cos2 θ as the transmissivity of the beam splitter.
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through the interferometer, then the average number at the output D1 will be

〈n̂a〉 = N〈Ψ3|n̂a|Ψ3〉 = N sin2 (φ/2). It can then be shown that the propagation

of errors formula can be used to find the precision with which we can measure

the phase, δφ, when we count the photons at the output D1. This is given by

(Dunningham & Kim, 2006)

δφ =
δn̂a

|∂〈n̂a〉
∂φ
|
. (3.7)

If we apply this formula to our example of sending a stream of single photons

through a Mach-Zehnder interferometer, it has been shown in (Dunningham &

Kim, 2006) that

δφ =
1√
N
, (3.8)

the shot noise limit (SNL).

We will now explain how an experimentalist can determine the value of the

phase φ by counting the number of photons at detector D1. To do this we have

to make use of Bayesian analysis, which was introduced in section 2.3. We begin

by writing the probability of detecting a particle at D1 given that the phase is

φ:

P (D1|φ) = sin2 (φ/2). (3.9)

We would now like to simulate an experiment that will determine the phase.

The actual phase to be measured is some given constant φ0. The conditional

probability of detecting a photon at D1, given that the phase is φ0 is P (D1|φ0).

In each run of the simulation, the result of the measurement at D1 is a random

outcome sampled from the probability distribution P (D1|φ0). Let D1 = 1 (D1 =

0) describe the result when a photon was measured (not measured) at D1. Then,

for example, the first run of our simulation might result in a measurement D1 = 1.

To determine the phase from this outcome, we invoke Bayes’ theorem (described

in section 2.3):

P (A|B) ∝ P (B|A). (3.10)

We can therefore calculate

P (φ|D1 = 1) ∝ P (D1 = 1|φ). (3.11)
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Figure 3.3: The left hand graph shows an experimenter’s knowledge of a phase

φ after 100 unentangled states are sent through an interferometer: the y axis

of this plot is the probability density. This figure is obtained by simulating an

experiment in which an experimenter repeatedly measures photons outputting

from a Mach-Zehnder interferometer. Bayes theorem is then used, as described

in the main text, to obtain this probability distribution. Here φ0 = π/2. The right

hand graph shows how the width at half the probability density peak changes as

the number of states sent through the interferometer increases. The shape of this

slope is δφ ∝ 1/
√
m, the shot noise limit.

As the probability distribution sums to one, we can normalise this distribution

to be left with P (φ|D1 = 1): the probability distribution for different phases

φ given that D1 = 1 has been measured on the first run of their experiment.

In our simulation we repeat these steps, obtaining more knowledge about the

phase. With each new measurement we use Bayesian analysis (as was done in

equation 2.6) to update our knowledge of the phase: i.e. after the first detection

we multiply our initial knowledge of the phase Pi(φ) by P (φ|D1 = 1). We

then renormalise, and repeat this process for each successive measurement of the

phase shift. After a number of repeats, the experimenter is left with a probability

distribution P (φ), which is the probability distribution for φ, given all previous

measurements of D1.
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We have simulated this experiment, with the results given by the left hand

graph in Fig. 3.3, in which the state |1, 0〉 was sent through the interferometer

100 times. It can be seen that the probability density has a peak around π/2:

it is the width of this probability density peak that tells us the precision of the

phase measurement, δφ. In the right hand graph of Fig. 3.3 we plot the number

of times the state is sent through the interferometer, N , against the width at

half the probability density peak. The slope of this graph gives us the relation

δφ ∝ 1/
√
N , which is again the SNL.

3.2 The NOON state: Using entanglement to

beat the SNL

We now wish to send an entangled state through the interferometer to see whether

we can improve on this measurement precision. We will start by looking at the

so called NOON state (Lee et al., 2002), which is a maximally entangled state of

all the photons in the upper path, in a superposition with all the photons in the

lower path:

|Ψ〉NOON =
1√
2

[|N, 0〉+ i|0, N〉] . (3.12)

In order to create the NOON state we replace the first beam splitter in the in-

terferometer in Fig. 3.1 by an alternative unitary known as the ‘quantum beam

splitter’ (QBS) (Dunningham & Kim, 2006; Gerry et al., 2002). As shown in

Dunningham & Kim (2006) a quantum beam splitter involves an ordinary inter-

ferometer, but with a nonlinearity in one arm, and has the following effect on

state |N, 0〉:

|N, 0〉 QBS−−→ 1√
2

[
|N, 0〉+ eiζ |0, N〉

]
. (3.13)

In order to simplify our analysis, we take ζ = π
2
, but in general the value of

ζ depends on the specific method of implementing the QBS. The QBS acts on

|0, N〉 as

|0, N〉 QBS−−→ 1√
2

[|0, N〉+ i|N, 0〉] (3.14)
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After creating the NOON state, we then apply the phase shift to one of the paths

in the interferometer, as we did with the unentangled state. The effect of this

phase shift is

1√
2

[|N, 0〉+ i|0, N〉] Phaseφ−−−−→ 1√
2

[
eiNφ|N, 0〉+ i|0, N〉

]
. (3.15)

We can then send this state through a second QBS, and measure the number

of photons in at the detectors. We find that either all the photons are detected

at D1 or all the photons are detected at D2, with the following probabilities

(Dunningham & Kim, 2006):

PD1 = sin2 (Nφ/2) (3.16)

PD2 = cos2 (Nφ/2) .

Notice theN -fold phase enhancement, which has the effect of making the observed

interference fringes vary N times faster than for unentangled photons. If we send

a NOON state of N photons through this scheme, then using a similar analysis as

for the unentangled photons the precision of phase measurement can be seen to

vary as δφ ∝ 1/N , the Heisenberg limit. We can also show this result by using the

propagation of errors formula in equation 3.7 which again gives the Heisenberg

limit:

δφ =
δn̂a

|∂〈n̂a〉
∂φ
|

=
1

N
. (3.17)

Using the maximally entangled NOON state therefore gives us a 1/
√
N precision

enhancement over the unentangled case. However, there a number of issues with

using NOON states for phase measurements, as we will discuss next.

3.3 The problems with NOON states

The main problem with NOON states becomes apparent when we consider deco-

herence. The most applicable model of decoherence for optical interferometry is

photon loss (Demkowicz-Dobrzanski et al., 2014; Rubin & Kaushik, 2007), which

we will describe in detail in the next chapter. For now, however, we will consider
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decoherence as a crude measurement of our system by the environment. Measure-

ments of a quantum system in a superposition state collapse the state into one of

the superposition’s components. Hence, qualitatively, the effect of decoherence

on a NOON state is to collapse it as follows

1√
2

[
einφ|N, 0〉+ i|0, N〉

]
→ einφ|N, 0〉 or |0, N〉. (3.18)

We therefore no longer have a superposition state: half the time we are left with

einφ|N, 0〉, and the other half we have |0, N〉. Clearly in the second case we cannot

determine the phase from |0, N〉. But we also can’t determine the phase from

einφ|N, 0〉, as it is a global phase and constitutes nothing that can be measured.

The result is that if we lose just one photon from a NOON state we lose all the

phase information it contained, rendering the state useless.

To try and combat this fragility a number of clever schemes have been de-

vised with robustness to loss which still capture sub shot noise limit precision,

albeit not quite at the Heisenberg limit. An example of one of these schemes

is a NOON ‘chopping’ strategy (Dorner et al., 2009), in which multiple smaller

NOONs are sent through an interferometer instead of one big one - we will discuss

this in chapter 5. Other examples include unbalanced NOON states (Demkowicz-

Dobrzanski et al., 2009), Holland and Burnett states (Holland & Burnett, 1993),

and mixtures of unentangled and NOON states (Gkortsilas et al., 2012). While

these states can beat the shot noise limit when loss is included, they are still

fragile, and with large amounts of loss they don’t achieve quantum enhancement.

Another problem with NOON states is that they are very difficult to produce.

The scheme described briefly above and in Dunningham & Kim (2006) uses a

nonlinearity, which poses large experimental challenges. To the author’s knowl-

edge the largest optical NOON state that has been created is for N = 5 (Afek

et al., 2010), whereas for atoms NOON states with N = 10 have been made

(Jones et al., 2009). We therefore wish to seek quantum states that have the

potential to be created using scalable technology for larger photon numbers, in

order to gain the most from quantum-enhanced measurements. We now look to

a state that shows significantly greater robustness to loss, and the potential to

be made as a larger-photon-number entangled state.
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3.4 Entangled coherent states

We now turn to a state that shows intrinsic robustness to photon losses: the

entangled coherent state (ECS)(Gerry et al., 2002; Sanders, 2012, 1992). We first

introduce the coherent state (CS), which is defined as

|α〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n〉 = D̂(α)|0〉 (3.19)

where D̂(α) is the displacement operator: D̂ = eαâ
†−α∗â. A coherent state

can therefore be seen as a displaced vacuum or, alternatively, a superposition

of number states. In an ideal phase stabilised laser, a coherent state is produced

(Demkowicz-Dobrzanski et al., 2014; Glauber, 1963). We see a glimpse of the po-

tential of a coherent state when we operate on it with the annihilation operator:

â|α〉 = e−
|α|2

2

∞∑
n=1

αn√
n!

√
n|n− 1〉 = α|α〉. (3.20)

Coherent states are therefore eigenstates of the annihilation operator: removing

a photon from a coherent state leaves the state unchanged (this is discussed in

more detail in section 4.1). This fact gives us great hope, as a state which is

robust to loss is exactly what we want for quantum metrology (Joo et al., 2011).

In order to achieve quantum enhanced measurement, we still need to create an

entangled coherent state (ECS). One way to do this is using the QBS. If we take

an initial state

|ψ0〉 = |α, 0〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
|n, 0〉, (3.21)

then the effect of the QBS is to produce the normalised ECS |ψ2〉:

|ψ0〉
QBS−−→e−

|α|2
2

√
2

∞∑
n=0

αn√
n!

[|n, 0〉+ i|0, n〉] (3.22)

=
1√
2

(|α, 0〉+ i|0, α〉) = |ψ1〉.
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We then perform a phase shift:

|ψ1〉
phaseφ−−−−→e−

|α|2
2

√
2

∞∑
n=0

αn√
n!

[
einφ|n, 0〉+ i|0, n〉

]
(3.23)

=
1√
2

[
|αeiφ, 0〉+ i|0, α〉

]
= |ψ2〉.

Notice that the phase shift is now inside the ket. If we look at the crude deco-

herence model that we applied to the NOON state, then our state will collapse

as follows:
1√
2

[
|αeiφ, 0〉+ i|0, α〉

]
→ |αeiφ, 0〉 or |0, α〉. (3.24)

If we are left with |0, α〉 then, just as for the NOON state, we cannot gain any

phase information. However, if we are left with the state |αeiφ, 0〉 then the phase

φ is still, at least in principle, measurable. In the next chapter we will look at the

relevant decoherence mechanism - photon loss - in more detail, and we will devise

a scheme that can be used to recover the phase information, hence showing that

ECSs are more robust than NOON states.

We will now continue with the loss free scenario of using an ECS to measure

a phase. Taking the state after the phase shift, |ψ2〉, we then send this through

a second QBS:

|ψ2〉
QBS−−→ (3.25)

e−
|α|2

2

√
2

∞∑
n=0

αn√
n!

(
einφ

1√
2

[|n, 0〉+ i|0, n〉] + i
1√
2

[|0, n〉+ i|n, 0〉]
)

= |ψ3〉,

which simplifies to

|ψ3〉 = e−
|α|2

2

∞∑
n=0

αn√
n!
ie

inφ
2

(
|n, 0〉 sin nφ

2
+ |0, n〉 cos

nφ

2

)
. (3.26)

From this we can calculate the probability of detecting different numbers of pho-

tons at the outputs. To do this we first take the inner product of |ψ3〉 with

|n1, n2〉 = |n1〉D1
|n2〉D2

, i.e. the state with n1 photons at detector D1 and n2

photons at detector D2. This gives us

〈n1, n2|ψ3〉 = ie−
|α|2

2

[
αn1

√
n1!

e
in1φ

2 sin
n1φ

2
δn2,0 +

αn2

√
n2!

e
in2φ

2 cos
n2φ

2
δn1,0

]
. (3.27)
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The Kronecker deltas here tell us that it is impossible to detect photons at both

outputs. This is clearly true as any photon detection collapses the state into either

|n, 0〉 or |0, n〉. We can now calculate the probabilities of different numbers of

photons being detected, given that the phase in the interferometer is φ1:

P (n1, n2|φ = φ1) = |〈n1, n2|ψ3〉|2 =



e−|α|
2 |α|2n1

n1!
sin2 n1φ1

2
forn1 6= 0 ,n2 = 0

e−|α|
2 |α|2n2

n2!
cos2 n2φ1

2
forn1 = 0 ,n2 6= 0

e−|α|
2

forn1 = n2 = 0

0 forn1 6= 0 ,n2 6= 0.

(3.28)

Using these probabilities we can use a similar Bayesian scheme as we did for the

unentangled photons to determine the value of the phase φ, and the precision

with which the phase can be measured, δφ. Fig. 3.4 shows the results for this

measurement scheme, given by the purple crossed line, compared to the NOON

state given by the blue dashed line.

This result shows an interesting property of the ECS: it appears to beat the

Heisenberg limit, despite the Heisenberg limit supposedly being the fundamental

limit. In fact, the Heisenberg limit is defined for states with fixed numbers of

photons, like the NOON state. The ECS, on the other hand, has a variable

number of photons. Thus to compare the ECS and the NOON we look at the

average number of photons in the ECS, and the precision limit for varying photon

numbers is given by the Hofmann limit (Hofmann, 2009):

δφ = 1/
√
〈N2〉, (3.29)

i.e. by considering the average of the squared photon numbers. Many works in

the literature claim to beat the Heisenberg limit (Anisimov et al., 2010; Sahota &

James, 2013), but we believe this claim to be dubious as it arises from stating the

Heisenberg limit incorrectly as 1/N̄ where N̄ is the average number of photons.

Despite this, for most of this thesis we are concerned with the absolute precision

attainable by various states, and in this case states such as the ECS are able to

gain better precision than the maximal fixed number state, the NOON state, and

so this is a clear advantage of ECSs, at least for small photon numbers.
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Figure 3.4: The phase precision of the ECS with no loss is shown here. We plot

different sized ECSs against their precision. Here (and in later figures) δφCM is

the ECS using the measurement scheme described in section 3.4, δφCF is the QFI

for the ECS and δφNF is the (equivalent size) NOON state, or the Heisenberg

limit. A stream of single particles (i.e. at the SNL) measure at precision 0.0354.

In Fig. 3.5 we have plotted a typical simulation for determining a phase φ

with a NOON state, on the left, and an ECS, on the right. We see that the

NOON state only gives the phase up to modulo π/N . This means that in order

to determine the correct phase with a NOON state we need to have some idea of

the phase to begin with. This is not the case with an ECS: the correct phase is

given, and therefore we save some resources. This exhibits another advantage of

the ECS over the NOON state, even before we have considered loss.

Up to this point we have only considered the precision with which each state

can measure a phase given a specific measurement scheme: in all three cases (sin-

gle photons, NOON states, ECSs) this measurement scheme involved counting
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Figure 3.5: Comparing phase estimation results for NOON states on the left and

ECS on the right. It can clearly be seen that the ECS gives the correct phase,

whereas NOON states only give the phase to modulo π/N .

the number of photons at the output. But have we chosen the optimal measure-

ment schemes in these examples, or is there some other measurement scheme that

can gain a better precision given the same states? The quantum Fisher informa-

tion (QFI) allows us to answer this question, as it provides a way of optimising

over all possible measurements, to tell us the best possible precision with which

a state can measure a phase. As we will see next, this means that the QFI gives

us a very effective way of comparing different states’ potential for determining a

phase, regardless of the specific measurement scheme that is to be implemented.

3.5 Comparing different states with the quan-

tum Fisher information

The quantum Cramér-Rao bound tells us the minimum possible uncertainty in

estimating a parameter φ given a particular quantum state ρ(φ), and is given by
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3.5 Comparing different states with the quantum Fisher information

(Braunstein & Caves, 1994; Paris, 2009)

δφ ≥ 1√
NFQ

(3.30)

where FQ is the quantum Fisher information (QFI) for ρ(φ). The QFI optimises

over all possible measurements that can be made on the state ρ(φ), and, quali-

tatively, is a measure of the amount of information that a state contains about

the parameter φ. The QFI is given by (Cooper et al., 2010; Paris, 2009; Zhang

et al., 2013)

FQ = Tr
(
ρA2

)
(3.31)

where A is defined by solving the symmetric logarithmic derivative:

∂ρ

∂φ
=

1

2
[Aρ+ ρA] . (3.32)

This is not an easy equation to work with; we will derive an alternative form

explicitly in terms of the state ρ and its eigenvalues and eigenvectors. We begin

by diagonalising ρ to get the eigenvalues and eigenvectors: ρ|λi〉 = λi|λi〉. We

can then write (
∂ρ

∂φ

)
ij

= 〈λi|
∂ρ

∂φ
|λj〉 (3.33)

=
1

2
[〈λi|Aρ|λj〉+ 〈λi|ρA|λj〉]

=
1

2

[
λj (A)ij + λi (A)ij

]
.

We then solve to find A:

(A)ij =
2〈λi| ∂ρ∂φ |λj〉
λi + λj

. (3.34)

We then use

FQ = Tr
(
ρA2

)
=

1

2

[
Tr
(
A2ρ

)
+ Tr (AρA)

]
= Tr

(
A
∂ρ

∂φ

)
. (3.35)

This allows us to calculate

FQ =
∑
i,j

2

λi + λj
|〈λi|∂ρ(φ)/∂φ|λj〉|2 . (3.36)
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When we come to look at loss in optical interferometry, it is this equation for

the QFI that we will use, and it will prove to be very useful in comparing different

states. However, note that in order to use this equation, the density matrix

ρ that describes our system must be diagonalised to find the eigenvectors and

eigenvalues. The difficulties and solutions concerning this task will be discussed

in length in the coming chapters.

For now, we will stick to the much simpler loss free scenario, in which our

state remains a pure state, so that ρ2 = ρ = |Ψ〉〈Ψ|. Then

∂ρ

∂φ
=
∂ρ2

∂φ
= ρ

∂ρ

∂φ
+
∂ρ

∂φ
ρ. (3.37)

Comparing this with equation 3.32 we get: A = 2 ∂ρ
∂φ

and FQ = 4Tr

[
ρ
(
∂ρ
∂φ

)2
]
.

We then find

FQ = 4
[
〈Ψ′|Ψ′〉 − |〈Ψ′|Ψ〉|2

]
(3.38)

where |Ψ′〉 = ∂
∂φ
|Ψ〉. Hence the QFI of pure states can be calculated with relative

ease, and we will show how we can do this next. After we have found the QFI

for a state, we can use the quantum Cramér-Rao bound (QCRB) to find the

best attainable precision for parameter estimation, given our state ρ or |Ψ〉. The

QCRB is

δφ ≥ 1√
mFQ

, (3.39)

where m is the number of classical repeats of our experiment.

3.6 Quantum Fisher information of the NOON

state and the ECS

We begin by looking at the case of sending a NOON state through an inter-

ferometer, as described in section 3.2 above. The state after the phase shift is

|Ψ〉 =
1√
2

(eiNφ|N, 0〉+ i|0, N〉). (3.40)
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In order to find the QFI in 3.38 we need to differentiate this state with respect

to the phase:

|Ψ′〉 =
∂|Ψ〉
∂φ

=
iN√

2
eiNφ|N, 0〉. (3.41)

We then find

〈Ψ′|Ψ′〉 = N2/2 (3.42)

and

〈Ψ|Ψ′〉 = iN/2. (3.43)

We can then calculate the QFI to be

FQ = 4
[
〈Ψ′|Ψ′〉 − |〈Ψ′|Ψ〉|2

]
= N2. (3.44)

Using the QCRB, for a single experimental run, so that m = 1, we find

δφ =
1√
mFQ

=
1

N
, (3.45)

which is the Heisenberg limit. It is now easy to analyse a stream of m single

photons, as in section 3.1, which has the initial state

|Ψ〉 =
1√
2

(eiφ|1, 0〉+ |0, 1〉) (3.46)

which leads to FQ = 1, and therefore

δφ =
1√
mFQ

=
1√
m
, (3.47)

which is the shot noise limit (SNL). The QFI formalism has therefore reproduced

the Heisenberg limit and SNL. This implies an important result: earlier we found

the Heisenberg limit and SNL by considering specific measurements, but now

we are optimising over all possible measurements, which gives us the same re-

sults. Therefore, the number counting schemes above are optimal measurement

schemes! This is often not the case in quantum metrology - we will see in this the-

sis that finding the optimal measurement can be a challenge - but for the NOON

state, and the stream of single photons, no other measurement can improve upon

the simple number counting Bayesian strategies.
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We now look at the QFI for the entangled coherent state (ECS), for which

the following identities are useful:

∞∑
n=0

n|α|2n

n!
= |α|2e|α|2 , (3.48)

and

∞∑
n=0

n2|α|2n

n!
= (|α|4 + |α|2)e|α|

2

. (3.49)

We can then look at a general ECS, of which the ECS discussed in section 3.4 is

a special case:

|Ψ〉 = N
(
|αeiφ, 0〉+ eiθ|0, α〉

)
(3.50)

Where N = (2(1 + e−|α|
2

cos θ))−1/2. The Fisher information for this state is

F = 4|α|4(N2 −N4) + 4|α|2N2. (3.51)

Using this we can study the performance of the ECS as compared to a NOON

state, the results of which are shown in Fig. 3.4 for the ECS with θ = π/2. The

red line shows the QFI of the ECS, which is clearly significantly better than

the NOON state for small α. We also see that our measurement scheme for the

ECS, despite giving a better precision than NOON states, is not the optimal

measurement scheme. As mentioned above, finding this optimal scheme is an

ongoing challenge of our work!

3.7 How to count your resources

In this section we address a very important issue: how we count resources in

quantum metrology. A lot of work has been done in recent years in establishing

the ultimate precision bounds of quantum metrology (Demkowicz-Dobrzański

et al., 2012; Demkowicz-Dobrzanski et al., 2014; Escher et al., 2011; Ko lodyński

& Demkowicz-Dobrzański, 2013). These bounds have been derived by counting

the total number of particles used as the relevant resource. For example, for the

NOON state in section 3.2 above the total number of particles is the total number
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3.7 How to count your resources

inputting the interferometer. But is the total number of particles always the most

relevant resource? This question is often neglected in the literature, but we feel

it is a question of fundamental importance to the practical implementation of

quantum metrology. We believe the answer is that how you count your resources

depends on the specific needs of your experiment.

For example, when measuring fragile systems it is imperative that high pre-

cision is achieved from a limited number of probe particles passing through the

sample. Examples of such fragile systems include spin ensembles (Wolfgramm

et al., 2013), biological systems (Carlton et al., 2010; Taylor et al., 2013), atoms

(Eckert et al., 2008; Tey et al., 2008) and single molecules (Pototschnig et al.,

2011). In this regime it is of crucial importance to minimise the probe’s inter-

action with the sample, otherwise the sample can be damaged, for example by

scattering induced depolarisation in Wolfgramm et al. (2013), and direct damage

to living cells, as is discussed in a recent review paper on quantum metrology

in biology by Taylor & Bowen (2014) (and references therein). It is this fragile

system regime, in which we count the number of particles through the phase as

our resource, that we will concentrate on for the majority of this thesis.

However, this is not always the best way to count your resources. In gravita-

tional wave (GW) interferometry, we are concerned with measuring phase shifts

that are so small that very large lasers need to be used in the experiments. The

immense power of these lasers (100s of W) is enough to disturb the mirrors in

the interferometer by means of radiation pressure and mirror distortion due to

heating (Punturo et al., 2010; Purdy et al., 2013). It is therefore crucial here that

the total number of particles in the interferometer be kept to a minimum.

In the next chapter we will begin by looking at the work of Joo et. al. (Joo

et al., 2011) on using ECSs in quantum optical metrology. This work has been

criticised in Demkowicz-Dobrzanski et al. (2014): they say that Joo et. al. go

below the ‘theoretical bounds’ by not properly accounting for their resources.

The central point to their arguement is that when using ECSs to make a phase

measurement in a lossy system you need to introduce extra reference beams in

your measurement scheme (we will show that this is indeed the case in the next

chapter). They then comment that these extra reference beams are not accounted

for and so the results of Joo et. al. are misleading. We will avoid a critique of this
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sort by only considering the regime of fragile system sampling, and so counting

the extra reference beams is not necessary.

Another important resource-related issue is how we can fairly compare differ-

ent states, for example a NOON state and an ECS. In this work we will restrict

the average number of particles through the phase shift to be Rφ. If we have a

NOON state (|N, 0〉+ i|0, N〉)/
√

2 then each NOON state sends n̄φ = N/2 parti-

cles through the phase shift. Therefore, we can repeat our experiment m = Rφ/n̄φ

times, which means the total number of particles sent through the phase is Rφ.

For the majority of this thesis we will use this method to ensure that different

states are compared fairly, and when other methods are used (for example when

we consider spin systems) the resource counting procedure will be described. We

often take Rφ = 400 in our work: this number was chosen as it gives clear and

efficient numerical results.

3.8 Chapter Conclusion

In this chapter we have laid out the basic concepts, and introduced a number

of useful tools, in quantum metrology. We have used these tools to analyse a

number of states in the decoherence free setting of optical interferometry. Next,

we will begin to look at more realistic scenarios by introducing decoherence, in

the form of photon losses, into our analysis.
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Chapter 4

Entangled coherent state

metrology with loss

Up to now we have been considering the idealised scenario of decoherence free

optical interferometry. We will now begin to look at the more realistic case by

introducing photon losses into our analysis. In the previous chapter we touched

upon the idea that entangled coherent states (ECSs) may be more robust to losses

than NOON states. Here we will address this idea more rigorously by analysing

the effect of photon losses on these states. After looking at the loss mechanism

itself, we will investigate whether an ECS can be used to measure a phase with

sub-classical precision. To this regard we will introduce a novel measurement

scheme that allows phase measurements close to the fundamental limit. We will

then look at the QFI, which informs us of the best possible precision with which

these states can measure a phase, before concluding the chapter with a simple

method of pushing our precision measurements even further.

This chapter is based on the following papers: Knott & Dunningham (2014)

and Knott et al. (2014b).

4.1 Can the annihilation operator represent loss?

We begin by looking at the annihilation operator: we would like to ask whether

the annihilation operator can represent the loss of a photon to the environment. If

the annihilation operator can represent loss, then this would give coherent states
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Measurement by
the environmentBS

Incoming
state

Vacuum

Figure 4.1: Fictional beam splitter to model loss.

a large advantage over the alternatives, because the effect of acting on a coherent

state with the annihilation operator is

â|α〉 = e−
|α|2

2

∞∑
n=1

αn√
n!

√
n|n− 1〉 = α|α〉. (4.1)

The coherent state is therefore left unchanged. But what does this actually

mean? Can infinite numbers of photons be ‘annihilated’ and still leave the state

unchanged?

An experiment by Zavatta et al. (2008) showed that annihilating a photon

from a coherent state does indeed leave the state unchanged (Zavatta et al.,

2008). To do this a beam splitter followed by a photon measurement was used

(Parigi et al., 2007), as shown in Fig. 4.1. It is important here that the beam

splitter has high transmissivity. To illustrate why this is important, we look at

the beam splitter operation, defined as

ÛBS = e−θ(â
†b̂−b̂†â) (4.2)

where η = cos2 θ is the transmissivity of the beam splitter. For θ << 1 we can use

only the first order term in the Taylor expansion. If we then act this approximate

beam splitter operation on an input state |ψ〉 we get

ÛBS|ψ, 0〉 ≈
(

1− θ(â†b̂− b̂†â)
)
|ψ, 0〉 = |ψ, 0〉+ θâ|ψ, 1〉 (4.3)

where â acts on the first mode, and b̂ on the second. If we post-select the cases

when we detect a photon in the second mode, we have applied the annihilation

operator to the state. This illustrates that the annihilation operator is not a

deterministic operator, but rather it is probabilistic.
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Figure 4.2: Here we see the addition of fictional beam splitters after the phase

shift, which simulate loss.

We now show that the above scheme can’t be used to remove arbitrary num-

bers of photons from a coherent state and leave it unchanged. If we consider two

beam splitters, one after another, then the probability that we detect one photon

from each beam splitter, and therefore the annihilation of two photons, will scale

as θ2. If we accept this two annihilation scenario, we must also look at the θ2

terms in the beam splitter Taylor expansion, which contain terms that are not

simply the annihilation operator. Therefore, removing two photons in this way

would no longer leave the state unchanged! We can see now that when loss is

small, we can use the annihilation operator to model loss. However, for larger

losses, this formalism is not sufficient, and to analyse different states to be used

for quantum metrology we need a formalism that can be used for arbitrary loss

rates. Exactly how we do this will be discussed next.

4.2 Entangled coherent states with loss

We begin by looking at the scheme described in section 3.4, but with the inclusion

of photon losses. To properly simulate the effects of loss we introduce ‘fictional’

beam splitters after the linear phase shift, which have probability of transmission
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BS

a

b a

b

Figure 4.3: The effect of passing two coherent states through a beam splitter.

η ≡ cos2 θ, and therefore the proportion of photons that are lost is µ = 1 − η

(Demkowicz-Dobrzanski et al., 2009; Gkortsilas et al., 2012; Joo et al., 2011;

Leonhardt & Paul, 1993). The whole scheme we are now considering is given in

Fig. 4.2. After the phase shift, and including the vacuum states used to simulate

loss, the ECS we are concerned with is given by

|ψ0〉 =
1√
2

[
|αeiφ, 0, 0, 0〉abcd + i|0, 0, α, 0〉abcd

]
, (4.4)

where modes b and d are the added vacuum states before the ‘fictional’ beam

splitters in Fig. 4.2. The next step requires the knowledge of how two coherent

states (CSs) interact at a beam splitter. For the 50:50 BS we find

|α, β〉a,b →
∣∣∣∣α− β√2

,
α + β√

2

〉
a,b

, (4.5)

which is demonstrated diagrammatically in Fig. 4.3. The effect of a variable BS,

with transmission η = cos2 θ and µ = 1− η, on the creation operators is:

a† → √ηa† +
√
µb† (4.6)

b† → √ηb† −√µa†.

From this we find that the effect of a variable BS on two CSs is

|α, β〉a,b → |α
√
η − β√µ, α√µ+ β

√
η〉a,b. (4.7)
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Using this, we see that the effect of the ‘fictional’ beam splitters on |ψ0〉 then

leaves us in the state |Ψ1〉, given by

|Ψ1〉 =
1√
2

[
|αeiφ cos θ, αeiφ sin θ, 0, 0〉abcd + i|0, 0, α cos θ, α sin θ〉abcd

]
(4.8)

where modes b and d are now the environmental modes, e1 and e2 respectively,

which we will trace over to simulate a ‘measurement’ by the environment. To do

this we take the density matrix ρ1 = |ψ1〉〈ψ1|, and trace over the environmental

modes as follows:

ρ2 =
∑
e1

∑
e2

〈e1|〈e2|ρ1|e2〉|e1〉. (4.9)

Using
∑

e〈e|X〉〈Y |e〉 = 〈Y |X〉, and the nonorthogonality of coherent states,

〈α|β〉 = exp (−1
2
|α|2 + α∗β − 1

2
|β|2), it can be shown that ρ2 is reduced to

ρ2 = c1 (|ψ2〉〈ψ2|) +
1

2
c2

(
|αeiφ√η, 0〉〈αeiφ√η, 0|+ |0, α√η〉〈0, α√η|

)
(4.10)

where c1 = e|α|
2(η−1), c2 = 1− c1 and

|ψ2〉 =
1√
2

[
|αeiφ√η, 0〉+ i|0, α√η〉

]
. (4.11)

We see here that the resulting state is a mixture of loss and no loss components.

With probability c1 we still have the pure ECS, albeit with a smaller amplitude,

α
√
η, which we can use to determine the phase φ. With probability c2/2 we have

the state |0, α√η〉, which cannot give us any information about the phase shift.

Finally, also with probability c2/2, we have the state |αeiφ√η, 0〉, and in this case

the phase is present, and so in principle it can be measured.

Next, we pass ρ2 through the final QBS, count the photon numbers at the

detectors, and then implement the Bayesian procedure used in section 3.1 to

determine the phase, φ, and the precision with which it can be measured, δφ.

The results are shown in Fig. 4.4. We see that whilst the ECS (purple crossed

line) starts off with better precision than the NOON state (blue dashed line) and

the SNL (black dashed dotted line), as the loss increases soon the ECS rapidly

loses its precision. It is interesting to note that the ECS is more fragile (i.e.

more affected by loss) than the NOON state in this scheme. The reason for
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Figure 4.4: Here δφCM is the ECS using the simple measurement scheme in

Fig. 4.2, δφNF is the NOON state (of equivalent size as each ECS) and δφSF is

the SNL. We can see that ECSs degrade quickly with loss. Here α =
√

2, and for

larger α the ECS loses precision with loss even quicker.

this is that for NOON states we know during each run if there has been loss

simply by counting the numbers of photons at the outputs. If no photons are

lost, our Bayesian scheme utilises the pure NOON state to determine the phase

to a high precision. However, for ECSs we can no longer do this, as we don’t

know the number of photons in an ECS to begin with, and therefore the number

counting measurement gives us minimal information about the final state that

we are detecting. The results in Fig. 4.4 are for a very small ECS of α =
√

2.

Larger ECSs are even more fragile with loss (see the green line in Fig. 4.11), and

therefore we clearly need a more effective scheme to measure a phase using an

ECS.
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4.3 Improved scheme for measuring the ECS

with loss

Despite the fact that an entangled coherent state can still retain some phase

information after loss, we have seen that with a simple measurement scheme the

phase information cannot be recovered, and we end up doing even worse than

NOON states. We have devised a scheme, shown in Fig. 4.5, which can be used

to recover this desired phase information. The key is to use extra ‘reference’

coherent states, α1, above and below the main interferometer, which can be used

to perform a homodyne measurement and recover the phase information from the

collapsed state |αeiφ, 0〉.
The state in this ‘long arm’ interferometer after the phase shift is

|Ψ1〉 =
1√
2

(
|α1, α0e

iφ, 0, α1〉+ i|α1, 0, α0, α1〉
)

(4.12)

= |Φ1〉+ |Φ2〉.

After being acted on by the fictional beam splitters that simulate loss, this state is

transformed from |Ψ1〉 to |Ψ2〉. We then trace over the environmental degrees of

freedom to give ρ =
∑

e〈e|Ψ2〉〈Ψ2|e〉 where |e〉 represents all four environmental

modes. This gives us

ρ = |Φ1η〉〈Φ1η|+ |Φ2η〉〈Φ2η|+ e−|α0µ|2 (|Φ1η〉〈Φ2η|+ |Φ2η〉〈Φ1η|) , (4.13)

where |Φ1η〉 = 1√
2
|α1η, α0ηe

iφ, 0, α1η〉, |Φ2η〉 = i√
2
|α1η, 0, α0η, α1η〉, α0η = α0

√
η,

α1η = α1
√
η, α0µ = α0

√
1− η and η is the transmission rate through the inter-

ferometer. We then send ρ through the final beam splitters, which results in the

state ρ̄. The probability of detecting k photons at detector D1, l at D2, m at

D3, and n at D4 is

Pklmn = 〈k, l,m, n|ρ̄|k, l,m, n〉. (4.14)

Using this we can again use the Bayesian scheme that was described in section

3.1 to determine the phase φ, and the precision, δφ.

Optimising over φ and α1, we obtain the results in Fig. 4.6 for α0 =
√

2. It can

be seen that our state now outperforms the NOON and SP states for all values
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Figure 4.5: Quantum interferometer with extra arms to recover phase information

with loss.

70



4.3 Improved scheme for measuring the ECS with loss

0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.02

0.03

0.04

0.05

0.06

0.07

η

δφ

 

 
δφCM

δφNF
δφSF

δφCF

Figure 4.6: Here we see the precision obtained by an ECS in the scheme in Fig. 4.5

for α0 =
√

2. We measure at a higher precision than NOON and SP for all loss

rates shown.
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Figure 4.7: Here α0 = 2 for an ECS in Fig. 4.5. Our scheme improves over the

NOON and SP states for most loss values.

of loss on the range shown. Figs. 4.7 and 4.8 show the results for α0 = 2 and

α0 = 5, respectively, illustrating that for larger values of α0 our scheme (purple

crossed line) still obtains higher precision than the alternatives for the majority

of loss rates.

The red lines in Figs. 4.6, 4.7 and 4.8 show the QFI for the ECS: how these

are derived will be explained in section 4.5. Despite our positive results, there is

a large practical downside to this scheme: it uses quantum beam splitters, which

are difficult to make in practice. In the next section we will show how we can do

without these and still obtain good results.

4.4 Scheme without a quantum beam splitter

Whilst the above scheme achieves sub shot noise precision even with loss, it is

admittedly hard to implement. The main difficulty lies in the QBS: this involves

a nonlinearity (Dunningham & Kim, 2006), which is no simple task to perform

(as we saw in section 3.3). In order to make the scheme more experimentally

accessible we would like to consider whether we can eliminate the QBSs all to-
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Figure 4.8: Here α0 = 5 for an ECS in Fig. 4.5. Again for most loss rates we

perform better than NOON and SP states.

gether. The general interferometer we now consider is shown in Fig. 4.9. We

take the first input state to be a cat state1 |γ1〉 = N1(|α0/
√

2〉 + | − α0/
√

2〉),
where N1 = 1/

√
2(1 + e−|α0|2). Mixing |γ1〉 with |αi〉 = |α0/

√
2〉 at a 50:50 beam

splitter, using equation (4.5), gives

|αi〉|γ1〉 = N1|α0/
√

2〉
(
|α0/
√

2〉+ | − α0/
√

2〉
)
−→ N1(|α0, 0〉+ |0, α0〉. (4.15)

Hence we have created an ECS without using a QBS; but we still need to make

the cat state. There are many examples of cat state generation techniques, such

as that given in Brune et al. (1996). In this scheme a Rydberg atom in a cavity

in the state |g〉 + |e〉 is coupled to a coherent state via the Jaynes-Cummings

Hamiltonian (Jaynes & Cummings, 1963). The atom-cavity system evolves as

|α′〉(|g〉+ |e〉)→ |α′〉|g〉+ |α′eiθ〉|e〉 and, after a transformation and measurement

of the Rydberg atom and taking θ = π, the resultant state of the field is a cat

state. Alternative schemes are numerous (Bartley et al., 2012; Gerrits et al.,

2010; Gerry & Knight, 1997; Leghtas et al., 2013; Lund et al., 2004), and cat

1This is called a cat state because it is a superposition of two distinct ‘classical’ coherent

states.
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BS1 BS2

φ

D1

D3

BS

D2

BS

D4

Loss after the phase shift

Figure 4.9: Quantum interferometer with extra arms, but without the QBSs,

used to recover phase information with loss.

states have been created with α′ = 1.76 and fidelity 0.59 in the lab (Gerrits et al.,

2010). Schemes for creating cat states also require a non linearity of some sort,

but unlike the QBS the cat state is created offline, whereas previously it was

necessary to implement the QBS within the interferometer. In principle we could

have an interferometer that waits for a cat state to be correctly created, and then

inputs it into the interferometer. If there is a problem then there is no input, and

therefore no state will be sent through the phase.

We still need to eliminate the QBS after the phase shift at BS2. If we send

the ECS ≈ |α, 0〉+ |0, α〉 through a phase shift, and then through a beam splitter,

just like in an ordinary Mach-Zehnder interferometer, then without loss we can

still obtain sub shot noise limit precision. In fact the precision is almost identical

to using a QBS. The probability of detecting m photons in the upper output is
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approximately given by

P (m,n) ≈


cos2 φ(m+n)

2
for n even

sin2 φ(m+n)
2

for n odd.

(4.16)

We therefore must know if the bottom output is even or odd in order to determine

the phase. This is important because when we introduce loss we need upper and

lower reference states in order to determine the phase. If we take |γ2〉 = |α1〉
in Fig. 4.9 then we no longer know whether we had even or odd numbers, and

the phase information provided by the entangled state therefore washes out and

we no longer get quantum enhancement (we can still measure the phase, but at

the shot noise limit at best). We therefore take |γ2〉 = N2(|α1〉 + | − α1〉) where

N2 = 1/
√

2(1 + e−2|α1|2), which always contains an even number of photons, and

therefore allows us to retain quantum enhancement. Using this scheme, which

now contains two cat states but no QBSs, we are able to achieve very similar

results to when we used a QBS.

After optimising over α1 and φ for different loss rates we then obtain the results

in Fig. 4.10 for α0 = 1.1307 (which has an average photon number of 1). It can

be seen that our state now outperforms the NOON and unentangled states for all

values of loss up to 53%, i.e. η = 0.47. The significant precision enhancement for

small α0 is evident here, as well as the robustness to loss. Fig. 4.11 then shows

the results for the larger amplitude ECS of α0 = 4. We can see that for α0 = 4

our scheme (purple crossed line) still beats the NOON state (blue dashed line)

and the unentangled state (black dashed dotted line) for the majority of η values.

We have seen that the ECS can be used to make precise phase measurements

using the interferometer in Fig. 4.9. Furthermore, this scheme is robust to loss

and can be experimentally implemented. The question remains as to how close

our scheme comes to the fundamental limit that an ECS can obtain, and it is this

question that we turn to in the next section.

4.5 QFI of the ECS

We would now like to determine the best possible precision with which this state

can measure the phase shift φ. In order to do this, we will use the QFI and
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Figure 4.10: The measurable phase precision for ECSs with amplitudes α0 =

1.1307 (which has an average photon number of 1) using our measurement scheme

is shown by the purple crossed line δφEM . The red solid and black dotted-dashed

lines give the QFI of the ECS δφEF and unentangled states δφUF , respectively,

all of equivalent size: N = 2N2
1|α0|2 (therefore the NOON and unentangled states

are equal here). Here, for small α0, our scheme provides the best phase precision

for the majority of loss rates.
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Figure 4.11: The measurable phase precision for ECSs with amplitude α0 = 4

using our measurement scheme is shown by the purple crossed line δφEM . The

legend is the same as in Fig. 4.10, with the addition of the dark green solid line,

which shows the measurement of the ECS without the extra arms δφEP , and the

blue dashed line, which shows the NOON state δφNF . Here we see that for large

α0 our scheme provides the best phase precision for the majority of loss rates, and

we come close to saturating the QFI. The black solid line in the inset shows the

QFI of the even ECS described in section 4.6, demonstrating how we can obtain

a higher precision than the NOON states for most loss rates simply by modifying

our input state.
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QCRB, as described in the previous chapter. To find the QFI we will follow the

work of Zhang et al. (2013), who derived a general formula for the QFI of a mixed

state ρ =
∑

i λi|λi〉〈λi|, where {|λi〉} forms a complete orthonormal basis. The

QFI is given by equation (3.36), which we re-state here for clarity:

FQ =
∑
i,j

2

λi + λj
|〈λi|ρ′|λj〉|2 (4.17)

where ρ′ = ∂ρ/∂φ. As stated above, this formula for the QFI involves writing

ρ in its eigenbasis {|λi〉}. Performing this step is often the stumbling point in

analytically calculating the QFI of a mixed state. For small system sizes it is

often possible to numerically diagonalise ρ, but this severely restricts the results

to states which are often too small to be useful. Nevertheless, finding the QFI of

a state numerically can reveal important features of a state, and this was done

for the ECS by Joo et al. (2011).

However, for the ECS it is in fact possible to derive the QFI analytically, as

was done by Zhang et al. (2013). They begin with equation (4.17), and then show

that often only a small subset {|λi〉} has nonzero weights, which allows the QFI

to be written as:

FQ =
∑
i

(λ′i)
2

λi
+
∑
i

λiFQ,i −
∑
i 6=j

8λiλj
λi + λj

|〈λ′i|λj〉|2, (4.18)

where FQ,i = 4[〈λ′i|λ′i〉 − |〈λ′i|λi〉|2] (this is the QFI of a pure state |λi〉). We find

that the first term, which is the classical Fisher information of the probability

distribution P (i|φ) = λi(φ), is zero.

We will now find the QFI for the ECS |Ψ1〉 = N(|αeiφ, 0〉 + |0, α〉). We have

seen that after loss this state becomes the mixed state

ρ = c1 (|ψ2〉〈ψ2|) + N2c2

(
|αηeiφ, 0〉〈αηeiφ, 0|+ |0, αη〉〈0, αη|

)
(4.19)

where αη = α
√
η, c1 = e−α

2
µ = e−|α|

2µ = e|α|
2(η−1), c2 = 1− c1 and

|ψ2〉 = N
[
|αηeiφ, 0〉+ i|0, αη〉

]
. (4.20)
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As the QFI calculation requires ρ in its basis we rewrite this as

ρ = (4.21)

N2
(
|αηeiφ, 0〉〈αηeiφ, 0|+ |0, αη〉〈0, αη|+ e−α

2
µ
[
|0, αη〉〈αηeiφ, 0|+ |αηeiφ, 0〉〈|0, αη

])
.

As ρ in now written only in terms of |αηeiφ, 0〉 and |0, αη〉, we can write the

eigenvectors as:

|λ±〉 = N±(|αηeiφ, 0〉 ± |0, αη〉) (4.22)

where N± = 1/
√

2(1± e−α2
µ). We can then find the eigenvalues with the equation

ρ|λ±〉 = λ±|λ±〉. This can be confirmed by showing that ρ = λ+|λ+〉〈λ+| +
λ−|λ−〉〈λ−|, λ+ + λ− = 1 and 〈λi|λj〉 = δij. We then find the eigenvalues to be

λ± = N2(1± e−α2
η)(1± e−α2

µ). (4.23)

The further terms we need are: 〈λ±|λ′±〉 = iN2
±|αη|2, 〈λ∓|λ′±〉 = iN+N−|αη|2 and

〈λ′±|λ′±〉 = N2
±|αη|2(1 + |αη|2). These allow us to calculate∑

i=±

λiFQ,i = 4λ+N
2
+|αη|2(1 + |αη|2 −N2

+|αη|2)

+ 4λ−N
2
−|αη|2(1 + |αη|2 −N2

−|αη|2) (4.24)

and

∑
i=±,j=∓

8λiλj
λi + λj

|〈λ′i|λj〉|2 = 16λ+λ−N
2
+N

2
−|αη|4. (4.25)

From the QFI we can find the theoretical upper bound on attainable precision,

the QCRB, given by: δφ = 1/
√
mFQ, with m the number of classical repeats

of the experiment. Our results for the QCRB of the ECS are shown as the red

curves on Figs. 4.6-4.8 and Figs. 4.10-4.11.

We can see from Figs. 4.10 and 4.11 that the measurement scheme presented

in section 4.4 comes reasonably close to the theoretical lower bound. This means

that more improvements to the scheme are in theory possible, but despite this we
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can see that we do well enough to beat the NOON state and SNL for most loss

rates. We come closer to saturating the bound for the larger state α0 = 4 in 4.11,

but here there is a small region where the NOON state obtains a higher precision

than the ECS. This agrees with the results of Zhang et. al. who showed that:

“although the classical term of the ECS is robust against the photon losses, the

Heisenberg term decays about twice as quick as that of the NOON state” (Zhang

et al., 2013). We will show in the next section that, with a slight modification of

the input states, we can overcome this problem.

4.6 Even entangled coherent states

We now show how our scheme can be improved further to overcome the rapid

initial loss of coherence which results in our state losing out to the NOON state

in the small loss regime. If we change our upper input state |αi〉 in Fig. 4.9 to

another cat state, |γ1〉 = N1(|α0/
√

2〉 + | − α0/
√

2〉), then after the first beam

splitter we will have an ECS that only contains even numbers of photons, which

we call an even entangled coherent state (EECS)

|Ψ〉EECS = N2
1 (|α0, 0〉+ |0, α0〉+ | − α0, 0〉+ |0,−α0〉) (4.26)

= N2
1 (|e, 0〉+ |0, e〉) .

Here we have written the (unnormalised) even cat state as |e〉 = |even〉 = (|α0〉+
| − α0〉). If this state is written in the number basis |n〉 then the odd photon

number terms all cancel, hence the name ‘even’ cat state. This state may be

advantageous as now we have some idea of whether there is loss or not on each

run. If we detect an odd number of photons, then we know that there has been

at least one photon lost. We only gain a small advantage, as we still don’t know

exactly how many photons are lost, and when we detect even numbers then we

learn nothing. However, this small advantage in knowledge acquisition is enough

to give a significant precision improvement for low loss.

The QFI for this even ECS is shown in the inset of Fig. 4.11: we now only

marginally lose to the NOON state, in a very small region. The results for the

EECS can be seen more clearly in Fig. 4.12 and Fig. 4.13. Here we see that for the
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larger α values the EECS is advantageous, but for smaller α the ECS is preferable.

These results show that we can now tailor our input states for different loss

values to produce a scheme that achieves higher precision than NOON states and

unentangled states for the vast majority of loss rates, including the experimentally

relevant rates which can be up to a few times 10%, e.g. η = 0.62 in Demkowicz-

Dobrzański et al. (2013).
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Figure 4.12: Here we see the EECS against the ECS and the NOON for α0 = 4.

With the EECS we now come very close to the NOON state when previously we

had been clearly beaten.

For brevity we will not show the full QFI calculation for the EECS here, but

it is interesting to discuss the idea behind deriving the QFI analytically for the

EECS. To calculate the QFI we first, as always, have to diagonalise the density

matrix after loss in order to find the eigenvalues and eigenvectors. The density
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Figure 4.13: Here we see the EECS against the ECS, the NOON and the SNL

for α0 = 2. We see that whilst the EECS is advantageous for larger α, here the

ECS is actually the better choice for high precision.

matrix after loss is given by

ρ = N2
1

(
|αφη , 0〉〈αφη , 0|+ | − αφη , 0〉〈−αφη , 0|+ |0, αη〉〈0, αη|+ |0,−αη〉〈0,−αη|

+e−2α2
µ
[
|αφη , 0〉〈−αφη , 0|+ | − αφη , 0〉〈αφη , 0|+ |0, αη〉〈0,−αη|+ |0,−αη〉〈0, αη|

]
+e−α

2
µ
[
(|αφη , 0〉+ | − αφη , 0〉)(〈0, αη|+ 〈0,−αη|) + (|0, αη〉+ |0,−αη〉)(〈αφη , 0|+ 〈−αφη , 0|)

])
.

where |αφη〉 = |α0
√
ηeiφ〉. This density matrix looks difficult to diagonalise at first
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sight, but we can use the following identities:

|α〉〈α|+ | − α〉〈−α| = 1

2
|(|e〉〈e|+ |d〉〈d|), (4.27)

|α〉〈−α|+ | − α〉〈α| = 1

2
|(|e〉〈e| − |d〉〈d|),

|e, 0〉〈e, 0|+ |0, e〉〈0, e|+ (2σ − 1) (|0, e〉〈e, 0|+ |e, 0〉〈0, e|)

= σ|e, 0 + 0, e〉〈e, 0 + 0, e|+ (1− σ)|e, 0− 0, e〉〈e, 0− 0, e|,

where σ is a constant. Here |e, 0 + 0, e〉 = |e, 0〉 + |0, e〉, and |d〉 = |odd〉 =

(|α〉 − | − α〉) is the odd cat state (which only contains odd numbers of photons

due to cancellation of the even terms). Using these identities we are able to

diagonalise the density matrix as

ρ =
N2

1

2

[
(1 + e−2α2

µ) (σ|e, 0 + 0, e〉〈e, 0 + 0, e|+ (1− σ)|e, 0− 0, e〉〈e, 0− 0, e|)

+(1− e−2α2
µ) (|d, 0〉〈d, 0|+ |0, d〉〈0, d|)

]
(4.28)

where we find σ from

2σ − 1 =
2e−α

2
µ

1 + e−2α2
µ
. (4.29)

From this we can see that the eigenvectors are

|λ1〉 ∝ |e, 0 + 0, e〉 (4.30)

|λ2〉 ∝ |e, 0− 0, e〉

|λ3〉 ∝ |d, 0〉

|λ4〉 ∝ |0, d〉.

The proportionality constants and the eigenvalues can then be found, which al-

lows us to calculate the QFI as before, using equation 4.17, to give the results for

the EECS in Fig. 4.12 and Fig. 4.13.

4.7 Chapter Conclusion

We have seen in this chapter that ECSs are robust states for optical quantum

metrology. Next we will investigate if, by questioning the importance of multi-
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mode entanglement in our schemes, we can make significant precision improve-

ments over the ECS and the alternative states.
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Chapter 5

Do we need multi-mode

entanglement in optical quantum

metrology?

5.1 Do we need multi-mode entanglement?

The precision gains offered by quantum metrology are often attributed to entan-

glement (Afek et al., 2010; Cappellaro et al., 2005; Giovannetti et al., 2006; Lee

et al., 2002; Riedel et al., 2010) and, specifically in the optical case, entanglement

between two modes in an interferometer (Jin et al., 2013; Kok et al., 2002). So

far in this thesis we have been looking at multi-mode entangled states, such as

the ECSs and NOON states, and these states have been shown to give precision

advantages over states possessing no entanglement. However, it has been shown

that entanglement is not required between the probe and reference systems for

Heisenberg limited measurements of a linear phase shift (Munro et al., 2001;

Ralph, 2002; Tilma et al., 2010), and furthermore it has been argued that the im-

portant resource for enhancing precision is actually coherence in the eigenbasis of

the phase shift Hamiltonian (Girolami et al., 2013). In this chapter we go beyond

this to demonstrate that, in some well known scenarios, single mode superposi-

tion states have a significantly better robustness to loss than their multi-mode

entangled counterparts, which allows them to achieve greatly enhanced precision

measurements. We introduce a new state, the unbalanced cat state, that can
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outperform the alternatives and can be created and measured with present day

or near future technology, to a precision close to its theoretical bound.

As discussed in section 3.7 we are concerned here with measuring fragile sys-

tems, in which case it is imperative that high precision is achieved from a limited

number of probe photons passing through the sample. In this regime we show

in this chapter that single mode superposition states show significant improve-

ments over the multi-mode alternatives and furthermore beat the ‘optimal state’ 1

(Demkowicz-Dobrzanski et al., 2014; Ko lodyński & Demkowicz-Dobrzański, 2013)

for most loss rates, illustrating the importance of our results.

This chapter is based on the paper: Knott et al. (2014a).

5.2 No loss: superposition states are sufficient

We begin by reviewing work that has already addressed the question of multi- vs

single- mode quantum states in metrology. A different approach to measurement

than that which we have described so far involves weak force detection, which is

concerned with detecting a small phase fluctuation about zero in a single shot

measurement. For this task Munro et al. (2001) utilised a superposition of co-

herent states (a cat state): |Ψ〉 = N(|α〉 + | − α〉), where N = 1/
√

2 + 2e−2α2 .

Munro et al. (2001) modeled the force to be measured with the displacement

operator, and discussed states such as squeezed states, entangled states and cat

states, which they concluded all operate at the Heisenberg limit when measuring

a weak force.

Another paper that looked at weak force detection was Tilma et al. (2010).

They looked at three different quantum states, all involving a coherent state and

either entanglement or a superposition. They used distinguishability between the

initial state and the state after a phase shift as an approximate measure for the

state’s effectiveness to measure a phase, as given by d = 〈Ψ|ein̂φ|Ψ〉. They argued

that d ≈ 0 between phase shifted and unphased states means that the input is

orthogonal to the output, and therefore the Cramér-Rao relation is most easily

1The optimal state we use here is defined for fixed photon number states in which the

resource is the total number of photons used (Ko lodyński & Demkowicz-Dobrzański, 2013). In

our system we count the resource as the number of photons passing through the sample.
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satisfied. By setting d ≈ 0 and using some approximations, they showed that the

smallest phase detectable by a superposition of a vacuum and a coherent state

is given by π/2n̄, where n̄ is the average number of photons in the state. Their

work showed that for a linear phase multi-mode entanglement is not necessary,

and for a nonlinear phase multi-mode entanglement can even cause problems.

Another paper (Ralph, 2002) looked at the cat state |Ψ〉 = N(|0〉+ |α〉), where

N = 1/
√

2 + 2e−α2/2, in a scheme similar to that which we have been using in this

thesis, namely using interferometry to measure a phase shift. They showed that

putting N(|0〉+ |α〉) into two paths of an interferometer, one of which undergoes

a phase shift, can lead to Heisenberg-precision measurements. In this chapter

we will extend this work to look at how robust the cat state is to loss and how

precisely it can be measured with a practically accessible scheme.

We begin our investigation by looking at the generic quantum state in in-

terferometry: the NOON state (Afek et al., 2010; Israel et al., 2014; Lee et al.,

2002), given by |ΨNOON〉a,b = 1√
2
(|N, 0〉a,b + |0, N〉a,b). This state is maximally

entangled between the two interferometer modes a and b. Using Eqs. (3.39) and

(3.38) we have already seen that the NOON state can measure a phase with a

quantum-enhanced precision of δφNOON = 1/N , the Heisenberg limit. However,

it is straightforward to show that the Heisenberg limit is attainable without the

multi-mode entanglement exhibited by the NOON state, simply by utilising an

analogous single mode superposition state |ΨNO〉 = 1√
2
(|N〉 + |0〉) (Tilma et al.,

2010), which we refer to as the NO state: we find δφNO = 1/N .

We have already seen that a more robust state for quantum metrology is the

ECS, given by |ΨECS〉 = Ne(|α, 0〉 + |0, α〉) (Gerry, 1997; Gerry & Grobe, 2007;

Gerry & Mimih, 2010; Gerry et al., 2002, 2009; Joo et al., 2011, 2012; Sanders,

2012, 1992) where Ne = 1/
√

2 + 2e−α2 and α characterises the coherent state (we

take α to be real throughout this chapter, without loss of generality). We find

that the QFI for this state is

FQ = 4α2N2
e(1 + α2 − α2N2

e), (5.1)

which approximately scales as FQ ∝ α4. However, a very similar QFI can be

obtained without the entanglement by utilising the single mode analogue of the

ECS, which we now call a ‘balanced cat state’ (due to the equal weighting between
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Figure 5.1: Here we plot the sensitivity δφ, as given by the QFI and QCRB,

against the average number of photons per state that pass through the phase

shift, nφ. Here there is no loss, and we see that for small photon numbers the

ECS and cat states are better than the NOON and NO states (the NOON and NO

have the same QFI). For very small numbers, the cat state is slightly better, but

for the majority of nφ values they have almost identical QFI. For larger numbers

of photons all the states are more or less equivalent.

the two coherent states in the superposition), given by |Ψcat〉 = Nc(|α〉+|0〉) where

Nc = 1/
√

2 + 2e−α2/2. Its QFI is also given by equation (5.1) but with Ne → Nc.

The results for the QCRBs of the different states, as given by equation (3.39),

are shown in Fig. 5.1. We see that for small photon numbers the cat state is able

to measure at the best precision, and for higher photon numbers all the states

are almost identical.

From these QFI results it is clear that the cat state can be used for precisely

determining a phase, but how exactly can the measurement be made? We will de-

scribe a simple scheme here, shown in Fig. 5.2 (ignore the beam splitter represent-
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BS
Photon
Count

Environment

Figure 5.2: The input state |Ψinput〉 first undergoes a phase shift U(φ) = eiâ
†âφ.

We model loss by the addition of a beam splitter with a vacuum port, and then

trace over the environmental mode. To read out the phase we apply the displace-

ment operator D(−β), with coherent state amplitude −β, and then count the

number of photons in the state.

ing loss for now). Our initial state is an even cat state: |Ψ0〉 = Nc(|α/2〉+|−α/2〉).
We describe how this even cat state can be made in section 4.4. We then act

on the even cat state with the displacement operator, which in general acts on a

coherent state by (Gerry & Knight, 2005)

D(σ)|γ〉 = e−i=(σ∗γ)|γ + σ〉 (5.2)

where σ and γ are two complex parameters. We displace as follows

|Ψ1〉 = D(α/2)|Ψ0〉 = Nc(|α〉+ |0〉). (5.3)

We then apply a linear phase shift, giving |Ψ2〉 = Nc(|αeiφ〉 + |0〉). Next we

displace the state back by −β (where, for reasons we will see later, β � α), to

give

|Ψ3〉 = Nc

(
eiαβ sinφ|αeiφ − β〉+ | − β〉

)
. (5.4)

We then simply count the numbers of photons in this state. To do this we take

P (n) = |〈n|Ψ3〉|2 and use the usual Bayesian scheme to determine the phase.

We can see that as φ changes our state oscillates between even and odd cat

states, with different P (n) probability distributions, and this is why the number

measurement reveals information about the phase shift. We see the results for this
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Figure 5.3: We can see that the displace and count measurement scheme is pretty

much optimal.

measurement scheme, as compared to the bound given by the QFI and QCRB,

in Fig. 5.3. We can see that this measurement scheme, without loss, is close to

optimal.

5.3 Entanglement is detrimental with loss

We now show that in the presence of photon losses the single mode states give a

significant improvement in phase sensitivity over their multi-mode analogues. As

with the ECS calculations in the last chapter, we model loss by the addition of a

beam splitter after the phase shift (Demkowicz-Dobrzanski et al., 2009; Gkortsilas

et al., 2012; Joo et al., 2011), as shown in Fig. 5.2, which has a probability of

transmission η (and therefore a fraction µ = 1 − η of photons are lost). After

tracing over the environment we have a mixed state ρ, and from this density
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matrix the QFI can be determined. The density matrix for the cat state |Ψ1〉 =

Nc(|α〉+ |0〉), after loss, is given by

ρcat = N2
c

[
|αηeiφ〉〈αηeiφ|+ |0〉〈0|+ e−α

2
µ/2
(
|αηeiφ〉〈0|+ |0〉〈αηeiφ|

)]
(5.5)

where αη = α
√
η and αµ = α

√
µ. This has a very similar form to the ECS

after loss, given in equation (4.21). Therefore using a similar method to Zhang

et al. (2013), as described in section 4.5, we can represent and then diagonalise

ρcat in the orthogonal cat state basis |Ψ±〉 = N±(|αηeiφ〉 ± |0〉) to find the two

nonzero eigenvalues and the corresponding eigenvectors. Using equation (3.36)

and equation (3.39) we then analytically calculate the QFI and the QCRB.

We will now look at the QFI for the NO state |ΨNO〉 = 1√
2
(|N〉 + |0〉), and

show the full calculation, which highlights some of the general methods that can

be used to find the eigenvectors and eigenvalues, and then find the QFI, of these

states. The mixed state after loss for the NO state is given by

ρNO =
1

2
|0〉〈0|+ (5.6)

1

2

(
N∑
k=0

(
N

k

)
sin2k θ cos2(N−k) θ|N − k〉〈N − k|+ cosN θ

[
|N〉〈0|eiNφ + |0〉〈N |e−iNφ

])
where η = cos2 θ is the probability of transmission. To find the QFI we need

to find 〈λm|ρ′NO|λn〉, for m,n ∈ [0, ..., N ]. However, we find that 〈λm|ρ′NO|λn〉 is

equal to zero, except when |λ0〉 = z(a|0〉 + |N〉) and |λN〉 = z(|0〉 − a∗|N〉). We

then find

|〈λ0|ρ′NO|λ0〉|2 = |〈λN |ρ′NO|λN〉|2 =
z4N2 cos2N θ

4

(
2|a|2 − a∗2e−2iNφ − a2e2iNφ

)
,

|〈λ0|ρ′NO|λN〉|2 = |〈λN |ρ′NO|λ0〉|2 =
z4N2 cos2N θ

4

(
1 + |a|4 + a∗2e−2iNφ + a2e2iNφ

)
.

(5.7)

To find the values of a and z we write ρNO as

ρNO = c00|0〉〈0|+ c0N |0〉〈N |+ cN0|N〉〈0|+ cNN |N〉〈N |+ .... (5.8)

We can then represent the coefficients of the |0〉 and |N〉 basis states as a 2x2

matrix: [
c00 c0N

cN0 cNN

]
= 0.5

[
1 + sin2N θ e−iNφ cosN θ
eiNφ cosN θ cos2N θ

]
(5.9)
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Figure 5.4: Multi-mode entanglement reduces phase precision. We show the

QCRB, calculated (analytically) from the QFI, for the: cat state δφcat; ECS

δφECS; NOON state δφNOON; NO state δφNO; coherent state δφCS and the SNL

δφSNL. Here α = 3, and for fair comparison the NOON and NO states haveN such

that the number of photons per state through the phase shift n̄φ is equal for each

state. Therefore n̄φ(NOON) = n̄φ(NO) = N/2 is equal to n̄φ(ECS) = n̄φ(cat) =

N2α2. We repeat each state m times so that the total number of photons sent

through the phase shift is Rφ = mn̄φ = 400 (this is the same throughout our

results).

Diagonalising this matrix, we find

a = e−iNφ (5.10)

z = 1/
√
γ2 + 1

γ ∈ R.

This then allows us to calculate

|〈λ0|ρ′NO|λ0〉|2 = 0 (5.11)

|〈λ0|ρ′NO|λN〉|2 = 0.25N2 cos2N θ.
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We can also find the eigenvalues from equation (5.9). Combining all this allows

us to calculate, using equation (3.36), the QFI for the NO state

FQ = N2 2 cos2N θ

1 + cos2N θ + sin2N θ
= N2 2ηN

1 + ηN + (1− η)N
. (5.12)

The QFI for the NOON state is significantly easier, as we find the eigenvectors

to be

|λ0〉 =
1√
2

(−e−iNφ|0, N〉+ |N, 0〉) (5.13)

|λN〉 =
1√
2

(|0, N〉+ eiNφ|N, 0〉)

and λ0 = 0, λN = cos2N θ. We therefore find FQ = N2ηN .

The results comparing the NOON state, NO state, ECS and cat state are

shown in Fig. 5.4 for α = 3 and in Fig. 5.5 for α = 2. We see that with loss

the NO state (δφNO, black dashed-dotted line) can measure a phase to a higher

precision than a NOON state (δφNOON, blue dots). However, it is not clear how

to create a NO state in a physically viable fashion 1. We can also see from Fig. 5.4

that in the range of reasonable experimental transmission rates, 0.5 ≤ η ≤ 1, (for

example η = 0.62 in Demkowicz-Dobrzański et al. (2013)) the precision obtained

by the cat state with α = 3 (δφcat, purple dashed line) is significantly better than

the ECS (δφECS, green solid line). In this region the multi-mode entanglement in

the ECS leads to a more fragile state and a worse precision. For higher loss rates

the ECS performs better than the cat state, but we see in the next section that

the single mode states can be modified to overcome this issue. The advantage

gained by the cat state is even more evident in Fig. 5.5 for α = 2, where we see

that for the majority of loss rates the cat state performs best.

5.4 The unbalanced cat state

We now introduce a single mode state that generalises the cat state and displays

an improvement in phase sensitivity over the ECS (and the other alternatives)

1We note that the NOON state has the same QFI as the NO state if there is only loss in

the phase shift arm, highlighting the similarity between single mode metrology and a two mode

scheme with loss only at the phase shift.
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Figure 5.5: Here we see the results for α = 2. It is clear that the cat state shows

a significant robustness to loss as compared to the other states.

for all values of loss. We will refer to the state as the unbalanced cat state (UCS)

and it is given by

|ΨUCS〉 = Nu(|α(a)〉+ a|0〉) (5.14)

where 0 ≤ a ≤ 1, Nu = 1/
√

1 + a2 + 2ae−α(a)2/2, and α(a) is the solution to:

α2(a) = n̄φ/N
2
u(α(a)), where n̄φ is the number of photons passing through the

phase shift per state. α(a) is defined in such a way as to keep the average number

of photons through the phase shift independent of a, and it can be expressed in

terms of the Lambert W-function. We note that taking a = 1 in equation (5.14)

gives a balanced cat state of magnitude αbal = α(a = 1), and a = 0 gives a

coherent state. One of the advantages of this state is that the ‘quantumness’ of

the state can be altered by varying the parameter a. Loss collapses the quantum

superposition, and so when there is high loss we can reduce a so that the state

behaves more like a coherent state |α〉, and with low loss we can set a ∼ 1 so that

we have an equal superposition state.
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Figure 5.6: We see the large improvements gained by our single mode states.

We show the (analytical) QCRB for the: cat state δφcat; UCS chopping δφCC;

unbalanced cat state δφUCS; SNL δφSNL; NOON state δφNOON; NOON chopping

strategy δφNC and the optimal state in Ko lodyński & Demkowicz-Dobrzański

(2013) δφOptimal. Here αbal = 3, and for the chopped states we limit the cat state

to αbal ≤ 5 (and equivalently limit the NOON state and optimal state). We

see that, at 50% loss, the UCS chopping strategy performs 40% better than the

NOON chopping, and over 10% better than the ‘optimal state’.

The reduced density matrix ρ
UCS

for the UCS after the phase shift and loss is

given by

ρ
UCS

= (5.15)

N2
u

[
|αη(a)eiφ〉〈αη(a)eiφ|+ a2|0〉〈0|+ ae−α

2
µ(a)/2

(
|αη(a)eiφ〉〈0|+ |0〉〈αη(a)eiφ|

)]
,

where αη(a) = α(a)
√
η and αµ(a) = α(a)

√
µ. We find the QFI for this state

with the same method as was used above for the balanced cat state. We see in

Fig. 5.6 that the QCRB for the UCS (δφUCS, yellow solid line) improves upon the

cat state (δφcat, purple dashed line). Although this improvement in the QCRB

95



5. DO WE NEED MULTI-MODE ENTANGLEMENT IN OPTICAL
QUANTUM METROLOGY?

is marginal, we will show that with a simple and practical measurement scheme

the UCS, unlike the balanced cat state, can be utilised for phase measurements

close to the QCRB. We note that both the cat and the UCS show large precision

improvements over the SNL.

We can obtain a better precision still by using a ‘chopping strategy’, intro-

duced in the case of NOON states in Dorner et al. (2009), in which different sized

states (i.e. different n̄φ) are used for different loss rates. We fix the total num-

ber of photons allowed through the phase shift, Rφ, and therefore the number of

times m that a state is sent through the phase shift is inversely proportional to

its average photon number n̄φ. To illustrate why the chopping works, consider a

NOON state, which has a QCRB given by

δφNOON =
1√
mFq

=
1√

mN2ηN
(5.16)

where η is the transmission probability, N is the number of photons in the NOON

state, and m is the number of classical repeats. If we allow Rφ = 16 photons to

pass through the phase shift, then how can we best utilise these photons? Should

we put all our eggs in one basket, or more specifically all 16 photons into one

NOON state? Or is it better to divide the photons between different NOON

states, for example we could take N = 2 and send this state through the phase

m = 8 times. The QCRB for these two NOON states are shown in Fig. 5.7. For

loss close to zero, it is always best to use all your photons in one NOON state

(here we ignore the fact that large NOON states are difficult to make!). However,

for larger loss rates a much better precision is obtained for the N = 2 NOON

state repeated 8 times. This same principle works for all the quantum states we

consider in this thesis: the larger states are always more fragile.

We now apply this chopping strategy to the UCS. The green dashed-dotted

line (δφCC) in Fig. 5.6 shows a UCS optimised over n̄φ and the unbalancing pa-

rameter a for each loss rate. As described above, when there is no loss it is advan-

tageous to put all your resources in the largest possible quantum state. However,

it is not realistic to have arbitrarily large cat states (or any quantum state, for

that matter), and so we limit the largest state here to having magnitude αbal = 5.

We see that this chopping strategy applied to the unbalanced cat displays further
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Figure 5.7: This figure compares the precision of 8 NOON states of size N = 2

with a single NOON state of size N = 16.

improvements over all the alternatives, including a large improvement over the

NOON chopping strategy (δφNC) and the SNL (δφSNL).

A lot of work has been done in recent years in establishing the ultimate

precision bounds of quantum metrology (Demkowicz-Dobrzański et al., 2012;

Demkowicz-Dobrzanski et al., 2014; Escher et al., 2011; Ko lodyński & Demkowicz-

Dobrzański, 2013). These bounds have been derived by counting the total number

of photons used as the relevant resource. However, as we have discussed above,

in probing delicate systems (Carlton et al., 2010; Eckert et al., 2008; Pototschnig

et al., 2011; Taylor et al., 2013; Tey et al., 2008; Wolfgramm et al., 2013) it is the

total number of photons through the sample that is important. To further em-

phasise the precision gains achieved by single mode states in this regime, we have

included the ‘optimal state’ in Fig. 5.6 (δφOptimal, red line with dots) as given

in Demkowicz-Dobrzanski et al. (2014); Ko lodyński & Demkowicz-Dobrzański

(2013).
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By looking at the theoretical limits on the precision (given by the QCRB) for

various single mode states, it is clear that these single mode superposition states

have huge potential for making quantum-enhanced measurements. Despite this,

it is not always clear how to make measurements that saturate this limit, and it

is this issue that we turn to next.

5.5 A practical scheme for the UCS with loss

We will now describe a simple and practical scheme, shown in Fig. 5.2 and already

introduced in section 5.2, for measuring a phase using a UCS, in the presence of

loss, that comes close to the theoretical precision limit given by the QCRB. The

initial resource required is a UCS. We have already seen in section 4.4 how a cat

state of the form Nc′(|α′〉 + | − α′〉) can be made. Some schemes create states

of our desired form |Ψcat〉 = Nc(|α〉 + |0〉) directly (Leghtas et al., 2013), but if

the output state is Nc′(|α′〉+ | − α′〉) the application of a displacement operator

(Paris, 1996) will create the state |Ψcat〉. The UCS can be created by simple

adaptations of the methods for cat state preparation, for example preparing the

Rydberg atom (described in section 4.4) in the unbalanced state NR(|g〉 + a|e〉)
will give the output state |ΨUCS〉.

The first step in the phase detection scheme is the application of the linear

phase shift to the UCS giving |ΨUCS(φ)〉 = Nc(|α(a)eiφ〉 + a|0〉). As discussed

earlier, the loss is then modeled by a beam splitter, as shown in Fig. 5.2, with the

resulting mixed state given by equation (5.15). We then apply the displacement

operator D(−β) = eβ
∗â−βâ† , which can be implemented in a simple manner by

mixing the state with a large local oscillator at a highly transmittive beam splitter

(Furusawa et al., 1998; Paris, 1996). This gives

ρ = D(−β)ρ
UCS

D†(−β) (5.17)

= N2
u

[
|σ〉〈σ|+ a2| − β〉〈−β|+ ae−α

2
µ(a)/2

(
eiθ|σ〉〈−β|+ e−iθ| − β〉〈σ|

)]
,

where θ = αη(a)β sinφ and σ = αη(a)eiφ − β.

A photon-number resolving detector (PNRD) is then used to count the num-

ber of photons in the state ρ, and again a Bayesian scheme is used to infer the
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phase φ and the precision with which it can be measured δφ. PNRDs are an

area of intense research (Eisaman et al., 2011) and devices that are highly sen-

sitive in the low photon regime, the area most relevant for this work, have been

demonstrated (Calkins et al., 2013; Divochiy et al., 2008; Fukuda et al., 2011). A

more practical alternative to using number resolving detectors is to use a network

of beam splitters to split the single output mode into a number of modes, and

then use single photon detectors to perform pseudo-PNRD, as shown in Fig. 5.8.

Single photon detectors have efficiencies as high as 93% in the infrared regime

(Marsili et al., 2013), and it is even possible for commercially available single

photon detectors to obtain over 60% efficiency (Hadfield, 2009).

We obtain more precise measurements by taking β > α, and we optimise

over the phase φ. The phase precision for this measurement scheme (δφUCSM),

found by simulation, is shown in Fig. 5.9 (crossed black line) where β = 4αbal.

Our scheme shows significant improvements over: the SNL; the ECS with the

measurement scheme in Knott et al. (2014b); and the NOON state (for most loss

rates). We see that our scheme is much more robust than the NOON state which

is quickly destroyed when the transmission rate drops below η = 0.9. Whilst

the QCRB for the UCS shows only a small improvement over the (balanced) cat

state, when we consider the measurement scheme the UCS is significantly better.

5.6 Why does the UCS come so close to the

QCRB?

To understand why the UCS performs so well with this measurement scheme it

is instructive to consider the case of a coherent state input, i.e |Ψinput〉 = |α〉 in

Fig 5.2. To find the phase precision for this input state and measurement scheme

we use the propagation of errors formula

δφ =
∆X̂

|∂〈X̂〉
∂φ
|
, (5.18)

where ∆X̂ =

√
〈X̂2〉 − 〈X̂〉2, and we take the number counting measurement

operator X̂ = â†â. We find that the QCRB, given by δφCS = 1/
√

2α2
η with
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Figure 5.8: Single photon detectors are far more efficient than photon number

resolving detectors (PNRDs). In order to count how many photons are in your

state, a good alternative to PNRDs is to split your single mode output - which

in this case contains the state |Ψoutput〉 - into multiple modes, using a network

of beam splitters. We then use single photon detectors to count the overall

number at the output, thus creating a pseudo-PNRD. In this example, to keep

the diagram simple we split the single mode into only 4 modes, by using 50:50

beam splitters. However, we need the probability of detecting two photons at any

output to be small, and so this set up will be useless if you are expecting more

than two photons. Single mode detectors are commercially available, so it is not

inconceivable to have a PNRD with over 32 modes.

transmissivity η, is saturated in the limit β → ∞, where β is the displacement

parameter. This is a
√

2 improvement over the generic scheme of a coherent state

and a vacuum input fed into the arms of a standard Mach-Zehnder interferometer,

which can measure at the SNL, δφSNL = 1/αη. This
√

2 improvement can also be

attained when the displacement operator is replaced with a beam splitter mixing

the phased coherent state with a coherent state |β〉, again for β →∞. We have

found no explicit reference to this optimal measurement for a coherent state in

the literature, but note that it bears a similarity to a homodyne measurement,

in which a large reference beam is used to amplify a signal to enhance precision.
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Figure 5.9: Our measurement scheme, δφUCSM, comes close the QCRB for the

UCS, δφUCS, and shows large improvements over the ECS measurement scheme in

section 4.4, δφECSM. We see that our state surpasses the precision of the NOON

state δφNOON and the SNL δφSNL for most loss rates. Here αbal = 4.

Since when a = 0 a UCS reduces to a coherent state, δφCS is the upper bound on

the phase precision that will be achieved with a UCS optimised over a. It is not

clear how to get this close to saturating the bound for the balanced cat state, and

so the UCS is significantly better when the measurement scheme is considered.

5.7 Do we need entanglement for quantum metrol-

ogy?

In this chapter we have shown that ‘single mode’ superposition states show better

robustness to loss than their multi-mode entangled counterparts. But do we truly
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have a single mode state? And have we found a way of doing quantum metrology

without entanglement? We begin by addressing the first of these questions.

It is simpler to first consider the case of a coherent state, |α〉, in the scheme in

Fig. 5.2. The state after the phase shift is given by |αeiφ〉. Ignoring loss for now,

the next step is to displace the state by −β. But the displacement operator is

performed by mixing the state with a large local oscillator at a highly transmittive

beam splitter (Furusawa et al., 1998; Paris, 1996), and so a second mode is indeed

needed. Furthermore, it is crucial that this second mode is phase-locked with the

initial state entering the phase shift. An alternative way to measure the state

|αeiφ〉 is to mix it with a CS |β〉 at a 50:50 beam splitter, which again requires a

second phase-locked mode.

Jarzyna & Demkowicz-Dobrzański (2012) discussed the use of external ref-

erence beams, such as the |β〉 in our scheme. They criticise work such as that

by Joo et al. (2011), which we followed in section 4.2 to look at ECSs with loss.

Jarzyna et. al. argue that the high precision attainable with an ECS with loss

is only possible because of the use of external reference beams, and furthermore

they say that Joo et. al. don’t properly account for these extra beams and so

their results are misleading. We have discussed in section 3.7 that in this thesis

we choose to just count the number of photons through the phase, and in this

regime the use of external reference beams is fine, and can just be seen as part

of the final phase readout. Thus, our use of ECSs and single mode superposition

states is justified.

To add some clarity to what we really mean by a ‘single mode superposition

state’, we have re-drawn our scheme in Fig. 5.10, and have also included an

illustration of the scheme in Fig. 5.11. We have included a variable beam splitter

(VBS) before the photon counting, which accommodates the 50:50 beam splitter

and the highly transmittive beam splitter used for the displacement operator.

For generality we have also included number counting of both output modes, but

generally we only need to count one mode, as in the scheme in Fig. 5.2. From

Fig. 5.10 we can see that at the state preparation the initial state, over the two

modes, is

|Ψtotal,initial〉 = |Ψinput〉 ⊗ |Ψreference〉 = |Ψinput,Ψreference〉. (5.19)
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For the case of the CS measuring the phase, this total initial state is

|Ψtotal,initial〉 = |Ψinput〉 ⊗ |Ψreference〉 = |α, β〉 (5.20)

whereas for the balanced cat state we have

|Ψtotal,initial〉 = N(|α, β〉+ |0, β〉) = N(|α〉+ |0〉)⊗ |β〉. (5.21)

There is therefore no entanglement between the probe state |Ψinput〉 and the

reference |Ψreference〉, which justifies our referring to the cat state as a single mode

superposition state: there is no multi-mode entanglement. When we introduce

loss, the loss acts separately on both arms, and the effect is that the reference

beam is just reduced in size from |β〉 to |βη〉. This just leaves us with a smaller

reference beam, but as we are dealing with beams such that β � α this does

not affect our scheme and we choose in the main text of this chapter to call the

reference beam after loss |β〉. If the two modes were entangled then the loss

would collapse the entangled state and we couldn’t just separate the probe state

from the reference beam.

This leads on to the second question: do we need entanglement for quantum

metrology? We have shown that we don’t need multi-mode entanglement, but

do we still need intra-mode entanglement? This issue is discussed in detail by

Demkowicz-Dobrzanski et al. (2014), who conclude that in states such as the

cat and NO states entanglement exists between the photons, rather than between

the modes - although this view is not universally agreed upon by researchers.

Demkowicz-Dobrzanski et al. (2014) also argue that it is the intra-mode entan-

glement between photons that is the resource for quantum metrology, which could

explain why NO and NOON states perform identically when there is no loss.

5.8 Optical quantum metrology

We have seen in the last few chapters that optical quantum metrology can surpass

the classical limits to perform quantum-enhanced phase measurements. In par-

ticular we have shown that intrinsically robust continuous variable states, such as

ECSs, can out-perform the fixed number NOON states when loss is considered.
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VBS

Photon
Count

Photon
Count

Loss

Loss

State
preparation

Figure 5.10: This figure shows the single mode scheme drawn in a different way,

as to illustrate that a second mode is needed containing an in-phase reference

beam. The state in the second mode isn’t entangled with the probe state.

We then questioned whether multi-mode entanglement - a property present in

ECSs and NOON states - is necessary for quantum metrology, and we concluded

that when loss is present, single mode superposition states are more robust than

their multi-mode counterparts and allow for more precise measurements. Next,

we turn to a different regime, namely spin systems, and we will see that their

fundamentally different decoherence mechanism can lead to a measurement pre-

cision that surpasses the SNL even in scaling.
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Chapter 6

Spin cat states in quantum

metrology

6.1 Beating the SNL in scaling

We have seen in this thesis that optical states prepared in superpositions or with

multi-mode entanglement have shown great promise for quantum enhanced phase

measurements, but invariably suffer from the crippling effects of decoherence that

can often render the states useless when large states or medium/high losses are

considered. In the optical systems we have studied thus far it is possible to beat

the SNL in absolute terms, but when there is any loss it is impossible to beat the

scaling of 1/
√
N (Demkowicz-Dobrzański et al., 2012; Escher et al., 2011). How-

ever, spin systems (Arecchi et al., 1972; Radcliffe, 1971; Zhang et al., 1990) have a

distinctly different process of decoherence known as dephasing, which has shown

to give greatly improved robustness to loss (Chin et al., 2012; Matsuzaki et al.,

2011). In particular, Matsuzaki et al. (2011) showed that a system dominated by

non-Markovian noise can give a scaling advantage of N1/4 over classical states,

but for a specific case, namely a GHZ state in a spin system (Greenberger et al.,

1989). They showed that when the exposure time is appropriately chosen to lie

within the non-Markovian region, a GHZ state can beat the uncorrelated states,

in scaling, even with decoherence. Chin et al. (2012) conjectured that in the

general case a system dominated by non-Markovian noise can give a scaling ad-

vantage of 1/N1/4 over uncorrelated (classical) states, giving an overall precision
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scaling as 1/N3/4.

Achieving this scaling advantage in practice may be somewhat more difficult,

as large GHZ states are notoriously difficult to make. For example the largest

GHZ states known to the author are 14 qubit-states created by Monz et al.

(2011), and so GHZ states are not yet a reasonable candidate for practical sub-

SNL metrology. To overcome this we present here a class of states which also give

the 1/N1/4 enhanced scaling, whilst being realisable with current technology: the

spin cat states, or superpositions of spin coherent states. We present various

schemes for creating and measuring these spin cats, showing that in the near

future spin systems could be used for robust quantum enhanced measurements.

This chapter will be structured as follows. We begin by introducing spin

coherent states, and then present a scheme that creates a spin cat state, which

we show can be used to measure a magnetic field. We then present the non-

Markovian dephasing model, and show that when this is considered the spin

cat states give a scaling advantage over the SNL. To finish, we explain methods

of how the phase can be read out from the spin cat state. Thus we present a

complete and experimentally realisable scheme for measuring a magnetic field in

a system dominated by non-Markovian noise (the prevalent noise in, for example,

NV centres).

This chapter is loosely based on the paper: Tanaka et al. (2014).

6.2 Spin coherent states and important defini-

tions

We begin with some definitions that will be used throughout this chapter. We

are considering spin states, and so we begin by stating the Pauli matrices:

σx =

[
0 1
1 0

]
; σy =

[
0 −i
i 0

]
; σz =

[
1 0
0 −1

]
. (6.1)

We then define the excited and ground states of the spins in our system as the

eigenstates of σz: σz|e〉 = |e〉 and σz|g〉 = −|g〉. We therefore take |g〉 as the

ground state, as if we consider the Hamiltonian to be σz then the |g〉 state has a
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lower energy. In vector form we have

|e〉 =

[
1
0

]
; |g〉 =

[
0
1

]
. (6.2)

We also need the raising and lowering operators, which are defined such that

σ+|g〉 = |e〉 and σ−|e〉 = |g〉 and therefore

σ+ := |e〉〈g| =
[

0 1
0 0

]
; σ− := |g〉〈e| =

[
0 0
1 0

]
. (6.3)

We now consider a collection of N spins. Follow the convention we take the

‘vacuum’ state of a collection of N spins to be: |0〉 := |g〉⊗N . The collective

operators acting on the N spins are then defined as: Ŝµ :=
∑N

j=1 σ
(j)
µ where

µ = x, y, z,+,−, and here σ
(j)
µ only acts on the jth spin, leaving the others

unchanged.

Ensembles of spins, such as nitrogen-vacancy (NV) centres (Saito et al., 2013),

can be prepared such that all the spins are aligned: this is a spin coherent state

(Arecchi et al., 1972). For a system of N spin 1/2 particles, a spin coherent state

can be defined as

|z〉 = |z,N〉 := Nz(|g〉+ z|e〉)⊗N (6.4)

where the normalisation is Nz = (1 + |z|2)−N/2. Here z ∈ C parameterises the

state. Interestingly, in the limit of N → ∞ the spin coherent states are mathe-

matically equivalent to optical coherent states (Arecchi et al., 1972; Dooley et al.,

2013; Radcliffe, 1971). We have seen that quantum states comprised of optical co-

herent states show huge promise for robust quantum metrology (Joo et al., 2011;

Knott et al., 2014b; Munro et al., 2001; Ralph, 2002), which gives further moti-

vation for studying the equivalent spin systems, especially given the favourable

loss mechanism of non-Markovian dephasing.

Another way to write the spin coherent state is

|z,N〉 = Nz

N∑
n=0

(zŜ+)n

n!
|0〉. (6.5)
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It is not immediately clear why equations 6.4 and 6.5 are equal. To show this,

we see that in (Ŝ+)n|0〉 each set of n excitations are repeated n! times, whereas

for (|g〉+ z|e〉)⊗N each spin is only excited once. Therefore

Nz(|g〉+ z|e〉)⊗N (6.6)

= Nz(|g〉+ z|e〉)(|g〉+ z|e〉)(...)

= Nz(|p0〉+ z|p1〉+ z2|p2〉...)

= Nz

N∑
n=0

zn|pn,e〉

= Nz

N∑
n=0

(zŜ+)n

n!
|0〉

where |pn〉 is the state of all permutations of n excited spins.

6.3 Measuring a phase with a spin cat state

We now need to create a superposition of spin coherent states: a spin cat state

(Gerry, 1997). One method of creating a spin cat state is to couple a qubit in the

|+〉q state to the spin coherent state |iz,N〉, and apply the appropriate Tavis-

Cummings-like Hamiltonian (Dooley & Spiller, 2014; Dooley et al., 2013; Guo &

Zheng, 1996; Tavis & Cummings, 1968):

eiχσzN̂ |+, iz〉q →|1〉q|ize−iχ〉+ |0〉q|izeiχ〉 (6.7)

where N̂ counts the number of excited spins in the spin coherent state and the

subscript q labels the qubit. We take the time of evolution such that χ = π/2,

and then measure the qubit in the x basis, which unentangles it from the spins,

leaving us with a spin cat state1:

|Ψ0〉 = Nc(|z〉+ | − z〉) (6.8)

where

Nc =
1√

2 + 2
(

1−|z|2
1+|z|2

)N . (6.9)

1Strictly speaking half the time we obtain the odd spin cat state: |Ψ〉 ∝ |z〉 − | − z〉.
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This method could be done, for example, with a single flux qubit coupled to an

ensemble of NV centres (Saito et al., 2013; Zhu et al., 2011). Alternatively, spin

cat states can be created by collapse and revival in Jaynes-Cummings and Tavis-

Cummings models (Dooley et al., 2013; Everitt et al., 2012; Jarvis et al., 2009,

2010). In both these examples, the restriction on the size of z (resulting from the

Bosonic approximation) is |z|2 � N (Dooley et al., 2013). Whilst in principle

the state in equation 6.8 can be used to measure a phase, we will see later that

the readout stage of the phase estimation is straight forward if we use the state:

|Ψ1〉 = Nc(|0〉 + |z〉). To create this state, we need to apply the displacement

operator for spins.

The displacement operator for spins is equivalent to a rotation on each qubit,

defined as R(θ, φ) := ei
θ
2
Ŝ·n̂, where we take the unit vector n̂ to be in the xy plane

so that n̂ = (sinφ,− cosφ, 0). We write

R(θ, φ) := ei
θ
2

(sin (φ)Ŝx−cos (φ)Ŝy) =
(
ei
θ
2
Â
)⊗N

(6.10)

where Â = sin (φ)σx − cos (φ)σy. We see that Â squares to the identity (Â2 = Î)
and using this we find

R(θ, φ) =
(
ei
θ
2
Â
)⊗N

=

(
cos

θ

2
Î + i sin

θ

2
Â

)⊗N
. (6.11)

An alternative way to define a spin coherent state is as: |θ, φ〉 := R(θ, φ)|0〉.
Using this we see that a spin coherent state can be parameterised by the polar

and azimuthal angles, θ and φ respectively, on the Bloch sphere:

|θ, φ〉 = (cos
θ

2
|g〉 − e−iφ sin

θ

2
|e〉)⊗N . (6.12)

To show that this is equivalent to our definition in equation 6.4, we first set

z = −e−iφ tan θ
2
. We then see that

R(θ, φ) ≡ R(z) = Nz (I + zσ+ − z∗σ−)⊗N . (6.13)

By taking |z,N〉 = R(z)|0〉 we then reproduce equation 6.4. In order to see how

the rotation affects a spin cat state, we must first find how two rotations combine.
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We see that

R(z2)|z1〉 = N1N2(1− z1z
∗
2)N [|g〉+

z1 + z2

1− z1z∗2
|e〉]⊗N (6.14)

=

(
1− z1z

∗
2

|1− z1z∗2 |

)N
|z0〉

where the parameter here is

z0 =
z1 + z2

1− z1z∗2
(6.15)

and the normalisations are Na = (1 + |za|2)−N/2 for a = 1 or 2. Alternatively, to

illustrate the similarity between the optical displacement in equation 5.2 and the

spin rotation here, we can combine the rotations to give

R(z2)|z1〉 = eiηN |z0〉 (6.16)

where

η = tan−1

(
<(1− z1z

∗
2)

=(1− z1z∗2)

)
. (6.17)

The rotation then acts on the spin cat state in equation 6.8 as follows:

R(z)|Ψ0〉 = Nc(|0〉+R(z)|z〉) (6.18)

= Nc(|0〉+

∣∣∣∣ 2z

1− |z|2

〉
)

= Nc(|0〉+ |z′〉)

leaving us with the desired cat state. This scheme for creating a spin cat state

has the restriction that z � 1. However, alternative methods exist which may

shown improvement upon this, potentially allowing spin cat states with larger z

to be made (Tanaka et al., 2014).

Next we show that this state can be used to measure a magnetic field, which

is represented by the operator eiN̂wt. With no decoherence, after interacting the

state |Ψ1〉 = Nc(|0〉+ |z〉)1 with a magnetic field for time t, we have

|Ψ2〉 = Nc(|0〉+ |zeiωt〉). (6.19)

1Here we relabel z′ → z.
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It has been shown that without decoherence a spin cat state can measure a

magnetic field with a precision approaching the Heisenberg limit (Dooley et al.,

2013): the precision scales with with the number of spins N as δω ∼ 1/N . This is

the fundamental limit for phase measurements, but it is impossible to obtain this

limit in realistic systems, which inevitably suffer from decoherence. In systems

with Markovian dephasing, such as optical systems with photon loss, the precision

always reduces to the SNL at best, δω ∼ 1/
√
N (Demkowicz-Dobrzański et al.,

2012; Escher et al., 2011). However, in the following sections we will see that a

system with non-Markovian dephasing can actually beat the SNL in scaling, even

when decoherence is included.

6.4 The master equation for dephasing

In the relevant systems of interest in this chapter, such NV centres in diamond,

the dominant source of decoherence is non-Markovian frequency-dependent 1/f

noise (Chirolli & Burkard, 2008; Kakuyanagi et al., 2007; Kane, 1998; Tanaka

et al., 2014). Unlike Markovian noise, which is effectively random, non-Markovian

dephasing is correlated in time. This can, for example, be the result of coupling

between the electron and nuclear spins in NV centres. More specifically, if the

correlation time of the environment is shorter than the time scale of the system

Hamiltonian dynamics, we can consider the noise as Markovian, which provides

a linear (or exponential) decay. On the other hand, if the correlation time of the

noise is long, the decay is considered as non-Markovian, which shows a quadratic

decay.

We begin by looking at a single spin: |Ψ(1)〉 = N1(|g〉 + z|e〉), where N1 =

1/
√

1 + z2 and here we take z to be real. It is easier here to work in matrix form,

in which the single spin is given by

|Ψ(1)〉 = N1

(
z
1

)
. (6.20)

Dephasing is governed by the master equation (Matsuzaki, 2010; Matsuzaki et al.,

2011)

∂ρ(1)(t)

∂t
= −Γ2t

2
[σz, [σz, ρ(1)(t)]]. (6.21)

113



6. SPIN CAT STATES IN QUANTUM METROLOGY

where Γ denotes the dephasing rate. For the single spin the solution to the master

equation is

ρ(1)(t) = N1

(
z2 ze−Γ2t2

ze−Γ2t2 1

)
. (6.22)

The dephasing master equation can be generalised to N spins as follows (Mat-

suzaki, 2010; Matsuzaki et al., 2011):

∂ρ(N)(t)

∂t
= −Γ2t

2

N∑
j=1

[σ(j)
z , [σ(j)

z , ρ(N)(t)]]. (6.23)

where σ
(j)
z acts on the jth spin, and leaves the others unaffected. An alternative

form of this equation, which is easier to work with, is

∂ρ(N)(t)

∂t
= −Γ2t

N∑
j=1

(ρ(N)(t)− σ(j)
z ρ(N)(t)σ

(j)
z ). (6.24)

We can then find the solution to this master equation for an N spin system pre-

pared with all the spins aligned, i.e. a spin coherent state: |z〉 = |Ψ(1)〉⊗N =

Nz(|g〉 + z|e〉)⊗N . Because the state is separable and the dephasing works sepa-

rately on each pure state qubit, we get: ρ̃(t) = ρ(1)(t)
⊗N . We have included the

tilde here for clarity later in the calculation, and dropped the (N) subscript.

We now look at the spin cat state: Nc(|0〉 + |z〉), which has initial density

matrix

ρcat(t = 0) = N2
c(|0〉〈0|+ |z〉〈z|+ |0〉〈z|+ |z〉〈0|). (6.25)

After dephasing, we can see that |0〉〈0| is unchanged, and |z〉〈z| is the spin coher-

ent state which becomes ρ̃(t). Therefore the only terms that we have to calculate

are the cross terms. First, we find that (Ŝ+)j|0〉〈0| becomes e−jΓ
2t2(Ŝ+)j|0〉〈0|

with dephasing, because every |g〉〈e| combination picks up the factor e−Γ2t2 . From

this we find

ρcat(t) = N2
c

[
|0〉〈0|+ ρ̃(t) + Nz

N∑
j=0

zj

j!
e−jΓ

2t2
(

(Ŝ+)j|0〉〈0|+ |0〉〈0|(Ŝ−)j
)]

.(6.26)
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6.5 Sub-SNL precision even with decoherence

We will now see that for non-Markovian dephasing, the spin cat state is able to

beat the SNL in scaling. The full master equation governing dephasing, in the

presence of a magnetic field ω which we wish to measure, is given by Matsuzaki

(2010); Matsuzaki et al. (2011)

∂ρ

∂t
= −iω

2

N∑
j=1

[σ(j)
z , ρ]− Γ2t

2

N∑
j=1

[σ(j)
z , [σ(j)

z , ρ]]. (6.27)

If the initial state is a spin coherent state |z〉, the master equation is solved by

ρ̃ = N2
z

[
|g〉〈g|+ z̃∗|g〉〈e|+ z̃|e〉〈g|+ |z|2|e〉〈e|

]⊗N
(6.28)

where z̃ = zeiωt−Γ2t2 . This is the same calculation above but now z can be

complex, and we now include the effect of the magnetic field (which plays the

equivalent role of the optical phase). For the spin cat state Nc(|0〉+ |z〉) we find

(from equation (6.26))

ρ(t) = N2
c [|0〉〈0|+ ρ̃+ Nd (|z̃〉〈0|+ |0〉〈z̃|)] . (6.29)

where Nd = (1 + |z|2e−2Γ2t2)N/2/(1 + |z|2)N/2.

We are now interested in how precisely this decohered state ρ(t) can measure

the magnetic field ω. To find the precision we use (Chin et al., 2012; Huelga

et al., 1997)

δ2ω =
P (1− P )

µ|∂P/∂ω|2
(6.30)

where P = 〈Φ0|ρ(t)|Φ0〉 is the probability of finding the spin cat state in the

state |Φ0〉 = 1√
2
(|0〉+ i|z〉), and µ is the total number of experimental data points

(Chin et al., 2012). P can be seen as the result if we measure the state ρ(t) in

the measurement basis |Φ0〉 = 1√
2
(|0〉+ i|z〉), which is similar to the initial state,

but with a phase difference i between the |0〉 and |z〉.
Using this formula we find numerically that the spin cat state can measure

ω with a precision scaling as δω ∼ 1/N0.75, as shown in Fig. 6.1. It has been

shown that the best possible precision attainable with uncorrelated spins scales

with the number of spins N as 1/
√
N , the SNL (Chin et al., 2012). The spin cat
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Figure 6.1: This log-log plot shows that a spin cat state undergoing non-

Markovian dephasing can measure a magnetic field, represented by the phase

δφ, with a precision that scales as ∼ 1/N0.75. We see that this scaling surpasses

the SNL by a factor of N1/4, and is in turn outperformed by the Heisenberg limit,

which has a scaling of 1/
√
N .

state therefore beats the uncorrelated case by a factor of N1/4, which agrees well

with the result found for GHZ states (Matsuzaki et al., 2011), and furthermore

this saturates the hypothesised best attainable limit in Chin et al. (2012).

In order to find the attainable precision δω, we have to find the optimal time t

in which to perform the experiment. The total time allowed to estimate the field

ω is T , and so the number of data points we obtain in time T is µ = T/t. For

GHZ states, Matsuzaki et. at. showed that the optimal time to perform each ω

estimation is t ∝ 1/
√
N . We use this same optimal time here. This makes sense,

as in the limit of z →∞ the cat state is equivalent to a GHZ state.
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6.6 Reading out the phase

We have shown that the spin cat state can measure a phase (i.e. a magnetic

field) with a precision that scales with 1/N0.75, but as in the optical case, we still

have to find a way of actually reading out this phase, and it is this task that we

will discuss next.

6.6 Reading out the phase

To describe the phase readout stage, for simplicity we will consider the pure state

|Ψ2〉 = Nc(|0〉 + |zeiωt〉). For the first step we rotate the state back by −z/2,

which gives

|Ψ3〉 = R(−z/2)|Ψ2〉 = Nc(| − z/2〉+R(−z/2)|zeiωt〉) (6.31)

= Nc(| − z/2〉+ eiηωN
∣∣∣∣ zeiωt − z/21 + |z|2eiωt/2

〉
where ηω = ηω(ω) can be found using equation 6.17. If we take the approximations

ωt� 1, z � 1 and N � 1, we find that

|Ψ3〉 ≈ | − z/2〉+ eiηωN |z/2〉. (6.32)

This state oscillates between an even and odd cat state with the phase ηωN ,

which depends on ω, and therefore measuring whether this state has even or odd

numbers of excited spins can allow us to determine ω.

Indeed we saw in section 5.2 that with the optical cat state all we need to do is

count the number of photons in the displaced-back cat state in order to determine

the phase to a high precision. The analogous measurement for the spin system

is to count the number of spins in the excited state, which can in theory be done

with photons directly: if we shine resonant light onto the NV centres they will

only emit a photon if they are excited. Admittedly this is hard to do in practice,

but shows that in principle we can determine the phase using this method; future

work will look at improving this scheme and running simulations, as we have

done in the optical case, to determine the precision with which we can measure

ω. An alternative scheme for reading out the phase can be found in Tanaka et al.

(2014).
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6.7 Chapter conclusion

We have presented a scheme by which we can create a spin cat state, apply a

phase shift by means of a magnetic field, and then measure the phase. When

the dominating noise is non-Markovian, we have shown that the spin cat state

can measure at a precision that beats the SNL by a scaling of 1/N1/4, which

equals the best known attainable precision when a GHZ state is used as quantum

resource (Matsuzaki et al., 2011). Using our scheme we expect that a spin cat

state could perform sub-SNL measurements in a real experimental setting, even

when realistic noise models are included.
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Chapter 7

Conclusions and discussion

We began this thesis by describing a scheme in which the relative position local-

isation of particles is accompanied by quantum entanglement. This mechanism

sheds light on the quantum to classical transition, as it proposes that the classical

phenomena of localisation can be accompanied by entanglement, which is gen-

erally considered a purely quantum property. We then presented an experiment

that can test this localisation mechanism, and furthermore the technology needed

to perform the experiment is already available.

Next we introduced the main focus of this thesis: quantum metrology. After

describing various optical schemes, which we will summarise below, we ended

by looking at spin systems. When photon losses are included, optical quantum

systems, whilst being able to out-perform the classical limits by a constant factor,

cannot achieve a precision that scales better than the SNL ∝ 1/
√
N . However,

we saw that the decoherence mechanism prevalent in spin systems, namely non-

Markovian dephasing, allows for precision measurements that beat the SNL by a

scaling of 1/
√
N1/4. We showed in this thesis that this scaling advantage can be

achieved with spin cat states. We then presented a scheme to create these states

using present day technology, and we briefly introduced a method to extract

the phase information. Future work into the spin systems could focus on this

measurement scheme, and it would be beneficial to perform the same analysis we

have done with the optical states: simulating a Bayesian scheme to determine

the precision that could be obtained by a real experiment.
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7. CONCLUSIONS AND DISCUSSION

The bulk of this thesis, and the main focus of research for the author, is on

optical quantum metrology. We have seen here that optical quantum states can

beat the SNL and measure a phase shift with a precision at the Heisenberg limit.

However, as with all quantum mechanical areas of research, decoherence can

be a huge problem in performing quantum-enhanced measurements in realistic

systems. We have seen that photon loss - the dominant source of decoherence in

optical interferometry - is highly destructive to NOON states, which lose their

precision advantage quickly as loss is increased. However, continuous variable

states such as ECSs are intrinsically more robust to loss, and we saw that, as

shown by the QFI, they can outperform both the NOON states and the SNL for

the majority of loss rates.

Despite this, up to now it has not been at all clear how the full potential of

ECSs as robust states for quantum metrology, as demonstrated by their QFI, can

be exploited. Previous measurement schemes were unable to access the full phase

information stored in the ECS after loss, and the suppression of the off diagonal

coherence had the effect of making ECSs even worse than NOON states. However,

we have presented here a more advanced measurement scheme that not only

recovers the phase information with loss, but also comes close to saturating the

QFI. Moreover we have shown that the input can be tailored so that we can always

achieve a higher precision than NOON states. This allows us to achieve sub-

classical precision measurements that outperform the alternative states for the

majority of loss rates, including the rates thought to be realistic in an experiment.

Furthermore, our scheme uses quantum resources that have already been created

in the lab.

The potential of ECSs is clear from our results, but there are a number of

alternative states that also can make sub-SNL measurements. These include the

squeezed states as proposed by Caves (1981), the Holland and Burnett states in

Holland & Burnett (1993), and the much more recent two-mode squeezed vacuum

in Cable & Durkin (2010). Future work on ECSs should therefore include a

thorough comparison of the ECSs with these states. The squeezed states used in

GW detection (Aasi et al., 2013) are of particular interest, as they are to date

the only example of a routine use of quantum-enhanced optical metrology. ECSs
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should be compared to these states to assess whether they can be used in this

regime.

Whilst GW detection is the only place to use quantum-enhanced measure-

ments routinely, there are many examples of proof-of-principle experiments or

areas that would benefit from optical quantum metrology, such as spin ensem-

bles (Wolfgramm et al., 2013), biological systems (Carlton et al., 2010; Taylor

et al., 2013), atoms (Eckert et al., 2008; Tey et al., 2008) and single molecules

(Pototschnig et al., 2011). We argued in section 3.7 that in all these exam-

ples the relevant resource to count is the number of photons passing through the

phase shift. This idea has been neglected in much of the work on optical quan-

tum metrology which takes the view that we should count the total numbers of

photons used in a scheme. But we believe that, especially given the direction

of quantum metrology towards technological applications, the way in which we

count resources should be considered for each application. If we follow this then

all the optical quantum metrology applications known to this author, with the

exception of GW detection, are concerned with fragile systems in which only the

number of photons through the phase is important. And we saw in chapter 5 that

when we do count our resources in this way, some very interesting results can be

obtained. In particular, we find that multi-mode entanglement is not only un-

necessary for phase estimation at the Heisenberg limit, it is actually detrimental

to precision measurements when loss in included.

This conclusion is significant because all of the examples of quantum metrol-

ogy states mentioned above - ECSs, NOON states, squeezed states, Holland and

Burnett states and the two-mode squeezed vacuum - use multimode entanglement

to beat the classical limits. Therefore, when considering fragile system sampling,

it is likely that single-mode alternatives to these states can be found that can

show improved precision1. Following this principle we introduced a single mode

quantum superposition state: the unbalanced cat state. This state shows sig-

nificant improvements over the alternatives, and can be created and precisely

measured with present day, or near future, technology. We show that by tun-

ing the degree of superposition in our state, and additionally by ‘chopping’ our

1We note that this has recently been done with single mode squeezed states, confirming

their great potential, in Sahota & Quesada (2015).
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7. CONCLUSIONS AND DISCUSSION

states into different sized chunks depending on loss rates, we can produce fur-

ther improvements to our phase estimation scheme that allow us to surpass the

best possible precision obtained by multi-mode-entangled states, as given by the

‘optimal state’ (Demkowicz-Dobrzanski et al., 2014; Ko lodyński & Demkowicz-

Dobrzański, 2013). We expect that this work will open up a new approach to

optical quantum metrology based on single mode states which will have huge

potential for future precision measurement protocols.
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