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Relative number squeezing in Bose-Einstein condensates
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We describe a procedure for creating pairs of condensates with appreciable relative number squeezing. We
show that our procedure is relatively robust against the effects of loss and may therefore prove to be a practical
way of generating such states. We use a quantum simulation for small numbers that enables us to validate a
semiclassical model. This is used to predict the scaling for large numbers.
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I. INTRODUCTION

Number correlated pairs of Bose-Einstein condensates
a powerful quantum resource. They can, for example,
used to generate states with Heisenberg-limited rela
phase@1,2# of great importance in interferometry@3#. In this
paper we demonstrate how pairs of condensates may be
ated with relative number squeezing. The method we out
does not depend strongly on knowing the number of atom
the initial condensate and works even in the presence of l
losses. It may prove to be a practical technique for gene
ing this resource. It relies on choosing the right balance
coupling between condensates and interactions betwee
oms in each condensate.

II. QUANTUM ANALYSIS

The model we use is similar to one proposed by Ciracet
al. for creating superposition states of Bose condensates@4#.
We consider two condensate modes represented by the
hilation operatorsa and b. Mode a is initially in a number
stateuN& andb is initially in the vacuum stateu0&. We then
couple these two modes with resonant Raman pulses to
ate a pair of condensates with a relative phase defined to
standard quantum limit. If this step is very fast compar
with the time scale of the nonlinear evolution, we can igno
the effects of interactions. After a quarter Raman cycle,
state is given by

uc&5eip(a†b1b†a)/4uN&au0&b

5
1

A2N (
k50

N A N!

k! ~N2k!!
e2 ipk/2uk&auN2k&b . ~1!

This is a superposition of states with different relative nu
bers of atoms in the two modes. The relative phaseDu of
this state scales with number in the same way as the bro
symmetry state that can be produced by measurement@2#,
Du;1/AN. The number correlation between the modes
Eq. ~1! is weak and we would like to squeeze the relat
number distribution.
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To do this, we first apply a far off resonant light pulse
modea to shift the phase by2p/2 @5#. The state after this
step is

uc&5
1

A2N (
k50

N A N!

k! ~N2k!!
e2 ipkuk&auN2k&b , ~2!

which we take to be the initial state of our squeezing pro
dure. In this state, the two modesa and b have zero mean
relative phase.

Next we couple the two condensate modes with reson
Raman pulses, which is equivalent to Josephson coupling
modes, and we allow them to evolve under the influence
the nonlinear interactions. The Hamiltonian for this evo
tion is taken to be

H5U~a†2a21b†2b2!1G~a†b1b†a!, ~3!

where U is the interatomic interaction strength which w
take to be the same for each mode for simplicity, andG is the
coupling strength. We take the trap frequencies to be
same for the two modes and have removed them by tra
forming to a rotating frame. The parameterU depends on the
intrinsic atomic interactions and the shape of the traps. T
can be tuned in principle@6#, but for a given experiment is
fixed. The coupling rateG can be controlled by the exper
mentalist by varying the strength of the coupling laser.

In Fig. 1, we have plotted how the relative number dist
bution of Eq. ~2! evolves for the parametersN5100, U
50.5, andG51 where, for convenience,U andG are unit-
less quantities scaled byG. In Fig. 1~a!, we plot the variance
of Na2Nb as a function ofVt, where V52AGUN1G2.
This is a measure of the width of the relative number dis
bution and we see that it undergoes oscillations. To be
with, the distribution gets narrower with time and, for th
parameters used here, the maximum squeezing occu
Vt51.67. This is precisely the result that we want and it
encouraging how strong the squeezing is. For the pre
parameters, a reduction in the variance by a factor of 2
observed.

In Fig. 1~b!, we plot the number distribution of modea at
the optimum squeezing time. This is identical to the num
distribution of modeb. The original number distribution is
©2001 The American Physical Society01-1
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also shown as a dashed line for comparison and we see
the modes are strongly number squeezed around the m
value of N/2. In other words, the two modes are strong
number correlated.

III. SEMICLASSICAL MODEL

In order to understand these results, we perform a se
classical analysis of the system@7,8#. Our results do not de
pend on this, but we believe that it gives considerable furt
insight into them. The Hamiltonian for the system is giv
by Eq. ~3!, which allows us to write down the equations
motion for the operators,

i ȧ~ t !52Ua†aa1Gb, ~4!

i ḃ~ t !52Ub†bb1Ga. ~5!

We can make a semiclassical approximation by mak
the replacements

a~ t !5ANa~ t ! eiua(t), ~6!

b~ t !5ANb~ t ! eiub(t), ~7!

where Na,b corresponds to the number of atoms in mod
a,b and ua,b corresponds to the phase ofa,b. This is a
reasonable approach to take since, if we look at the form
Eq. ~2!, we see that each mode has the form of a cohe
state and so we can replace the operators with complex n
bers containing the mean amplitude and mean phase of
mode.

Next we define the new quantities of fractional populati
imbalance,

z~ t ![
^b†b&2^a†a&

^b†b&1^a†a&
5

Nb~ t !2Na~ t !

N
, ~8!

FIG. 1. ~a! Time variation of the variance of (Na2Nb) as a
function of Vt, whereV52AGUN1G2. ~b! Number distribution
of modea at the optimum squeezing time.
01560
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whereN5Na1Nb is the constant total number of atoms, a
the relative phase

f~ t ![arg$^a†b&%2p

5ub~ t !2ua~ t !2p. ~9!

We introduce this phase shift since we shall see that i
convenient if the initial value of Eq.~9! is zero when we
come to linearize the system. This transformation in no w
changes our results. We can derive semiclassical equa
of motion for this system in terms of these new quantit
@7#,

ż~ t !52GA12z2~ t ! sin@f~ t !#, ~10!

ḟ~ t !522UNz~ t !2
2Gz~ t !

A12z2~ t !
cos@f~ t !#. ~11!

In Fig. 2, the solid lines show numerical solutions of Eq
~10! and ~11! for different initial conditions. We set the pa
rameters to be the same as for the quantum calculationU
50.5, G51, and N5100. Each trajectory corresponds
z(0)P$20.12,20.04,0,0.04,0.12% and, since the initial state
has zero relative phase between the modes@see Eq.~2!#, we
takef(0)50 for each trajectory.

The quantum state can be thought of loosely as a su
position of these classical realizations. Here we interp
each trajectory to represent part of the state and, in particu
a few adjacent terms in Eq.~2!, i.e., terms with similar num-
bers of atoms in modea. The way that the state is split u
into trajectories is arbitrary and does not affect our resu
The parametersz andf now respectively represent the mea
number difference between modes and the mean phas

FIG. 2. Solutions of the semiclassical equations for differe
initial conditions as a function ofVt. Thez(t) solutions are shown
as the full curves in~a! and the correspondingf(t) solutions are
shown as the full curves in~b!. The dashed and crossed curves a
correspondingz(t) and f(t) solutions of the linearized equation
for two different initial conditions.
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each of these parts. The evolution of the whole state can
seen by observing the evolution of each of its parts or tra
tories.

We notice thatz andf both undergo oscillatory motion
which is what we observed in the full calculation. It is im
portant, to note that at certain timesz vanishes, indepen
dently of the initial value ofz. We see in Fig. 2~a! that the
first focus is sharp and that subsequent focus points bec
more and more blurred. This means that if we started with
initial state that was a superposition of different values oz,
and allowed this to evolve under the Hamiltonian~3!, after
some time the state would be strongly squeezed aboutz50.
The predictions of the semiclassical model agree well w
the full calculation.

First, we would like to understand the times at which t
squeezing is optimized. To do this, we assume thatuz(t)u
!1 and sin@f(t)#'f(t). The second assumption is accura
to within a few percent forf(t),0.5. We will justify these
assumptions later.

Linearizing Eqs.~10! and ~11! allows us to write

ż~ t !'2Gf~ t !, ~12!

ḟ~ t !'22~UN1G!z~ t !. ~13!

These equations are very straightforward to solve and g
the result

z~ t !'z~0!cos~Vt !, ~14!

f~ t !'2
V

2G
z~0!sin~Vt !, ~15!

whereV52AGUN1G2. We see that the conditionsuz(t)u
!1 anduf(t)u,0.5 hold foruz(0)u!1 and (V/G)z(0),1.

If we assume that our initial relative number distributio
is Gaussian~as is the case for the full calculation! then
uz(0)u,;1/2AN, and (V/G)z(0),;AU/G. This means
that the system is well described by the linear equations~12!
and ~13! for N@1 andU/G,1. These conditions are satis
fied by the parameters we use here.

In Fig. 2, we have plotted the solutions of~a! z(t) and~b!
f(t) for „z(0),f(0)…5(0.12,0) ~dashed curve! and
„z(0),f(0)…5(0.04,0) ~crossed curve!. For the crossed so
lution, max@z(t)#50.04 and max@f(t)#50.28 and our two
conditions are satisfied. We see that this approximate s
tion is very close to the solution of the full equations and it
hard to distinguish the two trajectories in Fig. 2. For t
dashed line, max@z(t)#50.12 and max@f(t)#50.86, the two
conditions not satisfied, and we see that this approxim
solution is not very good for long times. It does, howev
still predict the first squeezing time quite well. We can co
clude that the linearized equations should provide a g
description of the full model and we can write down an an
lytical approximation for the optimal squeezing time,

tsq5
p

2V
5

p

4AG~UN1G!
. ~16!
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This is in agreement with the result shown in Fig. 2 a
agrees to within a few percent with the quantum predict
of Vt51.67.

IV. EFFECT OF LOSS

In any realistic physical system, there will be some deg
of loss due, for example, to collisions. In this section w
consider how loss affects our ability to create states w
squeezed relative number by including random loss fr
modesa and b in the quantum model. The results for ou
simulation are shown in Fig. 3.

We consider a system with the same parameters as be
N5100 andU/G50.5, and consider the rate of damping
be the same for each mode. In Fig. 3~a! we show the number
distribution for modea at the optimum squeezing time an
compare it to the initial distribution. For this particular tra
jectory, nine atoms were lost froma and eight fromb. We
see that the mean number of atoms ina is reduced to around
41, as we might expect, but interestingly the distribution
still strongly squeezed.

In fact, the variance of this number distribution is as sm
as for the lossless case. The variance of the two modes m
be identical since the total number of atoms is equal to so
particular value. This means that even for large losses~in this
case 17%) the relative number distribution Var(Na2Nb)
will be strongly squeezed by this method. In realistic ca
we would expect the loss to be much less than this.

The variance of the number distribution of modea as a
function of Vt is shown in Fig. 3~b!. It exhibits the same
behavior as the lossless case and an almost identical
mum squeezing time. In Fig. 3~c! we show the time variation
of the difference of the mean number of atoms in modea
andb. Owing to the loss, this is not necessarily zero and t
effect introduces some additional uncertainty into the nu
ber correlation between the two modes.

An estimate of the width of the distribution of the diffe

FIG. 3. ~a! Number distribution of modea at the optimum
squeezing time~bar graph! compared with the number distributio
of the initial state~dashed curve!. ~b! Variance of (Na2Nb) as a
function of Vt. ~c! Mean value of (Na2Nb) as a function ofVt.
For this simulation, nine atoms were lost froma and eight fromb.
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BRIEF REPORTS PHYSICAL REVIEW A 64 015601
ence in mean number is given byANloss, whereNloss is the
total number of atoms lost. We can write

Nloss'gNt5gA N

GU
, ~17!

whereg is the rate of loss per atom per unit time and w
have put in the optimum squeezing time. This means that
uncertainty in the difference of the mean numbers scale
AgN1/4. So, for largeN or smallg, this is much smaller than
the uncertainty in the number difference of the origin
Gaussian state, which scales asAN. This method for creating
number correlated condensates therefore works even in
presence of appreciable losses during the preparation.
have shown that dissipation has little effect on the varia
of the squeezed number state and that the relative mean
ber uncertainty that is introduced is much smaller than
number uncertainty of the original state.

We can understand this result with reference to Fig. 2~a!.
If we imagine a solution following one of the trajectories
Fig. 2~a!, the loss of a few atoms will simply move us to
different trajectory. Since all trajectories focus at the sa
time, our initial reaction is that it does not matter if atoms a
lost, and there is still optimum relative number squeezing
t5p/2V. The reason that the number correlation is not
good as in the lossless case is that when atoms are
although thez solution is moved to another trajectory, thef
solution is unchanged. From Eq.~13! we see that the phas
of this new trajectory differs from what it should be for pe
fect focusing by an amount proportional to the amountz is
changed by the loss. From Eq.~8!, we see that the change i
z scales as 1/N so, for largeN, the disruption to the phase o
the trajectory is small even for significant losses. This is w
this method is relatively robust to loss.
.
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So far things look good for the experimental feasibility
this scheme. However, one practical difficulty that arises
that the optimum squeezing time depends on the numbe
atoms in the system. This suggests that to implement o
mum squeezing we would need to know how many ato
were in the system to begin with. It is very unlikely that w
would have this information. Fortunately, the squeezing
relatively insensitive to evolution time. We can see this
Fig. 1. For example, even if we underestimatedN by a factor
of 2 and so allowed the system to evolve fort5topt/A2,
where topt is the optimum squeezing time, the final relativ
number distribution would still be strongly squeezed. For
parameters used here, the final variance would be about
which is about 5.5 times smaller than in the original state

For improved correlation, we can imagine a two~or more!
step process. In this we could estimate the number of ato
allow the system to evolve for the estimated optimu
squeezing time, and then perform a destructive measurem
of the number of atoms in one condensate. This would g
us an accurate estimate of the number of atoms in the o
condensate without destroying it. We could then use t
condensate as the starting point for a second relative num
squeezing process. This time, however, our improved kno
edge of the total number of atoms in the system would all
us to predict the optimum squeezing time more accura
and so create better number correlated condensates.
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