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We discuss practical schemes for using entangled Bose-Einstein condensates to detect phase shifts with a
resolution better than the shot-noise limit. We begin by outlining a procedure for demonstrating how squeezed
matter waves can be used to make measurements by simply lowering and raising a potential barrier between
two condensates. The phase shift is read out by a scheme which involves releasing the condensates and
studying the collapses and revivals of the visibility of the observed interference fringes. Finally we show how
this scheme could be extended to measurements of other quantities such as gravity. All the steps of this process
are attainable with current technology and so may provide a practical route for achieving enhanced resolution
measurements with matter waves.
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I. INTRODUCTION

An ongoing challenge in physics is to make measure-
ments of physical quantities at the limit determined by quan-
tum theory. Considerable effort has therefore been devoted to
reducing the uncertainty in interferometric measurements to
below the shot-noise limit, where the precision scales in-
versely with the square root of the total number of particles
involved, ntot. A number of theoretical schemes have shown
that, by using macroscopic quantum interference
(Schrödinger cat states), the measurement accuracy may be
able to be improved to the Heisenberg limit, where it scales
as ntot

−1 rather thanntot
−1/2 [1–3]. The problem with these

schemes, however, is that cat states are acutely sensitive to
dissipation and the enhanced resolution that they offer is
wiped out by the reduced resolution resulting from their
short life spans[4].

An alternative approach to the use of cat states is to pass
number correlated photons through a Mach-Zehnder interfer-
ometer, as proposed by Holland and Burnett[5]. In this case
the phase information is encoded in the number variance of
the final state rather than the mean number of atoms at each
output port, as is the case for standard interferometry. This
scheme is remarkably robust to loss and so overcomes the
problems associated with the fragility of cat states. However,
the improvement in phase resolution that it enables is rapidly
eliminated when the effects of imperfect detectors are ac-
counted for[6].

Recently there has been a theoretical discussion of how
the effects of dissipation and finite detector efficiencies may
be jointly overcome[7]. This involves making use of the
superfluid–to–Mott-insulator phase transition to entangle and
disentangle atomic Bose-Einstein condensates in an optical
lattice. In this paper we discuss a practical way that this
scheme may be implemented and present a method for ex-
perimentally measuring the output signal. We show that the
phase shift may be deduced from the visibility of interfer-
ence fringes observed when the condensates are released and
allowed to overlap.

We shall first demonstrate the principle of the scheme by
considering in detail how it can be used to measure the en-
ergy splitting between two eigenstates in a double-well po-
tential and also the interaction strength between the atoms.

Once this is established, we shall show how the scheme can
easily be modified to measure different quantities such as
gravity. Importantly, all the steps of these schemes are
achievable in the laboratory with current technology and so
may provide a feasible route to achieving sub-shot-noise
measurements with matter waves.

II. MEASUREMENT SCHEME

The sequence of steps for the measurement process is
depicted schematically in Fig. 1. As our starting point, we
consider two potential wells containing trapped atomic con-
densates. We assume that only a single level is relevant in
each well and label the annihilation operators for an atom in
these levelsa and b. The initial state of the system,ucl, is
highly squeezed in the relative number of atoms in the two
wells. This means that the relative number variance is much
smaller than the total number of atoms in the system,
ntot—i.e.,

sDnd2 = kcusa†a − b†bd2ucl − skcua†a − b†bucld2 ! ntot.

s1d

FIG. 1. The measurement scheme.(a) The potential barrier be-
tween two correlated Fock state condensates is rapidly reduced and
the system is allowed to evolve for timet. (b) The barrier is rapidly
raised again and the system is allowed to evolve for timet. (c)
Finally the traps are turned off and an interference pattern is ob-
served in the spatial overlap of the condensates.
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This initial state can be created by slowly switching on a
double-well trapping potential across a condensate. The
Hamiltonian that describes this system is[8]

H = − Jsa†b + b†ad +
U

2
sa†a2 + b†b2d, s2d

whereJ is the coupling strength between the wells,U.0 is
the strength of the on-site interaction energy, and we have set
";1. As the potential barrier between the wells is increased,
the coupling decreases. If this is done sufficiently slowly, the
condensate adiabatically follows the ground state of the sys-
tem. When the tunneling between the wells is much smaller
than the interactions between atoms, the ground state has
reduced fluctuations in the relative number of atoms. In ex-
treme cases, a phase transition can occur to the Mott insula-
tor state, for which the relative number variance vanishes,
sDnd2=0, and each well contains the same number of atoms,
N=ntot/2. This phase transition has been experimentally
demonstrated in condensates trapped in three-dimensional
optical lattices[9].

For simplicity, we will take this highly squeezed “Mott
insulating” state as the starting point for our measurement
scheme:

ucl = uNlauNlb. s3d

In this regime, we take the coupling and interaction coeffi-
cients to have the valuesJ=J1 andU=U1. We can see from
Eq. (2) that this is the ground state of the system for repul-
sive interactionssU1.0d, since there is initially a high po-
tential barrier separating the two wells,J1!U1N, which
means we can neglect the coupling term.

The first step of our process is to rapidly reduce the bar-
rier height[see Fig. 1(a)] so that the coupling and interaction
coefficients acquire the new valuesJ2 and U2, respectively.
We want to do this quickly with respect to the rate of tun-
neling between the wells, but adiabatically with respect to
the energy level spacings within the traps. The latter condi-
tion ensures that our two-mode approximation remains valid.
This separation of time scales has already been experimen-
tally demonstrated[10]. We should note that the barrier is
never reduced so far that the two condensates are combined
into one. This would invalidate the two-mode approximation
as discussed by Javanainen and Ivanov[11].

Once the barrier has been reduced, the coupling term in
Eq. (2) dominates over the interaction term,J2@U2N. It is
convenient to rewrite state(3) in terms of the eigenstates of
the system. These are associated with the following superpo-
sitions of the original annihilation operators:

a = sa + bd/Î2, s4d

b = sa − bd/Î2. s5d

In this basis, the state has the form

ucl = o
m=0

N

s− 1dmCmu2mlau2sN − mdlb, s6d

where

Cm =
Îs2md ! s2sN − mdd!

2Nm ! sN − md!
. s7d

A plot of these coefficients is shown in Fig. 2 forN=40. We
see that the state is a superposition of different numbers of
atoms in the symmetric and antisymmetric modes(4) and
(5). It has the same form as the ouput from a 50:50 beam
splitter with number correlated inputs[5] and is important
because the width of the number distribution,Dn, is of order
N. By the uncertainty relationDnDf,1, this means that the
relative phase is Heisenberg limited,Df,1/N.

Decoherence effects are crucial for any scheme that seeks
to exploit quantum superpositions to surpass what can be
achieved by classical means. Losses tend to destroy superpo-
sitions and drive the system towards classical mixtures. The
state (6) will be susceptible to decoherence due to single-
particle losses or quasiparticle effects when the barrier is
lowered [12]. However, in previous work we showed that
states of the form of Eq.(6) retain their enhanced relative
phase resolution even in the presence of substantial losses
[7]. We believe that this robustness feature is one of the main
advantages of this scheme.

The next step is to impose a linearly varying phase across
the number distribution(6). This phase is the quantity that
we wish to measure and, in an interferometer, encodes the
path length difference of the arms. By modifying the scheme
at this point, we can vary the quantity that we measure and
we will consider the measurement of different quantities later
in this paper. For now we will consider the most convenient
case: the two modesa andb have different energies, so, by
simply holding the system for some timet and allowing the
state to evolve, the modes acquire different phases. This
scheme corresponds to a measurement of the energy splitting
between the symmetric and antisymmetric eigenstates,DE
=2J2. After some hold time,t, the state is

ucl = o
m=0

N

s− 1dme−i4mJ2tCmu2mlau2sN − mdlb, s8d

where we have ignored the irrelevant overall phase.

FIG. 2. Plot of the coefficientsCm given by (7) for N=40.
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The next step of the procedure is to rapidly raise the bar-
rier between the wells again[see Fig. 1(b)]. It is now conve-
nient to convert the state back to the original eigenbasis of
the number of atoms in trapa and in trapb. After some
algebra, it can be rewritten as

ucl =
1

2NN! ok=0

2N

s− 1dkDkuklau2N − klb, s9d

where

Dk = o
p=maxh0,k−Nj

k/2 S N

N − k + 2p
DSN − k + 2p

p
D

3 Îk ! s2N − kd!si sinfdN−k+2ps2 cosfdk−2p s10d

andf=2J2t.
For the casef=0, we requireN−k+2p=0 in Eq.(10) for

nonvanishing values ofDk. This means that the state reduces
to ucl= uNlauNlb as we would expect, since the state has not
had time to evolve att=0. For the casef=p /2, we require
k−2p=0 in Eq. (10). This means that, ignoring any global
phase, the state reduces to

ucl = o
m=0

N

Cmu2mlau2sN − mdlb, s11d

which is equivalent to the state obtained by passing Eq.(3)
through a 50:50 beam splitter[5]. The broad number distri-
bution shown in Fig. 2 is consistent with the interpretation
that when two independent condensates are connected, a
macroscopic superposition of different Josephson currents
flow between them[12]. It turns out that for any value off,
the number statistics of state(9) are precisely those obtained
by passing Eq.(3) through a Mach-Zehnder interferometer
with a phase difference off between the arms.

This seems to be a very convenient way of implementing
the condensate interferometer scheme outlined in previous
work [7]. By simply lowering and raising the barrier between
the trapped condensates we can achieve interferometry with
number correlated condensates. This will form the basis of
our measurement schemes.

III. READ-OUT SCHEME

We would now like to consider the principal features of
the output from the interferometer(9) and, in particular,
study how the phase shiftf is encoded on it. In Fig. 3, we
have plotted the variance in the number difference of atoms
between the wells,sDnd2, as a function off for two different
values ofN. The crosses are the variances calculated from
Eq. (9), and the solid line is a plot of

sDnd2 =
1

2
N2 sin2 f, s12d

which fits the crosses extremely well. For small values off,
the relative number variance is given bysDnd2<sNfd2/2,
which means that by measuringsDnd2 we obtain a value for
Nf and so may be able to measure phase shifts with a sen-
sitivity that scales as 1/N.

The problem with such a scheme, however, is the mea-
surement process itself. Kimet al. showed that if we were to
try and measure this variance directly by number counting,
we would need detectors with efficiencies better thans1
−1/Nd in order to see any enhancement in the resolution
beyond the classical limit[6]. However, in order to exploit
the favorable number scaling of the phase resolution that this
scheme has, we would likeN to be large, which means that
we would require atom detectors with almost perfect effi-
ciencies. This makes this approach unfeasible.

In this paper, we demonstrate a technique that overcomes
this crucial problem and allows the phase information to be
extracted from the variances without a prohibitive depen-
dence on the detector efficiencies. Our approach involves
making use of the collapses and revivals in the relative phase
between the two traps. Collapses in the order parameter have
been proposed as a means of determining the state of optical
[13] and atomic[14] samples and have been observed in a
system of condensates trapped in an optical lattice[10]. The
collapse time depends directly on the number variance of the
state(12) and so may provide a means of reading out the
relative phasef.

Once the barrier has been raised again[Fig. 1(b)], the
coupling rate between the wells is much smaller than the
on-site interaction strength,J1!U1N. The system now
evolves purely due to the nonlinear term. After some timet,
the state is

ucl =
1

2NN! ok=0

2N

ei2ks2N−kdU1ts− 1dkDkuklau2N − klb. s13d

The phase of each term in the superposition evolves at a
different rate. Owing to the discrete nature of the superposi-
tion, at times that are multiples oft=p /U1 (so-called revival
times), all the phases return to the values they had att=0.
These revival times are independent of the coefficientsDk.

The final step of our procedure[see Fig. 1(c)] is to make
measurements on this state(13) and see what information we

FIG. 3. The crossed curves show the number variance of state
(9) as a function off for N=40 andN=80. The solid lines are
given by Eq.(12).
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can obtain aboutf. The most straightforward measurement
is to switch off the trapping potential of the condensates and,
after some expansion time, look for interference fringes in
the detected atoms[10]. On a single run, it is well known
that interference fringes will be observed even if there is no
initial relative phase information between the condensates
[15]. The measurement process itself builds up a relative
phase. On the ensemble average, however, the fringes will
wash out if there is no initial phase information, but will
persist if there is an initial relative phase. The visibility of the
fringes therefore gives us information about the collapse
time of the relative phase and hence ofsDnd2. We would,
therefore, like to calculate the visibility from Eq.(13).

We can estimate the fringe pattern on the ensemble aver-
age from the probability distribution of the relative phase
between the two sites,Psud. This distribution is given by

Psud = ukuuclu2, s14d

whereuul is the Pegg-Barnett two-mode phase state differing
by angleu [16],

uul = o
p,q

eipjeiqsj+udupluql, s15d

andj can take any value. For a given relative phase,u, the
fringe pattern has the form cos2sx−ud, wherex is a spatial
coordinate with arbitrary coordinates in the detection plane.
The total fringe pattern for a state with a relative phase dis-
tribution Psud is, then,

Fsxd ~ E
0

2p

Psudcos2sx − uddu, s16d

and the visibilityV is given by

V =
maxsFd − minsFd
maxsFd + minsFd

. s17d

We are now in a position to interpret the visibility in terms of
the signal,f.

IV. RESULTS

In Fig. 4 we have plotted how the visibility changes as a
function of U1t. We see that it oscillates, starting off at zero
for U1t=0 and building up to a maximum forU1t=p /8,
before decreasing again. This is in contrast to other discus-
sions of collapses and revivals in which the order parameter
initially has some finite value which decreases(collapses) as
the hold timet is increased[10,13,14].

The solid line(a) in Fig. 4 is the visibility forN=20 and
f=0.03 and the solid line(b) is for N=20 andf=0.015. We
see that the visibility is very sensitive to changes inf. For
comparison, we have also plotted as a crossed curve the re-
sult for N=40 andf=0.0075. This has the same value of the
product Nf=0.3 as the solid curve(b) and agrees with it
well. ChangingN andf over a wide range of values reveals
that the visibility curve is a function of the productNf—i.e.,
V= fsNfd.

We would now like to find this functional dependence. A
plot of V over a range of values ofNf is shown in Fig. 5 for
U1t=p /8 and we see that it oscillates. In particular, there is
a sequence of “lobes” over whichV varies from zero to some
local maximum and back to zero. These lobes have a width
DsNfd<1, which means that by varyingf by of order 1/N,
the interference fringes appear and disappear on the en-
semble average. This is a very clear signal which should be
able to be observed experimentally and means that we should
be able to distinguish phases which differ by 1/N. In other
words, this scheme has Heisenberg-limited phase resolution.
This is an interesting result and can be regarded as a simple
demonstration that enhanced resolution measurements can be
made with squeezed atoms by a straightforward sequence of
experimentally feasible steps.

FIG. 4. Fringe visibility as a function ofUt for (a) N=20 and
f=0.03, (b) N=20 andf=0.015, and(crossed curve) N=40 and
f=0.0075.

FIG. 5. Plot of the visibilityV of the interference fringes as a
function of Nf for U1t=p /8.
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V. NUMBER FLUCTUATIONS

The results shown in Figs. 4 and 5 would be obtained
experimentally by repeating the measurement process many
times and taking the ensemble average of the interference
patterns. So far, our results are for the case that the total
number of atoms in each run is identical. In reality, it will
fluctuate between runs. In this section, we shall consider the
effect that this has on our results and, in particular, see
whether it swamps the Heisenberg-limited sensitivity of our
scheme.

If the mean number of atoms per site isN0 on an en-
semble of runs, it seems reasonable to assume that the total
number of atoms will fluctuate by of orderÎN0 between
runs. In Fig. 6 we have plotted the ensemble-averaged vis-
ibility of the interference fringes,V, as a function ofN0,
when we allowÎN0 fluctuations on the number of atoms in
each run. We should note that these fluctuations are on the
total number of atoms in the system and not on the number
difference between the wells. The number squeezing proce-
dure outlined in Sec. II ensures that the number of atoms in
each well is strongly correlated.

The upper part of Fig. 6 shows the result forN0=20. We
see that for small values ofN0f, the visibility agrees well
with Fig. 5, where number fluctuations were not included.
However, for valuesN0f. ,2, the visibility lobes rapidly
wash out and it would not be possible to use this technique to
make measurements in this regime.

The lower part of Fig. 6 shows the result forN0=10 000.
In this case, the lobes are only slightly washed out and the
visibility curve agrees well with Fig. 5 over the entire plotted
range. It is not surprising that the read-out signal is clearer
for large values ofN0 since theÎN0 fluctuations have a
smaller fractional effect in this case. A straightforward error
analysis reveals that in order to measure the phase,f, with
resolution 1/N0, we require N0f, ,ÎN0—i.e., f,
,1/ÎN0. So this can be thought of as a technique for refin-
ing the measurement of phases within the noise of standard
interferometry.

Although the signals(as shown in Fig. 6) are degraded by
the fluctuations, the features of the visibility curves still vary
on the scalef,1/N0. This means that the fluctuations do
not destroy the Heisenberg-limited sensitivity of the scheme,
which is very promising. Furthermore, the clarity of the out-
put signal improves asN0 is increased. This is precisely the
result we want since we would like to use large numbers of
atoms in this scheme to fully exploit the favorable number
scaling of the phase resolution.

Finally, the need to detect many interference patterns and
average over the results may be eliminated by using a lattice
with more than two sites. Multisite measurement schemes
have the added advantage that number squeezed arrays of
condensates have already been created in the laboratory
[9,17]. This is an interesting prospect that we shall explore in
future work.

This completes the scheme for using condensates to make
sub-shot-noise-limited measurements. So far, however, we
have considered measurements only of the rather uninterest-
ing quantityf=2J2t. Later in this paper, we shall show how
this procedure can be thought of as calibrating the conden-
sate beam splitter and opens the door for using our scheme to
make high-precision measurements of other quantities such
as gravity. Before we do this, however, it is useful to con-
sider how our scheme can also be used to precisely deter-
mine the strength of the interactions between atoms,U1.

VI. MEASUREMENT OF U1

In the read-out scheme outlined in Sec. III, we made use
of the collapses and revivals of the interference fringe vis-
ibility. These collapses and revivals are due to the interac-
tions between atoms and depend on the variance of the
state’s number distribution. In this section, we show how
they can be used to accurately determine the value ofU1.

The collapse time scales inversely with the standard de-
viation of the number distribution[13,14], which means we
would like our initial state to have a distribution with as large
a width as possible in order to optimize the resolution of the
scheme. We have already seen how this can be achieved. By
carrying out the scheme outlined above and ensuring that
f=2J2t=p /2, the state that we obtain is Eq.(11)—i.e., pre-
cisely the result of passing a number-correlated state,ucl
= uNluNl, through a 50:50 beam splitter. This state has a broad
number distribution as can be seen from the coefficients plot-
ted in Fig. 2.

If we now allow the state to evolve due to the nonlinear
interactions, after some timet, the state becomes

ucl = o
m=0

N

ei8msN−mdU1tCmu2mlau2sN − mdlb. s18d

Following the same procedure as outlined above, we can
calculate the fringe pattern and hence visibility of this state
as a function ofU1t. The results of this are shown in Fig. 7
for N=10 andN=20 and, as expected, the visibility rapidly
collapses. It then undergoes a series of minor revivals before
making a full revival again atU1t=p /8.

Comparing the upper and lower parts of Fig. 7, we see
that asN is doubled, the widths of the revival lobes are

FIG. 6. Ensemble average of the visibility as a function ofN0f,
whereN0 is the mean number of atoms per site.
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halved. This scaling means that we should be able to use this
method to determineU1 with 1/N resolution. One way
would be to measure the time at which the interference vis-
ibility undergoes a full revival,t=p /8U1. This time does not
depend onN but, importantly, the accuracy with which we
measure it(i.e., the width of the revival lobe in Fig. 7) does.
This means that our method is robust to fluctuations inN
between runs and so enables us to fully characterize the sys-
tem by making Heisenberg-limited measurements ofU1 as
well as ofJ2. Armed with these results, we now finally turn
our attention to how this system can be used to measure
external forces such as gravity.

VII. MEASUREMENT OF GRAVITY

In order to measure gravity, we would like to create a
superposition state with a large spread in the number of at-
oms in trapsa andb. This is because, if the two traps have
different positions in a gravitational field, the phases of
modesa andb will evolve differently due to their different
potential energies.

The initial state that we require is therefore the same one
we used to measureU1 in the previous section—i.e., the state
formed by rapidly reducing the barrier between two corre-
lated number states—allowing the state to evolve for timet
=p /4J2 and then rapidly raising the barrier again. In the first
part of this paper, we showed how we could measureJ2 with
Heisenberg-limited accuracy. With this knowledge, we can
control f=2J2t=p /2 very precisely. This can be thought of
as calibrating our beam splitter with Heisenberg-limited ac-
curacy. Our initial state is, therefore, very well described by
Eq. (11).

We should note at this point that we introduce the effects
of gravity only for the period of evolution between the two
beam splitter operations; i.e., we do not include its effects
during the state preparation and read-out stages. This could
be achieved by preparing and reading out the state while the

condensates are aligned perpendicular to the gravitational
field and rotating the system parallel to gravity for the phase
imprinting stage. Although this may not be the most desir-
able configuration for practical purposes, it greatly simplifies
the analysis presented here. A fuller analysis of practical is-
sues will be presented in later work.

As before, the next step of the scheme is to simply allow
the two modes to evolve and acquire different phases. In this
casea and b will be subject to different gravitational fields
with an energy differenceDE=Mgd, whereM is the mass of
an atom,g is the acceleration due to gravity, andd is the
distance between the traps parallel to the gravitational field.
After some hold timet, the state becomes[18]

ucl = o
m=0

N

Ve−i2mDEtCmu2mlau2sN − mdlb, s19d

where

V = ei8msN−mdU1t s20d

is the phase factor due to the nonlinear interaction evolution.
Since we wish to measureDE, we would like to be able to
ignore this complicating nonlinear phase factor(20). We can
setV=1 in the regime

DE @ 4NU1, s21d

i.e., when the signal is much larger than the nonlinear effect.
This is a somewhat restricting constraint since it sets an up-
per limit on N, which we would like to be large in order to
improve the resolution of our schemes.

However, a much less restrictive condition can be found
by noting that at revival times the nonlinear factor can be
ignored. We can see from Eq.(20) that whenU1t=pp /4,
where p is an integer, thenV is unity. Now, suppose we
know U1t to within some fractional errord!1; then at what
we think is a revival time, we haveU1t=pps1±dd /4. Sub-
stituting this into Eq.(20) we get,V=expfip2pmsN−mddg,
since the part not proportional tod corresponds exactly to a
revival and so vanishes. If we compareV with the linear
phase factor due to the signal in Eq.(19) at the same time,
we see that we can ignoreV if

DE @ 4NU1d. s22d

This is a much less stringent constraint onN than Eq.(21). In
fact, if d scales as 1/N, then we could arrange for it to hold
for all N.

In Sec. VI, we showed how we could measureU1t with a
precision that scales asd,1/N. This tells us, then, how we
can ignore the nonlinear phase shifts relative to the linear
phase shifts of the signal,DE, and setV=1 in Eq. (19). We
simply ensure that the hold timet of Eq. (19) is some integer
multiple of t=p /4U1, where U1 is precisely calibrated as
outlined in the previous section.

We can now proceed with our measurement scheme. Tak-
ing state(19) with V=1, we then repeat the calibrated 50:50
beam splitter operation to complete the interferometer; this
leaves us with

FIG. 7. Visibility of the interference fringes as a function ofU1t
for a state of the form of Eq.(11) evolving due to the nonlinear
interaction between atoms forN=10 andN=20.
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ucl =
1

2NN! ok=0

2N

s− idkDkuklau2N − klb, s23d

where Dk has exactly the same form as Eq.(10) with f
=DEt=Mgdt.

This means that the output state is the same as that given
by the scheme above[i.e., Eqs.(9) and (10)] apart from the
relative phase betweena andb. Since the signal is encoded
on the number variance of the state and not on the relative
phase, the relative phase is irrelevant and we can use the
same technique as outlined in Sec. III to read-out the mea-
sured quantity.

Here we see why it is crucial to have a precisely cali-
brated 50:50 beam splitter. Since the signal we wish to mea-
sure is encoded on the state in the same way thatf=2J2t is
(i.e., in the same way that any variation from a perfect 50:50
beam splitter is), the final signal we measure is a combina-
tion of these two effects. This means that the beam splitter
must be calibrated to the same precision with which we wish
to make our final measurement. This is one of the major
advantages of this scheme: the same process can be used first
to calibrate the beam splitter and then to make the measure-
ment itself.

This technique should enable us to make Heisenberg-
limited measurements of the quantityf=Mgdt. A plot of the
visibility of the interference fringes on an ensemble average
will look like the curves in Fig. 6. The fringes will vanish
and reappear for variations of the phase on the scalef
,1/N0. This means that we should be able to use this
method to distinguish phases which differ by this amount. In
an ideal system, the measurement accuracy will depend only
on the total number of atoms. In practice this will be limited
by (among other things) how many atoms it is possible to put
into a highly squeezed state. As a guide, experiments have
achieved highly squeezed states with around 1000 atoms per
condensate[17]. This suggests a measurement accuracy of
around 0.1%. With further work and refinement, this may be
able to be significantly improved. Sincet can be known very
precisely, this is equivalent to a measurement of the gravita-

tional potential energy difference between the traps,DE
=Mgd. Furthermore, this scheme is quite general and should
be able be used for sub-shot-noise measurements of any
quantity that induces a different phase shift on the two modes
a andb.

VIII. CONCLUSIONS

The ability to achieve sub-shot-noise measurements with
matter waves is of great interest both from a theoretical and
a practical point of view. It may lead to applications in the
precision measurement of quantities such as frequencies and
forces. In this paper we have outlined a straightforward pro-
cedure for making sub-shot-noise measurements off=2J2t
andf=U1t. This scheme combines simple elements such as
raising and lowering a potential barrier and observing col-
lapses and revivals of the phase between condensates. It en-
ables us to precisely characterize our system and can be re-
garded as a simple proof of the principle that squeezed
matter waves enable measurements to be made with en-
hanced precision.

After establishing this principle, we have shown how this
scheme may be used to measure other quantities such as
gravity. This involves using the scheme first to calibrate the
beam splitter and measureU1 and then to make the measure-
ment itself. A key element of any measurement scheme is a
method of reading-out the signal. We have introduced a tech-
nique for this that makes use of the appearance and disap-
pearance of interference fringes. This is a clear signal that is
not destroyed by imperfect detectors and could be observed
experimentally. All the steps of this scheme are attainable
with current technology and so may provide a practical route
to achieving enhanced resolution measurements with con-
densates in the laboratory.
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