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Phase resolution for Bose-Einstein condensates
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~Received 2 December 1999; published 3 May 2000!

We discuss how the nature of the relative phase between two entangled condensates differs depending on
whether the entanglement is established by measurements or by coupling. In the former case, the limit of the
resulting phase resolution scales inversely with the square root of the number of atoms. This limit can be
surpassed, however, when the condensates are entangled by coupling and can reach the fundamental Heisen-
berg limit where the phase resolution scales inversely with the number of atoms involved.

PACS number~s!: 03.75.Fi, 03.65.Bz, 42.50.Dv
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Several recent papers have discussed how a relative p
can be established between Bose-Einstein condensates
way this can be achieved is to measure the interference
tern between condensates in their region of overlap@1–3#.
Another method, which has received recent attention, is
allow an exchange of atoms between condensates by
pling them@4#. These two methods are distinct, but both re
on creating an entanglement between the condensates. I
paper, we want to investigate whether these phase prep
tion methods can be distinguished by the nature of the ph
of the final state.

Cirac et al. @5# have shown that the interference patte
measured between two condensates, initially in num
states, cannot be distinguished from the interference pa
that would be measured if the two condensates were initi
in coherent states. This suggests that the phase develop
such a measurement is ‘‘classical’’ in nature. We would li
to investigate whether this is the case for condensates w
have been entangled by coupling. In particular, we wo
like to see whether coupling can lead to better phase res
tion than can be obtained by measurement.

Let us begin by considering the case of measurement.
consider two condensates,a andb, both initially in number
states withn atoms,uc0&5un&un&. We allow atoms from the
two traps to fall onto a detector and record the times at wh
atoms are detected@see Fig. 1~a!#. In the Heisenberg picture
when an atom is detected at time,t, the state,uc0&, is acted
on by

C5
1

A2
~ae2 ivat1be2 ivbt1 if!, ~1!

whereva andvb are the frequencies of trapsa andb. The
additional phase factor,f52pd/ldB , depends on the pat
length difference,d of the two traps from the detector, an
the de Broglie wavelength of the atoms,ldB . For equal path
lengths,f would vanish. If the modes are degenerate,va
5vb , and we transform to a frame rotating at the sa
frequency, this can be written simply asC5(a1beif)/A2.
If n atoms are detected~i.e., half of them! the final state,uc&,
is given by
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A2
~a1beif!G n

un&un&

} (
m50

n
n!

m! ~n2m!!

n!ei (n2m)f

A~n2m21!! ~m21!!
un2m&um&.

~2!

As expected, this is an entangled state.
We would now like to examine the nature of the pha

distribution of this state. To do this, we make use of the ba
of states of well-defined phase@6#,

uu l&5
1

As11
(
p50

s

eipl eup&, ~3!

where l 50,1, . . . ,s, $up&:p50, . . . ,s% denotes the Fock
states, ande52p/(s11) is the rotation between adjace
phase states. The indexs parametrizes the Hilbert space an
in general, we need to take the limits→`. As described

FIG. 1. Two methods of establishing a phase between the c
densates. In~a!, atoms from both condensates are allowed to f
onto a detector. An entanglement and relative phase arises sinc
cannot know from which condensate a detected atom has com
~b!, the two condensates are entangled by coupling them with
man pulses for a timet5p/4G.
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elsewhere@6#, we should calculate the moments as a funct
of s and then take the limits→`, rather than the other wa
round. This is an important distinction to make for lig
states, for which the Hilbert space is infinite due to photo
readily being created and destroyed. In our case, howe
with a fixed finite number of atoms we do not need to ta
the infinite limit of s. We simply need our basis to exten
over the total number of atoms in the state we are examin
~2!, i.e., s5n.

The probability that the relative phase between the t
output modes isDu, whereDu is an integral multiple ofe, is
given by calculating the overlap of the final state~2! with the
joint phase stateuu l&uu l 2Du/e& and summing over all value
of the absolute phase, which is parametrized byl @7#. A
straightforward calculation of this distribution yields,

P~Du!

}U (
m50

n
n!

m! ~n2m!!

n!

A~n2m21!! ~m21!!
eim(Du2f)U2

.

~4!

As expected, the path length difference,d, simply shifts the
phase of the distribution byf52pd/ldB .

The function~4! can readily be calculated, allowing us
extract the dependence of the phase resolution on the
number of atoms,N, in the final state. We determine the fu
width at half maximum~FWHM!, su , of the phase distribu-
tion ~4! for a range of values ofN and then plot log10(su)
against log10(1/N). The result, shown in Fig. 2~a!, is a
straight line with slope 0.50. This means that the phase r
lution of the state varies withN as su}1/AN. This is the
so-called ‘‘standard limit’’ and supports the discussion
Cirac et al. @5# as it is the same resolution that would b
obtained if the two condensates were initially in coher
states.

FIG. 2. Variation of the phase resolution,su , with total atom
number,N, for ~a! measurement-induced entanglement, and~b! en-
tanglement due to coupling.
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With this as our benchmark, we would now like to s
whether better phase resolution can be achieved when
condensates are entangled by coupling. As our guide,
turn to a closely related study of optical interferometry. T
usual approach to interferometry, which uses coherent l
as the input, cannot surpass the standard limit. Howeve
has been shown that by using correlated number states a
inputs, the phase resolution of a Mach-Zehnder interfero
eter can reach the Heisenberg limit,su}1/N @7–9#. We take
an analogous approach to create a Heisenberg limited
tive phase between condensates.

In the optical case, if two identical number states are
into the input ports of a 50:50 beam splitter, the relati
phase between the two output modes is Heisenberg limi
The beam splitter can be considered to rotate the stat
phase space in such a way that the phase fluctuations
transferred to the amplitude quadrature and vice versa@8#. A
state with minimal amplitude fluctuations before the be
splitter will have minimal phase fluctuations afterwards.

Bouyer and Kasevich have shown that the operation
passing two photon states,a and b, through a 50:50 beam
splitter is formally equivalent to coupling condensate sta
with resonant Raman pulses for timet5p/4G, whereG is
the coupling strength@10#. The unitary operator for this pro
cedure is,

U5expF i
p

4
~ab†1a†b!G . ~5!

This suggests that for condensates we can follow
scheme similar to that for correlated optical interferomet
by using Raman coupling as the equivalent of the beam s
ter @see Fig. 1~b!#. To make an accurate comparison with t
measurement case, we start with the same state as be
i.e., two Fock states each withn atoms,uc0&5un&un&. We
then turn on two laser fields which Raman couple the c
densates for timet5p/4G. At the end of this coupling time
the entangled state is,

uc&5expF i
p

4
~ab†1a†b!G un&un&

} (
m50

n A~2~n2m!!!

~n2m!! 2
A~2m!!

m! 2
u2~n2m!&u2m&.

~6!

We would now like to study the phase distribution for th
state and compare it with the result for measurement-indu
entanglement. Making use of Eq.~6! and following the same
technique as before, the relative phase distribution for
state is

P~Du!}U (
m50

n A~2~n2m!!!

~n2m!! 2
A~2m!!

m! 2
e2imDuU2

. ~7!

The same result has been derived for photons pas
through a beam splitter@7#.
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As before, we find theN-dependence ofsu by calculating
this distribution for different values ofN. A plot of log10(su)
against log10(1/N) is shown in Fig. 2~b!. As was the case fo
the results shown in Fig. 2~a!, this is a straight line which
indicates thatsu has the same functional form as for th
measurement case,Du}1/Nr . However, we immediately no
tice two differences from the result in 2~a!. First, we see tha
the phase resolution is much better than for the measurem
case: for 160 atoms, the resolution is roughly an order
magnitude better. Second, the slope of 2~b! is greater than
2~a!, which indicates thatsu has a strongerN dependence. A
fit through the points gives a value very close tor 51, which
means thatsu}1/N, i.e., the phase is Heisenberg limite
This is an important result as it shows that we can achi
the fundamental limit of phase resolution~as governed by the
uncertainty principle! by coupling condensates using Ram
pulses.

To achieve the Heisenberg limit, it is important that t
initial number states are correlated in order to minimize a
plitude fluctuations. This may be able to be achieved by a
plitude squeezing the initial joint state@11# or by creating
correlated atom pairs by a process such as four-wave mi
@12#.

Our starting state,uc0&5un&un&, is highly squeezed and
nonclassical. We see from the results in the first part of
paper that, by measuring the phase of this state, we deg
the quality of the phase information that it can contain to
standard limit. In general, however, our initial state will n
be squeezed but will qualitatively be like Eq.~2!, i.e., it will
be an entangled state which allows the total number of at
er
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to be fixed but the number in each condensate to be un
tain. In this latter case, the measurement process does
degrade the quality of the phase as it has already b
brought down from the squeezed Heisenberg limit. Class
states of the form of Eq.~2! are attractors of phase measur
ments and so further measurements will not disrupt the
This tells us that if we start with a nonclassical squeez
state, we should perform the operations we want with t
state~e.g., as the input to an interferometer! and extract in-
formation from it only at the end. As soon as measureme
are made on the state, the useful phase information that it
contain is degraded until it reaches the classical level.

In summary, we have demonstrated that the nature of
relative phase between condensates depends on the m
of entangling them. The entanglement that arises when
measure an interference pattern between condensates,
to a phase resolution given by the classical standard lim
su}1/AN. When condensates are entangled by coupling,
nature of the phase is very different and the phase resolu
can reach the fundamental Heisenberg limit,su}1/N. These
Heisenberg limited states may have important conseque
for applications such as interferometry and frequency st
dards where phase resolution is of utmost importance. T
may also provide a valuable tool for investigating the nat
of entanglement.
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