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Abstract. We discuss the emergence of ‘classical’ relative positions between 
delocalized quantum particles when light is scattered off them. These well- 
defined separations are due to entanglements between the particles and can 
occur even though the absolute position of each particle remains undefined. 
This suggests that the natural spatial coordinates for such a system are those of 
relative position. We check that these relative localizations provide a consistent 
coordinate space by demonstrating their transitivity and we discuss how they 
may emerge in a multiparticle system. 

1. Introduction 
A key issue in understanding the boundary between quantum and classical 

physics is how objects localize in position space. One description of this process 
that has received a lot of attention is the theory of decoherence in which a system 
is coupled to an environment with many degrees of freedom, causing the decay of 
its macroscopic coherences [1-4]. This theory, however, is often difficult to apply 
because of the complex nature of the interaction with the environment. More 
recently, there has been a simpler proposal for how well-defined ‘classical’ relative 
positions can emerge between quantum particles due to entanglement [S]. In this 
scheme, photons are scattered off two delocalized particles and detected in the 
far-field. This process entangles the two particles in momentum space and a 
feedback mechanism ensures that robust relative positions are generated between 
them even though the absolute position of each particle remains undefined. This 
result is interesting not only because it demonstrates how robust classical positions 
can emerge from quantum superpositions, but also because it suggests that the 
natural spatial framework for quantum mechanics is relative position. 

An important question that arises from this scheme is whether the relative 
positions that are generated provide a consistent coordinate space. In this paper, 
we address this issue by investigating whether the relative positions that emerge 
are transitive. In other words, if we were to measure a relative position between 
two particles, 1 and 2, and then do the same between particle 2 and a third particle, 
3, would we be able to predict the result of a measurement of the separation of 
particles 1 and 3 ?  A similar question has been addressed in the context of the 
quantum phase of atomic Bose-Einstein condensates [6]. 

It may seem trivial that transitivity should hold, but this is only obvious in 
the case of well-defined classical positions. In the localization scheme presented 
here, the positions of all the particles are undefined and remain so throughout 
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the measurement process. Instead, we need to investigate whether the relative 
positions due to the build-up of entanglement between the particles are transitive. 
It is not clear that this must be the case. 

In this paper, we shall first develop a formalism for the scattering process in 
order to check the transitivity result for single scattering events. We shall then 
generalize this scheme by iterating it to simulate multiple scatterings. Finally, we 
shall consider how a framework of relative positions can emerge in a multiparticle 
system. Before we do any of this, however, it is useful to review the localization 
scheme for two particles. 

2. Localization scheme 

locations, x1 and 322, respectively. This state can be written as 
We consider two particles that are initially in a superposition of different 

We take the coefficients b(x1) and c(x2) to be normalized flat distributions, i.e. we 
do not assume any initial localization for particles 1 and 2, and C lb(x1)I2 = 1 and 
C Ic(x2)I2 = 1. Next, we illuminate these delocalized particles with optical plane 
waves with wavenumber k, as depicted in figure 1. The  photons scatter at some 
angle 0 and are detected in the far-field. For simplicity, throughout this paper we 
will consider the relative position between the particles only in the x direction 
(as shown in figure 1). However, all the results can readily be extended to three 
dimensions. 

For a photon scattered at angle 8 the momentum kick to the particles in the x 
direction is Ak = k sin 0. Since we cannot know which particle the photon scattered 
from, the state is put into a superposition of a momentum kick to each particle. 

Figure 1 .  Optical plane waves are incident on a pair of particles. Photons are scattered at 
some angle 0 from particles 1 and 2. The scattered photons are measured at detectors 
in the far-field and the scattering angle is recorded. 
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Transitivity of the relative localization of particles 2325 

After a single scattering event, the state just before the photon is detected is 
therefore [5] 

x [ 1; d8 (exp (ikxl sin 8) + exp (ikx2 sin 8))le) + AIO) I x I , ~ ~ ) ,  1 
where the square brackets contain the photon state and 18) represents a photon 
scattered at angle 8. Throughout this paper, we will use lower case I@) to represent 
the state of the particles and upper case IY) to represent the entangled system of 
the particles and the photon. This is the same notation as used in [5]. The term 
proportional to 

represents a non-scattering event and is necessary since the total scattering rate 
depends on the relative separation of the particles. The  probability for a photon to 
be detected at angle 8 can be calculated directly from (2) and is given by 

(5) 
2n 1 

P(8 = 0) = - c lb(~1)1~1c(x2)1~ lo sin2 [ik(xl - x2)sing 
2xx1."2 

where 20 is the annihilation operator for a photon scattered at angle 8. This 
probability distribution is properly normalized, SF P(8) d8 = 1. 

We see from (4) and (5) that, if b(x1) and 4x2) are completely flat distributions, 
the probability distribution for the angle of detection does not depend on the 
absolute positions of the particles, x1 and x2, but only on the relative position, 
xl2 = x1 - x2. It is convenient, therefore, to rewrite the state in terms of this 
variable. The  initial state becomes 

where 4x12) is taken to be a normalized uniform distribution, i.e. the relative 
position between 1 and 2 has a large uncertainty. For this new state, the probability 
of detecting a photon at angle 8 # 0 follows from (4) and ( 6 ) ,  

1 
P(8) = -c ld(x12)I2 cos2 

2x XI2 
(7) 
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where we have used C Ic(x2)I2 = 1. We can simulate a scattering event by 
randomly selecting an angle of detection, 8 = 012, from this distribution (7). 
After this scattered photon is detected, the new state, 1+1), is 

1+1) = kih I Yo) 

a C c(x2) exp (ikx2 sin 012)1x2) 
x2 

c?J C 4X12)(1 + exp(ikx12 sin ~12))lXl2). (8) 
$12 

We can calculate the relative localization between particles 1 and 2 directly from 
this state by using the density matrix, p = 1@1)(+1 I. The reduced density matrix 
for x12 is found by tracing p over x2, i.e. pi2 = Trz(p). The probability distribution 
for particles 1 and 2 to have a separation of x12 is then 

&12) = (X121P121X12) a l4X12)I2 cos2 (awz), (9) 
where a! = k sin 01212.  Since the d(x12) distribution is flat, this probability density 
has maxima at 

nn 
XI2 = x12 = -, 

a! 

where n is an integer. This means that by detecting a photon scattered from two 
delocalized particles, a relative localization is induced. This process can be iterated 
to model multiple scattering events. In this case, subsequent detection events are 
conditioned on earlier results, which feedback into the system and successively 
narrow the position probability density [S-71. 

It is instructive to consider the position of particle 2 after the scattered photon 
has been detected. We can calculate this by tracing the total density matrix 
p = 1+1)(+11 over x12 to give p2 = Tr12{pJr and the probability density for particle 
2 to be located at x2 is then 

&2) = (X21P21XZ) a lC(X2)l2. (11)  
This is a uniform distribution and remains so after any number of scattering 
events, which means that the absolute position of particle 2 (and hence also of 
particle 1) remains ill-defined. As we have seen above, however, this does not 
preclude well-defined relative positions from developing between the particles. 

3. Transitivity 
Now that we have outlined the formalism for the localization scheme, we wish 

to investigate whether the relative positions generated by this method are transi- 
tive. We consider a situation similar to that depicted in figure 1, but now with the 
addition of a third delocalized particle, 3. In this case, we can write the initial state 
in position space as 

where ~ 2 3  = x2 - x3 and 4 4 ,  e(x12) andf(x23) are all normalized flat distributions, 
i.e. we do not assume an initial relative position between any pair of particles. 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f L
ee

ds
] A

t: 
17

:3
4 

8 
O

ct
ob

er
 2

00
7 

Transitivity of the relative localization of particles 2327 

As above, the procedure starts by detecting a single photon scattered off particles 1 
and 2 at an angle 0 = 0 1 2 .  Next we detect a single photon scattered off particles 2 
and 3 at an angle 8 = 023. By a straightforward extension of the two particle 
analysis above, the state after these two scattering events and detections can be 
written as 

I+) a Cc(x2)  exp + B ) ~ ~ I I Q )  8 C e(x12)(1+ exp (2iax12))1x12) 
xz XI2 

where a! = (k sin 012)/2 as before and /I 3 (k sin O23)/2. By writing the state in this 
form, we see that the absolute position of particle 2, x2, is independent of the 
relative positions between the particles, x12 and ~ 2 3 .  The  absolute position of 
particle 2 (or any other particle) remains undefined throughout this measurement 
process. For this reason, we can simplify the state in the remainder of this analysis 
by neglecting 1x2). We can also ignore the coefficients e and f since they are 
uniform. With these simplifications, the state has the form 

I+) a Cr1 +exP(2i~x12)1lX12) 8 Cr1 + exP(-2iSX23)11X23). (14) 
2 1 2  X23 

The reduced density matrix for ~ 2 3  is found by tracing p over x12, i.e. p23 = 
Tr12(p], and the probability distribution for particles 2 and 3 to have a separation 
of ~ 2 3  is then 

p(x23) = (X231P231x23) a C0S2(&23). (1 5 )  

The most probable separations for this distribution are 

x23 = x 2 3  = nm/p ,  (16) 

where m is an integer. In a similar manner, we can calculate the probability 
distribution for the separation between particles 1 and 2, 

P(x12) = (X121P121X12) 0: cos2 b 1 2 ) .  (1 7) 

In this case, the most probable separations are x12 = X12 = nn/a,  where n is an 
integer. We notice from (10) that these are the same values as those induced by the 
first scattering event. In other words, the second scattering event does not disrupt 
the pre-existing separation between 1 and 2. This feature is crucial for ensuring 
transitivity between the relative positions. 

Our final task to demonstrate transitivity is to show that the relative localiza- 
tions obey the relationship 

x 1 3  = x 1 2  + x 2 3 .  

T o  confirm this, we need to calculate x 1 3 .  We can do this by rewriting the state 
(14) in terms of the variable ~ 1 3  = x1 - x3. This gives 

(1 8) 

I @ )  a (1 + exP (-2ipX23))(1 + exP [2ia(xl3 - x23)1)IX23)IXi3). (19) 
x23 XI3 
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Proceeding as before, we can find the most probable separations between 1 and 3 
by first tracing over ~ 2 3  to give the reduced density matrix, pi3 = Tr23 (p). The 
probability distribution is then 

p(x13) = (x131P13~x13) ccos2(px23)  cos2 [a(x13 - x23)]. (20) 
X13 

If we consider the two cosine factors separately, we can find the values of xi3 that 
maximize this probability distribution by observation. For a given value of ~ 2 3 ,  the 
second cosine factor is maximized for values 

where n is an integer. If we were to set the first cosine factor to unity, we see that 
the sum over all values of ~ 2 3  gives a flat probability distribution, i.e. no value of 
~ 2 3  is favoured. However, the first cosine factor is not flat. We can consider it as a 
weighting factor that enhances the probability for values of ~ 2 3  = mx/& Combin- 
ing this observation with (21) means that the most probable separation between 
particles 1 and 3, xi3 = X13, is 

where the last equality follows from our earlier results (10) and (16). This demon- 
strates the correctness of the transitivity relationship (1 8) for single scattering 
events. 

4. Multiple scattering events 
Now that we have established the mechanism for transitivity, we can consider 

the case of multiple scattering events. This can be achieved in a straightforward 
manner by iterating the scheme outlined above. Rau et al. have considered 
multiple scatterings in detail for the case of two particles [S]. They showed that 
subsequent detections result in a single sharply defined peak in the relative 
position probability density, i.e. the periodicity of relative localization is removed. 
In our simulations, we account for both the scattered and non-scattered photons as 
discussed in section 2. 

We can generalize (14) for multiple scatterings from particles 1 and 2, followed 
by multiple scatterings from particles 2 and 3 as follows, 

where (aj) = ((k sin 012,j)/2) is the sequence of values of detections from 1 and 2, 
and (sj] = ((k sin 023,j)/2) is the sequence of values of detections from 2 and 3. 
If the two terms in square brackets are peaked at x12 = Xl2 and ~ 2 3  = X23 respec- 
tively, it is straightforward to show that the transitivity relation (18) holds for 
multiple scattering events. This can be seen by calculating the probability distri- 
bution, P(x13), as before 

p(x13) c fl cos2 (Bjx23) cos2 [aj(x13 - x23)]. (24) 
X 2 3  j 



D
ow

nl
oa

de
d 

B
y:

 [U
ni

ve
rs

ity
 o

f L
ee

ds
] A

t: 
17

:3
4 

8 
O

ct
ob

er
 2

00
7 

Transitivity of the relative localization of particles 2329 

Following the same argument as for the single scattering particle case: for a given 
value of ~ 2 3 ,  the second cosine factor has maxima at ~ 1 3  = Xi2 + ~ 2 3 ,  and the first 
cosine term can be thought of as a weighting factor that enhances the probabilty 
for ~ 2 3  = X23. Combining these results, we see that the most-likely value for ~ 1 3  
would be X12 + X23, as predicted by transitivity. In order to confirm this result 
for multiple scattering events, we need to carry out numerical simulations of the 
detection process. 

We begin our simulations by scattering 100 photons off particles 1 and 2 and 
detecting the angle at which they are scattered. This process induces a relative 
localization between the particles and the pattern of detected photons provides a 
read-out of the value of the separation that is induced. It is convenient to restrict 
the separation to some finite interval. For definiteness, we will take e(xl2) to be 
1/(10A)”2 for x12 E [0, lOA] and zero otherwise, where A is the wavelength of the 
incident photons. 

In figure 2 ( a )  we have plotted the probability density for the separation of 
particles 1 and 2 after this process. We see that a single sharp peak has formed, 
indicating a well-defined relative localization at X12 = 3.1 in units of the photon 
wavelength, A. For different runs of the simulation, this peak is randomly located 
within the interval shown. 

The second step in the simulation involves scattering 100 photons off particles 
2 and 3 and recording their scattering angle. We take the initial relative position to 
be the same as it was initially for particles 1 and 2, i.e. we take f ( ~ 2 3 )  to be 
l/(10A)’’2 for 3 2 3  E [0, l O A ]  and zero otherwise. The probability density for the 
separation between these two particles after this process is shown in figure 2 ( b ) .  
As with particles 1 and 2, a sharp peak emerges which, for different runs of the 
simulation, is located randomly in the interval shown. The pattern of scattered 
photons provides a read-out of this location, which in this case is X23 = 5.1A. 

x =3.1a 12 

X2,=5. 1 1 
0‘ II I J 

2 8 10 

I 041 

4 12 16 20 

XIP 

Figure 2.  (a )  The probability density for the relative position between particles 1 and 2 
after 100 photons are scattered off them. (b )  The probability density for the relative 
position between particles 2 and 3 after 100 photons are subsequently scattered off 
them. (c) The probability density for the relative position of 1 and 3 before any direct 
measurement is made of this separation. 
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Finally, we would like to see whether we can predict the outcome of a 
measurement of the separation between particles 1 and 3 using the results of our 
measurements of the separations between 1 and 2 and between 2 and 3. Such a 
prediction relies on the fact that the relative position of 1 and 2 is not disturbed by 
the measurements on 2 and 3. If the transitivity relationship (18) holds, we would 
predict a value of Xi3 = 3.lh + 5.lh = 8.2h. 

In figure 2 (c) we have plotted the probability density for the separation between 
1 and 3 calculated from the quantum state of the system before any direct 
measurement of this is made. We see that the distribution is indeed peaked at 
Xi3 = 8.2h, which confirms the prediction of (18). The simulation was repeated 
many times and, in each case, we were able to predict the value of Xi3 from the 
other results. This demonstrates the transitivity of the relative positions which are 
generated by light scattering. 

Of course, we need not stop here. We could measure the position of a fourth 
particle relative to any one of the others and, from the outcome of this, predict the 
separation between any pair of particles in the system. This process could be 
continued for many particles. We have seen that these well-defined separations can 
arise even though each individual particle remains delocalized in absolute space, 
which suggests that, like the quantum phase of Bose-Einstein condensates [6, 71, 
the most natural space to work in is relative coordinate space. This shows how a 
‘classical’ framework of relative positions can emerge for a multiparticle quantum 
system due to entanglement. 

5. Multiparticle scattering events 
So far, we have considered only scattering from pairs of particles. It is 

relatively straightforward to generalize this result to include scattering from 
many particles. One such situation we can consider is that a relative localization, 
X12, has already been established between particles 1 and 2 (by two particle 
scattering) and then a third particle, which is delocalized, is added to the system. 
By scattering light from all three particles, the third particle is localized relative to 
the other two. We can see this as follows. 

We consider that a single photon is scattered from this system and detected at 
an angle O t  and we do not know which of the particles it scattered from. Following 
the same formalism as above, the state after the detection can be written in relative 
coordinates as 

where 5 = (k sin8)/2. The probability distribution for the position of particle 2 
relative to particle 3, ~ 2 3 ,  is then 

?In this case, certain detection angles will be preferred even for the first detection since 
particles 1 and 2 already have a well-defined separation. 
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Transitivity of the relative localization of particles 2331 

where p23 = [$)($I in this case. This distribution is no longer flat, but has local 
maxima at values 

where n is an integer. This means that the detection process begins to localize the 
third particle relative to particle 2 and hence also to particle 1. As before, we might 
expect subsequent detections to reinforce this localization. Simulations confirm 
that this is indeed the case and scattering from all three particles localizes particle 3 
relative to the other two. 

We can now consider adding a fourth delocalized particle to the system. In this 
case scattering events between this fourth particle and any one, two, or all three 
of the other particles will result in relative localizations between every pair of 
particles. We could also imagine two ‘domains’ of particles arising with well- 
defined localizations within themselves but with no relative localization between 
the domains. Scattering between any number of particles in these two domains 
would result in relative localizations emerging between all the particles in the two 
systems. Furthermore, the transitivity result we have demonstrated above (22 )  
ensures that all these relationships are consistent. This result can also be applied 
to systems for which all the particles are initially delocalized. 

6. Conclusion 
We have discussed how light scattering from delocalized quantum particles can 

lead to the emergence of ‘classical’ relative positions. This process occurs even 
though the absolute positions of the particles remain undefined and suggests 
that the natural spatial framework for such a system is relative position. We 
have then extended this result to systems with more than two particles and showed 
that the relative localizations induced by either pair-wise or multiparticle scatter- 
ing events are transitive. This means that relative localizations induced by light 
scattering are robust and provide a consistent ‘classical’ coordinate framework. 
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