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An ongoing challenge in physics is to make increasingly accurate measurements of
physical quantities. Bose–Einstein condensates in atomic gases are ideal candidates for
use in precision measurement schemes since they are extremely cold and have laser-like
coherence properties. In this paper, we review these two attributes and discuss how they
could be exploited to improve the resolution in a range of different measurements.
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1. Introduction

In 1925, Einstein predicted that a gas that was cold enough and dense enough
would experience a phase transition in which a macroscopic fraction of the atoms
come to occupy the ground state of the system (Einstein 1925). That lowest-
energy component of the gas is now known as a Bose–Einstein condensate (BEC)
and has some fascinating properties. One of the most interesting is that it is an
example of a large-scale quantum object. We normally associate quantum effects
with microscopic objects only. However, a BEC displays quantum behaviour
such as interference and is macroscopic (or at least mesoscopic), in the sense that
it contains a large number of particles (up to billions all in the same quantum
state) and has a large spatial extent (typically 100 mm).

Since BECs were first predicted, enormous experimental effort has been
devoted to creating them in the laboratory. This has focused in recent years on
developing techniques for atom cooling and trapping and culminated in 1995
with the first reported observation of a BEC in an atomic gas (Anderson et al.
1995). Since then, BECs have been created by numerous research groups around
the world and their properties continue to be studied in detail. Attention is now
turning to how they can be put to use in a range of new quantum technologies.
One area of interest is high precision measurement schemes, for which BECs are
particularly well-suited because they are extremely ‘cold’ and have laser-like
coherence properties. In this paper, we will discuss these two distinct properties
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and highlight how each of them enables condensates to be exploited in different
measurement schemes.
2. Why are cold atoms interesting for precision measurements?

A notable feature of BECs is that they are extraordinarily cold. By way of example,
a condensate of 108 atoms of 87Rb in the ground state of a harmonic-trapping
potential with a trap frequency of uZ20 Hz has a diameter of about 100 mm and a
corresponding rms velocity of about 7 mm sK1. This is equivalent to a temperature
of about 0.2 pK. If we were to switch the trap off, the interactions between the
atoms would expand the cloud, leading to higher velocities of around 0.4 mm sK1.
However, this still corresponds to an extremely low temperature of approximately
5 nK. In this section, we discuss how this property makes BECs promising
candidates for use in precision measurement schemes. We shall focus on how they
could be used both to improve time standards and to accurately measure the ratio
of Planck’s constant to the atomic mass (h/m), which is important in determining
the fine structure constant (a).
(a ) Measurements of frequencies

One important area with which the very low temperature of BECs can help is
horology. Currently, the best available clocks are atomic fountains, which
enable the International System of Units second to be measured with an
accuracy greater than 1 part in 1015. These work by cooling caesium atoms to
microKelvin temperatures by means of ‘optical molasses’ generated from three
pairs of counter-propagating laser beams in orthogonal directions. The atoms
are launched upwards by altering the frequency of the lasers and prepared in
the mFZ0 state of one of the hyperfine levels of the electronic ground state.
The atoms pass through a microwave cavity (see figure 1) containing a field
tuned near to the hyperfine transition frequency for caesium. They continue
moving upwards until the Earth’s gravity causes them to fall back through the
microwave cavity. The two exposures to the microwave field cause some atoms
to make the transition between the hyperfine states. The frequency of the
microwave field relative to the hyperfine frequency can be inferred by measuring
the fraction of atoms in each state after this second transit of the cavity.
The uncertainty in the measured frequency scales inversely with the time of
flight of the atoms and, so, we want to make this time as long as possible
(Ramsey 1956).

Two factors which limit the time of flight are the temperature of the atoms and
the effects of gravity. The microwave cavity through which the atoms pass
typically has a hole with diameter less than 1 cm and the atoms must pass back
through it on their return trip. This means that the atoms should not spread
more than 1 cm, which restricts the time of flight for a given temperature. It is
clear that colder temperatures allow for longer times and therefore better
measurement precision (see figure 1). The other limitations are the effect of
gravity and the size of atomic fountains built in the laboratory. For current
fountains, which are about one metre high, the return time is approximately one
second; for significantly longer times, much taller towers would be needed,
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Figure 1. Schematic of an atomic fountain. Laser-cooled atoms are launched upwards through a
cavity containing a microwave field. After some time, gravity reverses their direction and they fall
back towards the cavity. If the atoms are not cold enough, most will miss the hole in the cavity on
the return trip. Colder atoms allow a longer time of flight and, therefore, better measurement
resolution.
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leading to severe problems with, among other things, the shielding and
uniformity of magnetic fields.

It turns out that for earth-bound clocks, the effects of gravity are the limiting
factor and laser cooling is sufficient. For a 1 s return time, we require atoms with
a velocity spread less than 1 cm sK1 so that a substantial fraction passes back
through the cavity. Laser-cooled caesium atoms at a temperature of 1 mK achieve
this and there is little advantage in cooling them further. A clock in space, by
contrast, can have a much longer interaction time than is possible on Earth and
therefore will benefit from colder atoms. Raman cooling (Boyer et al. 2004)
should help but, for very long times, a BEC can provide the really cold
temperatures needed. A 100 mm diameter trapped 87Rb condensate that is
adiabatically expanded to 1 cm would, upon release, expand at less than 1 mm sK1.
Expansion to this or a larger size for a million-atom condensate is needed to
reduce the collisional clock shift to a manageable level. In principle, this should
allow observation times longer than 1000 s and a significant improvement in the
accuracy of clocks.
(b ) Measurements of h/m

Another potential application of the very low temperatures of BECs is in
making precise measurements of the ratio h/m, where h is Planck’s constant and
m is the mass of a particular type of atom. There is a lot of interest in measuring
this quantity since it provides another route to determining the fine-structure
Phil. Trans. R. Soc. A (2005)
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constant (a). We can see this by writing

a2 Z
2RN
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mp

h

m
: ð2:1Þ

This means that with independent measurements of the Rydberg constant, RN,
the proton–electron mass ratio, mp/me, and the caesium–proton mass ratio,
m/mp, an accurate determination of h/m can lead to an improved value of a.

Chu and colleagues at Stanford pioneered atom interferometry with laser-
cooled atoms to accurately determine h/m by a spectroscopic measurement of the
recoil of a caesium atom when it absorbs a photon (Weiss et al. 1993, 1994).
There are some recent new approaches to this that require atoms with very
narrow velocity distributions. One such example (Battesti et al. 2004) involves
laser-cooling a sample of atoms and then selecting a very narrow (sub-recoil)
velocity group from them, Dv/Zk/mZvrec. This narrow group is then shifted in
velocity by an integral number, n, of recoil velocities. The Doppler shift
associated with the shifted velocity is given by

DuZ knvrec Z
nk2

2p

h

m
; ð2:2Þ

where k is known from the optical wavelength, which enables h/m to be
determined. However, the required sub-recoil velocity selection throws away a
large fraction of the atoms. This means that one needs to balance signal against
resolution, since a higher velocity resolution results in fewer atoms contributing
to the signal. Making use of a BEC would be one way to effectively get the
required sub-recoil velocity distribution without losing any of the available
atoms.

In another experiment (Gupta et al. 2002), a BEC is used to measure h/m, but
by the rather different technique of contrast interferometry. In this scheme, a
condensate is coherently split into three momentum components, 0 and G2Zk,
by application of a short diffraction pulse of light at time, tZ0. These
components evolve along different trajectories and then a second order Bragg
pulse is applied at tZT, which reverses the direction of the G2Zk components so
that all three components combine at tZ2T to produce high contrast
interference fringes. Each component acquires a phase shift according to its
kinetic energy. This gives rise to an atomic density grating whose contrast
oscillates with time at an integral multiple of the photon recoil frequency

urec Z
Zk2

2m
; ð2:3Þ

where k is the wavenumber of the photons absorbed by the atoms. Measuring the
oscillation of the intensity of the Bragg scattering of light from this oscillating-
contrast-grating enables h/m to be determined. The BEC experiment (Gupta
et al. 2002) had a large systematic error due to mean-field effects—the high BEC
density and large scattering cross-section shifts the energy. However, this
problem should be able to be overcome if one could first expand the condensate
to lower the density sufficiently.
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3. Interactions and squeezed atoms

A laser is more than just a narrow-bandwidth light source; it also has a
macroscopic occupation of a single mode of the electromagnetic field. A BEC is
an analogue of a laser for atoms as it also has a macroscopic number of atoms in a
single de Broglie ‘atomic mode’. The examples presented so far simply use the
remarkably cold nature of the BEC, which is like only using the laser for its
narrow bandwidth. However, just as the laser enabled the advent of non-classical
states of light such as squeezing, correlated photons and entanglement, BECs
enable similar phenomena with atom fields, promising improved measurement
capability.

In this section we review recent experiments and proposals for how
entanglement may be used in enhanced precision measurement schemes. The
key physical process that enables squeezing in condensates is the interaction
between atoms due to collisions. These interactions give rise to correlations or
entanglements between the atoms, which include squeezing.

One way of number squeezing condensates is to trap them in an optical lattice.
This can be achieved by turning on counter-propagating laser beams across a
trapped BEC. These lasers form a standing wave and, due to the optical dipole
force, the atoms are trapped in the nodes or antinodes of this standing wave,
depending on the sign of the detuning of the lasers from the transition frequency.
If the optical lattice is turned on sufficiently slowly, the system will remain in the
ground state and can be described by the Bose–Hubbard Hamiltonian (Jaksch
et al. 1998)

H ZKJ
X

hi;ji

a†i aj C
V

2

X

i

a†i a
†
i aiai; ð3:1Þ

where ai is the annihilation operator for an atom at site i and, in the first term,
the summation is taken over nearest neighbours. The strength of the tunnelling
between sites, J, can be adjusted in experiments by simply raising and lowering
the potential barrier. The interaction strength between atoms, V, is, at best, only
weakly dependent on the potential but can be controlled by using Feshbach
resonances. When the coupling between sites is large compared with the
interaction strength, the number of fluctuations at each site are of the order

ffiffiffiffiffi
N

p
,

where N is the average number of particles per site. As V/J is increased, the atom
number fluctuations at each site are progressively reduced (Fisher et al. 1989;
Jaksch et al. 1998), evidence for which was observed in Orzel et al. (2001). For
sufficiently large values of V/J, a quantum phase transition to the Mott insulator
state has been predicted (Jaksch et al. 1998) and observed (Greiner et al. 2002).
In the limit V/J/N, each site has precisely the same number of atoms assuming
commensurability, that is, the ratio of atoms to sites is an integer.

We can understand this by considering the simple case of the two-well ‘lattice’
with a total of two atoms in the system (see figure 2). There are two competing
processes in this system: on one hand, it is energetically favourable for atoms to
hop between the wells and, on the other hand, it is energetically unfavourable
for both atoms to occupy the same site due to the additional interaction energy,
V, between them. In the strong coupling limit J[V, the ground state for
Phil. Trans. R. Soc. A (2005)
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Figure 2. Energy diagram of two atoms in a two-well potential. There are two energies associated
with this system: J, which characterizes the tunnelling between the wells and V, which is the
energy cost for two atoms to occupy the same well due to interactions between the atoms. By
adiabatically increasing the ratio V/J, the system becomes number squeezed.
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the system is

jjiZ 1ffiffiffi
2

p ½fað1ÞCfbð1Þ�
1ffiffiffi
2

p ½fað2ÞCfbð2Þ�; ð3:2Þ

where fj(i) is the wave function for atom i on site j. This can be written in terms
of the number of atoms at each site as

jjiZ 1ffiffiffi
2

p j1iaj1ibC
1

2
½j2iaj0ibC j0iaj2ib�; ð3:3Þ

where the notation ji ij represents i atoms at site j. We can see from equation
(3.2) that, in this limit, the atoms are not entangled. In the other limit, V[J,
(that is, strong interactions) the ground state is

jjiZ 1ffiffiffi
2

p ½fað1Þfbð2ÞCfað2Þfbð1Þ�; ð3:4Þ

which can also be written as, jjiZj1iaj1ib.
1 This is the two-well analogue of the

Mott insulator state in which each lattice site has exactly the same number of
atoms. The number fluctuations have been greatly diminished by the large
energy cost, V, of having more than one atom at a site. We can see from equation
(3.4) that the two atoms are entangled in this limit because we cannot write the
state as a tensor product of the state of each individual particle. This
demonstrates how the interactions lead to an entanglement of the atoms.

1 The entangled, and therefore non-factorizable, state can be written as a product if one uses this
basis of the number of atoms at each site.
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Figure 3. Schematic of a Mach–Zehnder interferometer. Two input modes a and b pass through a
50 : 50 beam splitter giving outputs c and d. Mode d then experiences a phase shift, f, relative to c
before the two paths are combined at a second 50 : 50 beam splitter to gives outputs e and f.
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The key to creating these Mott insulator states in the laboratory is being able
to adiabatically move between the strong coupling regime (J [V ) and the
strong interaction regime (V[J ) so that the system remains in the ground
state throughout. This has been achieved in experiments with BECs in three-
dimensional lattices with more than 105 sites (Greiner et al. 2002). The
experimental success of this scheme has led to significant interest in the
possibilities of Mott states as a quantum resource. Various proposals have been
put forward for their use, including using them as an array of qubits for quantum
computation. In this section, we will focus on how they can be utilised in schemes
to accurately measure phase shifts and, for simplicity, will restrict ourselves to
the two-well case discussed above.

One possibility is to use a state of the form jjiZjN iajN ib as the input to an
interferometer (see figure 3). Beam splitters for condensates may be simply
realized by allowing tunnelling between the wells for the correct length of time.
To illustrate this process, we first consider the effect of passing a two-atom, dual
Fock state through a 50 : 50 beam splitter, assuming at this point that the atoms
are non-interacting. This gives (Hong et al. 1987)

j1iaj1ib/
1ffiffiffi
2

p ½j2icj0id C j0icj2id�; ð3:5Þ

which has a Schrödinger cat-like form. States of this form are known to be able to
give enhanced measurement resolution over states that are not entangled
(Huelga et al. 1997). We can see this from the form of the state after the phase
shift and just before the second beam splitter in figure 3

jjiZ 1ffiffiffi
2

p ½j2icj0id Cei2fj0icj2id�: ð3:6Þ

The phase in this state is enhanced by a factor of 2 over the single particle
case: j1iaj0ib/ ðij1icj0idCeifj0icj1idÞ=

ffiffiffi
2

p
. However, we should compare the

sensitivity of these cases when the same number of atoms is used in each.
Even if we allow for two particles to enter the interferometer at port a, the
phase resolution that can be achieved in this case is still a factor of

ffiffiffi
2

p
worse

than can be achieved with equation (3.6). This highlights the advantage of
using dual Fock state inputs in the interferometer.
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Figure 4. Probability distribution for the number of atoms in mode c, given by equation (3.7).

J. Dunningham and others2172
This result can readily be generalized to multi-particle systems. For N
particles at each input port we obtain (Holland & Burnett 1993)

jN iajN ib/
1

2N

XN

mZ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mÞ!ð2N K2mÞ!

p

m!ðN KmÞ!
j2micj2ðN KmÞid ; ð3:7Þ

immediately after the first beam splitter. The probability distribution of the
number of particles in mode c, P(Nc), for this state is plotted in figure 4 for
NZ20. The most notable feature of this distribution is that the number
fluctuations are now large. In fact, the fluctuations are of the same size as the
total number of particles in the system, DNcwN. This is interesting because it
means that the phase fluctuations may be very small. We can see from the
number-phase minimum uncertainty relation, DNcDfw1, that the phase
uncertainty of our state inside the interferometer can scale as Dfw1/N. This is
the so-called Heisenberg limit, which is better than the best possible number
scaling that can be achieved with uncorrelated particles, for which the result is
the standard quantum limit, Dfw1=

ffiffiffiffiffi
N

p
.

This suggests that by using dual Fock states as the input to an interferometer,
phase shifts may be able to be measured with Heisenberg limited accuracy
(Holland & Burnett 1993). If we were to detect atoms at the output ports e and f,
the phase shift would not be encoded on the population difference between the
two outputs, JzZ(e†eKf †f )/2, as is the case in normal interferometry; in fact,
hJz iZ0 in this case. But rather, it can be extracted from a measurement of the
variance of this quantity (that is, (DJz)

2) derived from the difference between
repeated realizations. The problem with determining (DJz)

2 by directly
measuring the number is that it is acutely sensitive to the effects of any deviation
from unit detector efficiencies. It has been shown that, to measure the phase shift
Phil. Trans. R. Soc. A (2005)
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Figure 5. Plot of the visibility as a function of 2Nf of the interference fringes seen when BECs are
imaged after undergoing relative phase diffusion for the optimum hold time, t.
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with Heisenberg-limited accuracy using this scheme, we would need detectors
with efficiencies better than 1K1/N (Kim et al. 1999). This renders such an
approach impractical.

However, it is possible to overcome this problem by disentangling the atoms
before measurements are made on them. This can be achieved by passing the
state that exits the interferometer back through the Mott transition. By this, we
mean that the potential barrier between e and f is adiabatically lowered until the
strong coupling regime J[V is reached. This process transfers the Heisenberg-
limited phase information on to single particle states and therefore it does not
matter whether some particles are not detected when the measurement is made
(Dunningham et al. 2002).

Another approach to making a Heisenberg-limited measurement of the phase
shift that is only weakly dependent on the detector efficiencies is to make use of
the collapses and revivals of the relative phase between the output modes
(Dunningham & Burnett 2004). The rate at which the phase of a state
collapses depends on the width of its number distribution (Wright et al. 1996).
This is because the phase of each number state in a superposition evolves at a
different rate in the presence of nonlinearity (due, for example, to atom–atom
interactions). The phase diffuses rapidly for a broad distribution, since there is
a broad range of phase evolution rates, and diffuses slowly for a narrow
distribution. So, by measuring the rate of phase collapse, it is possible to
determine (DJz)

2 and, hence, the phase shift, f. In practice, this could be
achieved by holding the output state from the interferometer (figure 3) for
some time, t, and allowing the relative phase to diffuse. The trapping potentials
could then be switched off, releasing the condensates and allowing them
to overlap. The rate of collapse could be determined from the visibility of
Phil. Trans. R. Soc. A (2005)
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the interference fringes as a function of t over an ensemble average of
measurements.

In figure 5, we have plotted an example of how the visibility of the interference
fringes varies with 2Nf for a particular hold time, t. This hold time has been
chosen to optimize the dependence of the contrast with the phase shift, f
(Dunningham & Burnett 2004). We see that the fringes appear and disappear by
changing the phase by an amount of order 1/N, thereby allowing us to resolve
phases to the Heisenberg limit. This is a dramatic observable that should be able
to be seen in the laboratory and is an exciting demonstration of the great
prospects that the coherence properties of BECs bring to the field of metrology.
4. Conclusion

We have highlighted how atomic BECs could be used in a new generation of
precision measurement schemes. In §2, we discussed how the very low
‘temperatures’ (narrow velocity distributions) of BECs could be exploited. One
way is to increase the time of flight possible in atomic fountain schemes. This is of
particular interest for proposed clocks in space. Another possibility is for the
measurement of the ratio h/m or the fine structure constant a. In this case, BECs
provide a source of a large number of atoms within a very narrow velocity range.
This suggests an improvement over previous techniques that select a narrow
velocity range from a source of cold thermal atoms since, in the case of BECs,
improved measurement resolution is not obtained at the cost of the number of
atoms contributing to the signal.

In addition to their ‘coldness’, we have shown in §3 how the coherent laser-like
properties of BECs can be exploited. By trapping BECs in optical lattices and
adjusting the ratio of the tunnelling rate to the strength of interactions between
the atoms, the condensates can be number-squeezed. If these squeezed states are
used as the input to an interferometer, it is possible to measure phase shifts with
improved resolution. In principle, this scheme should enable us to surpass the
best possible measurement resolutions that can be obtained from particles that
are not entangled and reach the ultimate quantum limit where the phase
resolution scales as 1/N.

This work was supported by the EPSRC (grant no. GR/S99297/01), The Royal Society and the
Wolfson Foundation in the United Kingdom and by the ONR, NASA and ARDA in the United
States.
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