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Phase measurement of Bose-Einstein condensates in lattices
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~Received 14 April 2002; published 7 October 2002!

We discuss how the phase distribution of a Bose-Einstein condensate in an optical lattice may be measured
directly using existing experimental techniques. We also demonstrate how a modification of this scheme may
be able to resolve states, that are close to the Mott insulator state, much more accurately than present methods.
This may be of interest for analyzing the quantum state of condensates in recent experiments.
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Bose-Einstein condensates in optical lattices have rece
been a subject of much theoretical and experimental inte
There have been proposals to use them for creating quan
logic gates@1#, macroscopic quantum superpositions@2#, and
to achieve Heisenberg-limited resolution in interferomet
@3,4#. Recent experiments have also demonstrated num
squeezing between lattice sites@5# and even the phase tran
sition from the superfluid to the Mott insulator~MI ! regime
@6#.

Each of these experiments and proposals require a me
for analyzing the quantum state that is created. In the
half of this paper we outline how such a measurement m
be realized using existing experimental methods. The te
nique we propose is an atomic analog of the phase meas
ment by projection synthesis scheme proposed by Bar
and Pegg@7#. This enables us to map out the relative pha
distribution of a condensate directly.

In the second half of this paper, we discuss how a mo
fication to this scheme may be used to analyze the stat
recent MI phase transition experiments. This is curren
achieved by detecting a spatial interference pattern betw
the condensates and using the visibility of the fringes a
measure of the number squeezing. More recently, collap
and revivals of the macroscopic wave function have b
observed and the time scales of these have been use
obtain information about the state@8#. Although both of these
methods clearly demonstrate squeezing, the information
give about the quantum state is rather limited. We discus
scheme that enables us to distinguish states much more
curately than can be achieved by these current techniq
This may allow us to probe the MI phase transition with hi
precision and may be of great interest to present exp
ments.

We begin by briefly outlining the projection synthes
scheme. A much more detailed account of this can be fo
in Ref. @7#. We then detail how this scheme may be imp
mented using current methods and discuss why it may
more feasible in the atomic rather than the optical regim

Our starting point is the state that we wish to analy
This takes the form of a pure state entanglement betw
two condensates,a andb, in adjacent lattice sites with a tota
of N atoms,

uc&5 (
n50

N

cnun&auN2n&b . ~1!
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To measure the relative phase distribution betweena and b
directly, we would need to measureu^Dfuc&u2, whereuDf&
are the two-mode phase states with phase differenceDf @9#.
Since the entangled state~1! has a finite number of terms, w
can write the probability density for it to have a relativ
phaseDf as

P~Df!5
1

2p U(
n50

N

cnexp~2 inDf!U2

. ~2!

To measure this, we need to introduce an entangled s
between modesc andd as a reference state~see Fig. 1!. In
close analogy with Ref.@7# this state takes the form of
reciprocal-binomial state,

uB&5C(
l 50

N S N

l D 21/2

expF i l S Df2
p

2 D G uN2 l &cu l &d , ~3!

where C is the normalization constant with modulus ind
pendent ofDf. To measure the phase probability densi
Ref. @7# prescribes that we pass modesa and d through a
50:50 beam splitter which, for an atomic system, can
shown to be equivalent to Josephson coupling the traps f
quarter cycle@3#. This has been experimentally observed in
system of Raman coupled hyperfine levels of87Rb @10#, and
can also be achieved by allowing tunneling through the
tential barrier separating condensates in an optical lat
@5,6#. We will review the full scheme shortly.

After the beam splitter, we simply record the fraction
the total trials for whichN atoms were detected inDa and no
counts were detected inDd , i.e., the number of atoms de
tected at lattice sitesa andd, respectively, after the coupling
As discussed in Ref.@7# this is proportional to the probability
that there is a relative phaseDf between the condensate
This means that if we were to create an ensemble of ide

FIG. 1. The phase measurement scheme. Modesa and b form
part of a lattice that we wish to analyze andc andd are reference
states. We pass modesa andd through the analog of a 50:50 bea
splitter and detect the final number of atoms in each output po
©2002 The American Physical Society01-1
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cally prepared entanglements betweena andb we could re-
peat the process for different values ofDf and so plot out
the whole relative phase probability density given by Eq.~2!,
P(Df). When this is combined with the atom number d
tribution, it provides all the information required to constru
the whole state. This is potentially a very valuable tool, b
depends on us being able to successfully create the req
reference states~3!.

There has been a proposal for how these reference s
may be created in the optical regime@11#. However, this
relies on making a particular sequence of detections wh
for N photons, occurs in only about 22N of the experimental
runs. This severely restricts the practicality of such a sche
We show now how this situation is greatly improved in t
atomic case since the reference states can be created
ministically. This makes the scheme much more feasible t
the optical case since each experimental run will yield
desired state. For small numbers of atoms, a good appr
mation to the reference state~3! can be formed following the
same procedure as recent number squeezing experimen
optical lattices@5,6#, as we now show.

We consider the two reference state modesc andd occu-
pying two adjacent sites in an optical lattice. This system
be described by the Hamiltonian

H52J~c†d1d†c!1U~c† 2c21d† 2d2!, ~4!

whereJ is the coupling strength andU is the nonlinear in-
teraction strength. For attractive interactions (U,0), which
can be achieved by tuning the atomic scattering lengths@12#,
we adiabatically raise the potential barrier between
modes, thereby lowering the coupling between the sitesJ.
For adiabatic changes, the state remains in the lowest ei
state of Eq.~4! throughout this procedure. If we stop raisin
the barrier when the ratioJ/U reaches some optimum valu
a very good approximation to Eq.~3! can be achieved fo
values ofN up to about 6. Using a sum of squares of diffe
ences approach to compare the ground state of Eq.~4! with
Eq. ~3!, the optimum ratios forN5(2,3,4,5,6) are found to
be (J/U)opt5(20.33,20.50,20.67,20.83,21.03), respec-
tively. This is very well matched by the linear relationsh
(J/U)opt520.167N.

For N.6, this method no longer gives a good appro
mation to the required reference states~3!. This does not
matter, however, as, for all practical purposes, the metho
projection synthesis is limited to small numbers anyway. T
scheme prescribes that we record the fraction of trials
give a certain measurement outcome and, since this frac
decreases with increasingN, we would require an impracti
cally large number of experimental runs to obtain satisf
tory statistics for largeN. Furthermore, as we shall see, th
scheme is naturally suited to analyzing the MI phase tra
tion of condensates in an optical lattice for which typic
mode populations are around three atoms, which falls c
fortably within our range.

The reference state creation process is completed by
vancing the phase ofd relative toc by Df2p/2 using a far
detuned light pulse@13#. This gives us states with the form o
Eq. ~3!. We can now consider how well this scheme wor
04160
-
t
t
red

tes

h,

e.

ter-
n

e
xi-

in

n

e

n-

-

of
e
at
on

-

i-
l
-

d-

using these reference states. Before we do this, for the
of clarity we will review the sequence of steps required
the whole scheme.

Our setup consists of four lattice sites formed by an op
cal standing wave as shown in Fig. 1, with a large init
potential barrier betweena andd. The reference state is cre
ated betweenc andd by tuning the scattering length of th
condensates in these sites to a negative value and then
batically decreasingJ/U to some optimum value, as dis
cussed above. A phase can then be imprinted ond relative to
c to create a state of the form~3!. Modesa andb are the state
that we wish to analyze and so can be evolved in any w
that the experimenter desires. The measurement is perfor
by lowering the barrier betweena andd to allow Josephson
coupling between these modes. This is equivalent to the
tion of a 50:50 beam splitter. Finally, the fraction of trials f
which N atoms are detected ina and none are detected ind
are recorded. A plot of these for different phases imprin
on the reference state is proportional to the relative ph
density.

In Fig. 2 we compare the measurements from this sche
with the phase distribution given by Eq.~2!. Figure 2~a!
shows an arbitrary number distribution for state~1! and Fig.
2~b! shows the corresponding output from our sche
~crossed curve! using the reference state withN54. The
solid curve in Fig. 2~b! is the phase distribution calculate
using Eq.~2! and shows remarkable agreement with the m
surement. Fig. 2~c! and Fig. 2~d! show the corresponding
results for a different arbitrary state using the reference s
with N56. While not quite as good as for the caseN54,
the measured output from this scheme is still in good agr
ment with the phase distribution.

This demonstrates a feasible way of directly measur
the relative phase distribution between condensates. It
prove to be a very valuable tool for analyzing the state

FIG. 2. The number distribution of an arbitrary state~1! is
shown in~a! and the corresponding output from the phase proj
tion scheme using the reference state withN54 ~crossed curve!
along with the phase distribution~solid curve! are shown in~b!. The
corresponding results for a different arbitrary state and using
reference state withN56 are shown in~c! and ~d!.
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condensates in optical lattices. In the remainder of this pa
we will focus on one particular application of this schem
which is of great current interest, namely, analyzing h
close number squeezing experiments get to the perfect
state @6#. We now discuss how this can be achieved a
compare our results with the current technique of measu
a spatial interference pattern.

We consider the case ofm sites in an optical lattice. We
wish to detect small deviations from the Mott insulator sta
uc&MI5u3&1u3&2 . . . u3&m , where we have taken each mod
to have three atoms, in agreement with experiments@6#. As
our comparison, we will take a slightly perturbed MI state
the form

uc&pert5
1

A11e
S 11

d

A6
(
^ i , j &

ai
†aj D uc&MI , ~5!

where ^ i , j & denotes a sum over adjacent values ofi and j,
d!1 parametrizes the perturbation, ande52(m21)d2!1
is the fraction of the total population perturbed fromuc&MI .
If, as in current experiments, we were to turn off the opti
potential and allow the condensates to expand and ove
an interference pattern would be seen. The probability
detecting the first atom at positionx is given by

Pint~u!'
1

2p F11
4d

3
A6S 12

1

mD cosuG , ~6!

where u5kx and k is the wave number of the atomic d
Broglie wave.

As the state approaches the MI state,d→0, the interfer-
ence fringes wash out. This feature has been used in ex
ments as a way of demonstrating number squeezing betw
lattice sites@5,8#. The form of Eq.~6!, however, is a best
case scenario and experiments have shown that fringes
no longer clear for relatively modest squeezing@8#. This lim-
its the ability of such a technique to distinguish states that
close to the MI state.

We would now like to see whether an improvement c
be achieved using phase projection. As discussed above
create a two-mode reference state and project out the p
distribution of a lattice sitea relative to its neighborb. We
are not interested in the distribution of atoms over the ot
sites and so trace over them. This leaves us with a den
matrix of the form

r'u3,3&^3,3u1
d

11e
~ u3,3&^2,4u1u2,4&^3,3u

1u3,3&^4,2u1u4,2&^3,3u!. ~7!

The phase projection technique works for mixed states
well as for pure states@7#, and we can calculate the pha
distribution directly using

P~Df!5
1

2p (
k50

`

(
r ,r 850

k

^r ,k2r urur 8,k2r 8&ei (r 2r 8)Df,

~8!
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which gives

P~Df!'
1

2p F11
4d

11e
cosDfG . ~9!

Comparing Eq.~9! with Eq. ~6!, we see that, in the limit
m→`, the phase measurement scheme gives an impr
ment in the fringe visibility by a factor ofA3/2 over measur-
ing a spatial interference pattern. This suggests that dire
measuring the relative phase distribution offers little fund
mental advantage for distinguishing states close to the
state.

Instead we would like to be able to measure someth
else,Q(Df), that is more sensitive to small changes ind
than the phase distribution. It turns out that there is a w
this can be achieved by making only a minor modification
our phase projection scheme. In particular, when creating
reference state we consider adiabatically raising the ba
higher than the optimum value discussed above. In all ot
respects the measurement scheme remains unchanged
can understand how this works by looking at the form of E
~7!. Modea has either 2, 3, or 4 atoms and, since we rec
only events for which a total of six atoms are detected,
relevant coefficients of the reference state are the ones
correspond to there being 2, 3, or 4 atoms in moded, i.e.,
d2 ,d3 ,d4. In particular, the effect of the perturbed part
Eq. ~7! in the measurement will be proportional to the coe
ficients d2 and d4, and the effect of the MI part will be
proportional tod3. This suggests that by increasing the ma
nitude ofd2 andd4 relative tod3, we can increase the sen
sitivity of our measurement to the perturbation. This is p
cisely what is achieved in these modified reference state

Figure 3, shows the output from this scheme operating
a state of the form of Eq.~5! with d50.004 using different
reference states withN56. The crossed curve correspon
to the output using a reference state withJ/U521.03 and
the dotted curve is the phase distribution~9!. As expected,

FIG. 3. The measured output from our scheme for a state~5!
with d50.004 using reference states withJ/U521.03 ~crossed
curve!, J/U520.1 ~dashed curve!, andJ/U520.02 ~solid curve!.
The dotted curve is the phase distribution given by Eq.~9!.
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they agree for this value ofJ/U and correspond closely t
the measured spatial interference pattern. We see that
distribution is very flat and it would be difficult to distin
guish it experimentally from a completely flat distributio
that corresponds to the pure MI state. The dashed and s
lines are the output from the same scheme but using re
ence states withJ/U520.1 andJ/U520.02, respectively.
We see that the sensitivity to deviations fromuc&MI increases
dramatically. In practice, we need only determine the ra
Q(0)/Q(p). Any deviation from unity indicates a deviatio
from the MI state. For the modified reference states, eve
very small deviation from the MI state results in a lar
deviation of this ratio from unity and should be able to
seen experimentally. For a given reference state, this r
varies linearly withd, and so a measurement should ena
us to determine the size of the perturbation.

In conclusion, we have shown how the phase project
method of Barnett and Pegg may be applied to system
et

04160
his

lid
r-

o

a

io
e

n
of

entangled condensates and how a good approximation to
reference state may be generated deterministically using
isting experimental techniques. A comparison of the res
of this scheme with the theoretical phase distribution sho
excellent agreement for small numbers of atoms. This is
improvement over proposals in the optical regime and m
have many uses in the analysis of condensates in op
lattices. Finally we have shown that, by slightly modifyin
the reference state, we may be able to distinguish the M
insulator state from small perturbations of it with muc
greater resolution than by the present technique of measu
a spatial interference pattern. This may be of considera
interest for the study of the Mott insulator phase transition
current experiments.
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