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Sub-shot-noise-limited measurements with Bose-Einstein condensates
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We discuss practical schemes for using entangled Bose-Einstein condensates to detect phase shifts with a
resolution better than the shot-noise limit. We begin by outlining a procedure for demonstrating how squeezed
matter waves can be used to make measurements by simply lowering and raising a potential barrier between
two condensates. The phase shift is read out by a scheme which involves releasing the condensates and
studying the collapses and revivals of the visibility of the observed interference fringes. Finally we show how
this scheme could be extended to measurements of other quantities such as gravity. All the steps of this process
are attainable with current technology and so may provide a practical route for achieving enhanced resolution
measurements with matter waves.
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[. INTRODUCTION Once this is established, we shall show how the scheme can

An ongoing challenge in physics is to make rnet—jL,Q,ure_easiI_y be modified to measure different quantities such as
ments of physical quantities at the limit determined by quangravity. Importantly, all the steps of these schemes are
tum theory. Considerable effort has therefore been devoted ®chievable in the laboratory with current technology and so
reducing the uncertainty in interferometric measurements téay provide a feasible route to achieving sub-shot-noise
below the shot-noise limit, where the precision scales inineasurements with matter waves.
versely with the square root of the total number of particles
involved, n,;. A number of theoretical schemes have shown
that, by using macroscopic quantum interference Il. MEASUREMENT SCHEME
(Schrédinger cat statgsthe measurement accuracy may be

able to be improved to the Heisenberg limit, where it scalesd T.hf dseql;]encet.of"stgpstor Ihi measu:er?ent prp;:ess IS
“12 11_3 The problem with these depicted schematically in Fig. 1. As our starting point, we

as ng: rather thanng ; ; iy ,
schemes, however, is that cat states are acutely sensitivegi?ns'der two potential wells containing trapped atomic con-
dissipation and the enhanced resolution that they offer i ensates. We assume that_o_nly_a single level is relevant_m
wiped out by the reduced resolution resulting from theireaCh well and label the a_nr_n_hllatlon operators for an aFom n
short life spang4]. these levelsa and_b. The |n|t|_aI state of the systenl_vﬁ), is
dughly squeezed in the relative number of atoms in the two

An alternative approach to the use of cat states is to pa s Thi hat th lati b : X h
number correlated photons through a Mach-Zehnder interfef/€!'S- This means that the relative number variance Is muc

ometer, as proposed by Holland and BuriBit In this case small_er than the total number of atoms in the system,
the phase information is encoded in the number variance dlor—1-€-
the final state rather than the mean number of atoms at each
output port, as is the case for standard interferometry. This (An)?=(y|(a'a-b'b)?|) — ((yla’a- bTb|y))? < N
scheme is remarkably robust to loss and so overcomes the (1)
problems associated with the fragility of cat states. However,
the improvement in phase resolution that it enables is rapidly
eliminated when the effects of imperfect detectors are ac-
counted for[6]. a b/ @ |
Recently there has been a theoretical discussion of how
the effects of dissipation and finite detector efficiencies may
be jointly overcome[7]. This involves making use of the fw) = IN) [N
superfluid—to—Mott-insulator phase transition to entangle and
disentangle atomic Bose-Einstein condensates in an optical
lattice. In this paper we discuss a practical way that this © W
scheme may be implemented and present a method for ex- Image -— .
perimentally measuring the output signal. We show that the
phase shift may be deduced from the visibility of interfer-
ence fringes observed when the condensates are released angtG, 1. The measurement scher@. The potential barrier be-
allowed to overlap. tween two correlated Fock state condensates is rapidly reduced and
We shall first demonstrate the principle of the scheme byhe system is allowed to evolve for tinie(b) The barrier is rapidly
considering in detail how it can be used to measure the erraised again and the system is allowed to evolve for timec)

ergy splitting between two eigenstates in a double-well poFinally the traps are turned off and an interference pattern is ob-
tential and also the interaction strength between the atomserved in the spatial overlap of the condensates.

(b)
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This initial state can be created by slowly switching on a
double-well trapping potential across a condensate. The 03} 8
Hamiltonian that describes this system{&

U
H=-J@b+b'a) + =(a'a?+b'b?, (2)
2 0.2} 1
wherelJ is the coupling strength between the wells>0 is c
the strength of the on-site interaction energy, and we have se©
i =1. As the potential barrier between the wells is increased,

the coupling decreases. If this is done sufficiently slowly, the | |
condensate adiabatically follows the ground state of the sys
tem. When the tunneling between the wells is much smaller
than the interactions between atoms, the ground state ha
20 40 60
m

reduced fluctuations in the relative number of atoms. In ex-
treme cases, a phase transition can occur to the Mott insula 0
tor state, for which the relative number variance vanishes,
(An)2=0, and each well contains the same number of atoms,
N=ny/2. This phase transition has been experimentally
demonstrated in condensates trapped in three-dimensional ‘
optical lattices[9]. _v@2m) ! (2(N-m))!
For simplicity, we will take this highly squeezed “Mott ™ 2Nm1(N-m)!

insulating” state as the starting point for our measurement o ) o
scheme: A plot of these coefficients is shown in Fig. 2 f=40. We

see that the state is a superposition of different numbers of
) = [N)alNp. (3)  atoms in the symmetric and antisymmetric mogép and
(5). It has the same form as the ouput from a 50:50 beam
splitter with number correlated inpuf$] and is important
because the width of the number distributidm, is of order
N. By the uncertainty relatioAnA ¢~ 1, this means that the
relative phase is Heisenberg limitefl¢p~1/N.

80

FIG. 2. Plot of the coefficient€,, given by (7) for N=40.

()

In this regime, we take the coupling and interaction coeffi-
cients to have the valuek=J; andU=U;. We can see from
Eqg. (2) that this is the ground state of the system for repul-
sive interactiongU;>0), since there is initially a high po-

tential barrier separating the two welld; <U;N, which Decoherence effects are crucial for any scheme that seeks

me_ﬁ?;‘ ﬁvﬁtcsigpnggflf: :)hrgccec;ipi“sntgot?a:gdly reduce the barEO exploit quantum superpositions to surpass what can be
rier height[see Fig. 2)] so that the coupling and interaction achieved by classical means. Losses tend to destroy superpo-

coefficients acquire the new valuds and U,, respectively sitions and drive the system towards classical mixtures. The
2 . : . . )
We want to do this quickly with respect to the rate of tun- state(6) will be susceptible to decoherence due to single

nelina between the wells. but adiabatically with respect t article losses or quasiparticle effects when the barrier is
9 T P y P lowered [12]. However, in previous work we showed that
the energy level spacings within the traps. The latter condi-

tion ensures that our two-mode approximation remains validStates of the form of Eq6) retain their enhanced relative
PP hase resolution even in the presence of substantial losses

;I;:I‘lls ggﬁfgﬁgt? gtg(f!f(r)? evsgaéizaﬂsnil{:iggtbtiinbz):ﬁz:'?;eF?]. We believe that this robustness feature is one of the main
Y : a&ivantages of this scheme.

e e o o1 oTane® The nex iz 0 impose & Inear vaying phase across
' PP the number distributiori6). This phase is the quantity that

as gﬁggiﬁzdbgr{]e?vﬁ;‘?ngna?g dhlsg?lfhe counling term iwe wish to measure and, in an interferometer, encodes the
’ ping Bath length difference of the arms. By modifying the scheme

e oo 3L NS o, We Can ey e Guanty ht we messur nd
9 we will consider the measurement of different quantities later

th? system. The.s‘? are as;qcia}ted with the following SUPETPG; this paper. For now we will consider the most convenient
sitions of the original annihilation operators: case: the two modes and 8 have different energies, so, by
a=(a+b)\2, (4)  simply holding the system for some tintend allowing the
state to evolve, the modes acquire different phases. This
scheme corresponds to a measurement of the energy splitting

p=(a-bh2. 5) between the symmetric and antisymmetric eigenstatés,
In this basis, the state has the form =2J,. After some hold timet, the state is
N N
[4) = 2 (= D"Cf2m) 4J2(N = m)), (6) )= 2 (- DT MEC2m) 2(N-m)s, ()
m=0 m=0
where where we have ignored the irrelevant overall phase.
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The next step of the procedure is to rapidly raise the bar-

rier between the wells aga[see Fig. 1b)]. It is now conve-

nient to convert the state back to the original eigenbasis of

the number of atoms in trap and in trapb. After some
algebra, it can be rewritten as

2N

) = =2 (= D*DK)a[2N — K)p,, 9)
2NIS)
where
v N N-k+2p
D= >
p=max0,k-N} N-k+2p P

X k1 (2N=K)!(i sin )N (2 cosg)® (10)

and ¢=2J,t.
For the caseb=0, we requirdN-k+2p=0 in Eq.(10) for

PHYSICAL REVIEW A 70, 033601(2004)
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FIG. 3. The crossed curves show the number variance of state

nonvanishing values dd,. This means that the state reducesg) as a function ofé for N=40 andN=80. The solid lines are
to |)=|N)4|N), as we would expect, since the state has nogjiven by Eq.(12).

had time to evolve at=0. For the caseb=m/2, we require
k—-2p=0 in Eq. (10). This means that, ignoring any global
phase, the state reduces to

N
)= 2 Crl2m)af2N - m), (1)

which is equivalent to the state obtained by passing(By.
through a 50:50 beam splitt¢5]. The broad number distri-

The problem with such a scheme, however, is the mea-
surement process itself. Kiet al. showed that if we were to
try and measure this variance directly by number counting,
we would need detectors with efficiencies better than
—-1/N) in order to see any enhancement in the resolution
beyond the classical limif6]. However, in order to exploit
the favorable number scaling of the phase resolution that this

bution shown in Fig. 2 is consistent with the interpretationSchéme has, we would liki to be large, which means that

that when two independent condensates are connected,"4¢ Would require atom detectors with almost perfect effi-
macroscopic superposition of different Josephson current€€ncies. This makes this approach unfeasible.

flow between thenfil2]. It turns out that for any value ap,
the number statistics of sta(®) are precisely those obtained

In this paper, we demonstrate a technique that overcomes
this crucial problem and allows the phase information to be

by passing Eq(3) through a Mach-Zehnder interferometer extracted from the variances without a prohibitive depen-

with a phase difference ap between the arms.

This seems to be a very convenient way of implementin
the condensate interferometer scheme outlined in previo

dence on the detector efficiencies. Our approach involves

etween the two traps. Collapses in the order parameter have

inaking use of the collapses and revivals in the relative phase

work [7]. By simply lowering and raising the barrier between been proposed as a means of determining the state of optical

the trapped condensates we can achieve interferometry wil3] @nd atomic[14] samples and have been observed in a
number correlated condensates. This will form the basis ofyStém of condensates trapped in an optical lafl€. The

our measurement schemes.

IIl. READ-OUT SCHEME

collapse time depends directly on the number variance of the
state(12) and so may provide a means of reading out the
relative phasep.

Once the barrier has been raised aggdiig. 1(b)], the

We would now like to consider the principal features of coypling rate between the wells is much smaller than the

the output from the interferomete®) and, in particular,
study how the phase shif is encoded on it. In Fig. 3, we

on-site interaction strength);<U;N. The system now
evolves purely due to the nonlinear term. After some time

have plotted the variance in the number difference of atomgye state is

between the wellgAn)?, as a function of for two different

values ofN. The crosses are the variances calculated from

Eqg. (9), and the solid line is a plot of

1
(An)?= ENZ sir? ¢, (12)
which fits the crosses extremely well. For small valueghpof
the relative number variance is given k&n)?~ (N¢)?/2,
which means that by measuriiggn)? we obtain a value for

2N

> @KU 1)kD, k), [2N - K)p.  (13)
k=0

1=

The phase of each term in the superposition evolves at a
different rate. Owing to the discrete nature of the superposi-
tion, at times that are multiples et 7/U; (so-called revival
times, all the phases return to the values they had=0.
These revival times are independent of the coeffici@qts

N¢ and so may be able to measure phase shifts with a sen- The final step of our procedufsee Fig. 1c)] is to make

sitivity that scales as N.

measurements on this staf3) and see what information we
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FIG. 4. Fringe visibility as a function of) 7 for (a) N=20 and FIG. 5. Plot of the visibilityV of the interference fringes as a
¢=0.03, (b) N=20 and¢=0.015, and(crossed curveN=40 and  function of N¢ for U;7=/8.
¢=0.0075.

maxF) — min(F)
can obtain abouty. The most straightforward measurement = m- (17)
is to switch off the trapping potential of the condensates and,
after some expansion time, look for interference fringes inWe are now in a position to interpret the visibility in terms of
the detected atomgl0]. On a single run, it is well known the signal,¢.
that interference fringes will be observed even if there is no
initial relative phase information between the condensates IV. RESULTS
[15]. The measurement process itself builds up a relative
phase. On the ensemble average, however, the fringes will In Fig. 4 we have plotted how the visibility changes as a
wash out if there is no initial phase information, but will function ofU;7. We see that it oscillates, starting off at zero
persist if there is an initial relative phase. The visibility of the for Ui7=0 and building up to a maximum fdd,7=/8,
fringes therefore gives us information about the collapséoefore decreasing again. This is in contrast to other discus-
time of the relative phase and hence (afn)2 We would, §i9ns of collapses _and revivals ir_] which the order parameter
therefore, like to calculate the visibility from E¢L3). initially has some finite value which decreagesllapseg as

We can estimate the fringe pattern on the ensemble avef€ hold timer is increased10,13,14.

age from the probability distribution of the relative phase The solid line(a) in Fig. 4 is the visibility forN=20 and

between the two site®(6). This distribution is given by $=0.03 and the solid lin€b) is for N=20 and¢$=0.015. We
see that the visibility is very sensitive to changesginFor

5 comparison, we have also plotted as a crossed curve the re-
P(6) = (el (14) sult for N=40 and¢$=0.0075. This has the same value of the
productN¢=0.3 as the solid curvéb) and agrees with it
where|6) is the Pegg-Barnett two-mode phase state differingvell. ChangingN and ¢ over a wide range of values reveals

by angleé [16], that the visibility curve is a function of the produdip—i.e.,
V=Ff(N¢).
inE i We would now like to find this functional dependence. A
= ip&aiq(£+0)
|6) = % ere [P)ap, (15 plot of V over a range of values ®¢ is shown in Fig. 5 for

U,7=7/8 and we see that it oscillates. In particular, there is

, ) a sequence of “lobes” over whidhvaries from zero to some
and ¢ can take any value. For a given relative phaehe o051 maximum and back to zero. These lobes have a width
fringe pattern has the form ctg-6), wherex is a spatial A(N¢) ~ 1, which means that by varying by of order 1N,
coordinate with arbitrary coordinates in the detection planey,« interference fringes appear and disappear on the en-
The total fringe pattern for a state with a relative phase diSgemple average. This is a very clear signal which should be
tribution P(6) is, then, able to be observed experimentally and means that we should
be able to distinguish phases which differ byNLAn other

2m words, this scheme has Heisenberg-limited phase resolution.
F(x) o J P(6)cos(x - 6)de, (16)  This is an interesting result and can be regarded as a simple
0 demonstration that enhanced resolution measurements can be
made with squeezed atoms by a straightforward sequence of
and the visibilityV is given by experimentally feasible steps.
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Although the signalgas shown in Fig. pare degraded by

0.4r N - 20 T the fluctuations, the features of the visibility curves still vary
o on the scalep~1/N,. This means that the fluctuations do
Z ozl | not destroy the Heisenberg-limited sensitivity of the scheme,

which is very promising. Furthermore, the clarity of the out-
put signal improves all is increased. This is precisely the
0 4 s 1 result we want since we would like to use large numbers of
N, atoms in this scheme to fully exploit the favorable number
scaling of the phase resolution.

Finally, the need to detect many interference patterns and

(=]

04r N. = 10000 1 average over the results may be eliminated by using a lattice
o with more than two sites. Multisite measurement schemes
Z o0zl ] have the added advantage that number squeezed arrays of

condensates have already been created in the laboratory
[9,17]. This is an interesting prospect that we shall explore in
5 2 5 future work.

N, This completes the scheme for using condensates to make
sub-shot-noise-limited measurements. So far, however, we
have considered measurements only of the rather uninterest-
ing quantity ¢=2Jot. Later in this paper, we shall show how
this procedure can be thought of as calibrating the conden-

V. NUMBER FLUCTUATIONS sate beam splitter and opens the door for using our scheme to
The results shown in Figs. 4 and 5 would be obtainednake high-precision measurements of other quantities such
experimentally by repeating the measurement process mar@g gravity. Before we do this, however, it is useful to con-
times and taking the ensemble average of the interferencgider how our scheme can also be used to precisely deter-
patterns. So far, our results are for the case that the totanine the strength of the interactions between atdiis,
number of atoms in each run is identical. In reality, it will
fluctuate between runs. In this section, we shall consider the

effect that this has on our results and, in particular, see |n the read-out scheme outlined in Sec. Ill, we made use
whether it swamps the Heisenberg-limited sensitivity of oursf the collapses and revivals of the interference fringe vis-
scheme. o ibility. These collapses and revivals are due to the interac-

If the mean number of atoms per site N on an en-  tjons petween atoms and depend on the variance of the
semble of runs, it seems reasonable to assume that the totghte’s number distribution. In this section, we show how
number of atoms will fluctuate by of ordefN, between they can be used to accurately determine the valug;of
runs. In Fig. 6 we have plotted the ensemble-averaged vis- The collapse time scales inversely with the standard de-
ibility of the interference fringesy, as a function ofNo,  viation of the number distributiofil 3,14, which means we
when we allowyN, fluctuations on the number of atoms in would like our initial state to have a distribution with as large
each run. We should note that these fluctuations are on thgwidth as possible in order to optimize the resolution of the
total number of atoms in the system and not on the numbescheme. We have already seen how this can be achieved. By
difference between the wells. The number squeezing procgarrying out the scheme outlined above and ensuring that
dure outlined in Sec. Il ensures that the number of atoms iy=23,t=17/2, the state that we obtain is Ed.1—i.e., pre-
each well is strongly correlated. cisely the result of passing a number-correlated sﬂa/t)e

The upper part of Fig. 6 shows the result f&§=20. We  =|N)|N), through a 50:50 beam splitter. This state has a broad
see that for small values dy¢, the visibility agrees well number distribution as can be seen from the coefficients plot-
with Fig. 5, where number fluctuations were not included.ted in Fig. 2.
However, for valueNo¢p> ~2, the visibility lobes rapidly If we now allow the state to evolve due to the nonlinear
wash out and it would not be possible to use this technique tghteractions, after some time the state becomes
make measurements in this regime.

The lower part of Fig. 6 shows the result fidp=210 000. _ i8m(N-m) Uy 7
In this case, the lobes are only slightly washed out and the =2 € TCrrf 2M)g|2(N = M)y, (18
visibility curve agrees well with Fig. 5 over the entire plotted m=0
range. It is not surprising that the read-out signal is cleareFollowing the same procedure as outlined above, we can
for large values ofN, since the\N, fluctuations have a calculate the fringe pattern and hence visibility of this state
smaller fractional effect in this case. A straightforward erroras a function olU,7. The results of this are shown in Fig. 7
analysis reveals that in order to measure the phaseith  for N=10 andN=20 and, as expected, the visibility rapidly
resolutlon 1Ny, we require Nop<~VNg—i.e.,, ¢< collapses. It then undergoes a series of minor revivals before
~1/ NO So this can be thought of as a technique for refin-making a full revival again at);7=/8.
ing the measurement of phases within the noise of standard Comparing the upper and lower parts of Fig. 7, we see
interferometry. that asN is doubled, the widths of the revival lobes are

FIG. 6. Ensemble average of the visibility as a functioriNg#,
whereNy is the mean number of atoms per site.

VI. MEASUREMENT OF U,

N
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1 ' ' ' ' condensates are aligned perpendicular to the gravitational
field and rotating the system parallel to gravity for the phase
imprinting stage. Although this may not be the most desir-

able configuration for practical purposes, it greatly simplifies

the analysis presented here. A fuller analysis of practical is-
sues will be presented in later work.

As before, the next step of the scheme is to simply allow
the two modes to evolve and acquire different phases. In this
casea andb will be subject to different gravitational fields
with an energy differencAE=Mgd, whereM is the mass of
an atom,g is the acceleration due to gravity, addis the
distance between the traps parallel to the gravitational field.
After some hold time, the state becomd48]

N
. . . ¥) = 2 QeP™MEC 2m)2(N-m),, (19
0 0.1 0.2 0.3 0.4 m=0

Un
FIG. 7. Visibility of the interference fringes as a functionfr

for a state of the form of Eq11) evolving due to the nonlinear Q) = @8MIN-mU;t (20)
interaction between atoms fof=10 andN=20.

where

is the phase factor due to the nonlinear interaction evolution.

halved. This scaling means that we should be able to use thR"C€ We wish to measurkE, we would like to be able to
method to determinéJ; with 1/N resolution. One way 'dnore th!s compllc_atlng nonlinear phase faa{®®@). We can
would be to measure the time at which the interference visSet{=1 in the regime

ibility undergoes a full revivaly=7/8U,. This time does not S

depend orN but, importantly, the accuracy with which we AE>4NU,, (21)

measure iti.e., the width of the revival lobe in Fig.)does. o  when the signal is much larger than the nonlinear effect.

This means that our method is robust to fluctuationNin - Tjs is a somewhat restricting constraint since it sets an up-
between runs and so enables us to fully characterize the SYSer limit on N, which we would like to be large in order to

tem by making Heisenberg-limited measurementdJgfas improve the resolution of our schemes.

well as of J,. Armed with these results, we now finally tun o wever, a much less restrictive condition can be found
our attention to how this system can be used to measurgy noting that at revival times the nonlinear factor can be

external forces such as gravity. ignored. We can see from E20) that whenU,t=p=/4,
where p is an integer, ther{) is unity. Now, suppose we
VIl. MEASUREMENT OF GRAVITY know Ut to within some fractional errof<1; then at what

) ) we think is a revival time, we havet=pw(1+4)/4. Sub-

In order_ to measure gravity, we Wou_ld like to create Astituting this into Eq(20) we get,Q=exgdip2=m(N-m)3],
superposition state with a large spread in the number of alyqe the part not proportional ®corresponds exactly to a

oms in trapsa andb. This is because, if the two traps have re\ival and so vanishes. If we compafe with the linear

different positions in a gn_avitational field, thr—_: phases Ofphase factor due to the signal in H49) at the same time,
modesa andb will evolve differently due to their different |\« e that we can ignoke if

potential energies.
The initial state that we require is therefore the same one AE > 4NU; 6. (22)
we used to measuté, in the previous section—i.e., the state
formed by rapidly reducing the barrier between two corre-This is a much less stringent constraintdthan Eq.(21). In
lated number states—allowing the state to evolve for time fact, if 6 scales as 1N, then we could arrange for it to hold
=/4J, and then rapidly raising the barrier again. In the firstfor all N.
part of this paper, we showed how we could measymith In Sec. VI, we showed how we could measurg with a
Heisenberg-limited accuracy. With this knowledge, we carprecision that scales as~ 1/N. This tells us, then, how we
control ¢p=2J,t=1/2 very precisely. This can be thought of can ignore the nonlinear phase shifts relative to the linear
as calibrating our beam splitter with Heisenberg-limited ac{phase shifts of the signalE, and set}=1 in Eq.(19). We
curacy. Our initial state is, therefore, very well described bysimply ensure that the hold tinteof Eq. (19) is some integer
Eq. (11). multiple of t==/4U,, where U, is precisely calibrated as
We should note at this point that we introduce the effectoutlined in the previous section.
of gravity only for the period of evolution between the two  We can now proceed with our measurement scheme. Tak-
beam splitter operations; i.e., we do not include its effectsng state(19) with A=1, we then repeat the calibrated 50:50
during the state preparation and read-out stages. This coultkam splitter operation to complete the interferometer; this
be achieved by preparing and reading out the state while thieaves us with
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2N tional potential energy difference between the trapg
ly) = NI > (=) DyK)al2N = Ky, (23)  =Mgd. Furthermore, this scheme is quite general and should
k=0

be able be used for sub-shot-noise measurements of any
quantity that induces a different phase shift on the two modes

where D, has exactly the same form as Ed.0) with ¢ a andb

=AEt=Mgdt
This means that the output state is the same as that given VIIl. CONCLUSIONS
by the scheme abovée., Egs.(9) and(10)] apart from the

relative phase betweemandb. Since the signal is encoded The ability to achieve sub-shot-noise measurements with
i jyatter waves is of great interest both from a theoretical and

Haepractical point of view. It may lead to applications in the
Orecision measurement of quantities such as frequencies and
orces. In this paper we have outlined a straightforward pro-

phase, the relative phase is irrelevant and we can use t
same technique as outlined in Sec. Ill to read-out the me

r ntity. . .
sured quantity cedure for making sub-shot-noise measurement$=o2J,t

Here we see why it is crucial to have a precisely Cali_and =U;7. This scheme combines simple elements such as
brated 50:50 beam splitter. Since the signal we wish to mea- $=Uy7. P

sure is encoded on the state in the same way gl is raising and lowering a potential barrier and observing col-
2 .
(i.e.. in the same way that any variation from a perfect 50:5dapses and revivals of the phase between condensates. It en-

beam splitter i the final signal we measure is a combina- ables us to precisely characterize our system and can be re-

tion of these two effects. This means that the beam splittegard(ad as a simple proof of the principle that squt_aezed
must be calibrated to the same precision with which we Wislﬂwatter waves enable measurements to be made with en-
to make our final measurement. This is one of the majo anc;‘cted prec;)sl!orr:.. his princiol h h h hi

advantages of this scheme: the same process can be used firsrff‘ er establishing this principle, we have shown how this

to calibrate the beam splitter and then to make the measur&S€Me May be used to measure othe_r quantities such as
ment itself. gravity. This involves using the scheme first to calibrate the

eam splitter and measuh and then to make the measure-

This technique should enable us to make Heisenbergfnem itself. A key element of any measurement scheme is a
limited measurements of the quantif=Mgdt A plot of the ethod of reading-out the signal. We have introduced a tech-

visibility of the interference fringes on an ensemble averagén. ; )
will look like the curves in Fig. 6. The fringes will vanish hique for this that makes use of the appearance and disap-

and reappear for variations of the phase on the seale pearance of interference fringes. This is a clear signal that is

~1/N,. This means that we should be able to use thid1ot destroyed by imperfect detectors and could be observed

method to distinguish phases which differ by this amount. Inexperimentally. All the steps of this scheme are attainable
ith current technology and so may provide a practical route

an ideal system, the measurement accuracy will depend on achieving enhanced resolution measurements with con
on the total number of atoms. In practice this will be limited ng
densates in the laboratory.

by (among other thingshow many atoms it is possible to put
into a highly squeezed state. As a guide, experiments have
achieved highly squeezed states with around 1000 atoms per
condensatd17]. This suggests a measurement accuracy of This work was financially supported by Merton College
around 0.1%. With further work and refinement, this may beOxford, the United Kingdom EPSRC, the Royal Society and
able to be significantly improved. Sintean be known very Wolfson Foundation, and the European Union through the
precisely, this is equivalent to a measurement of the gravita€old Quantum Gases network.
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