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We present a straightforward scheme for creating macroscopic superpositions of different superfluid flow
states of Bose-Einstein condensates trapped in optical lattices. This scheme has the great advantage that all the
techniques required are within the reach of current experiments. Furthermore, the relative difficulty of creating
superpositions scales favorably with the size of the state. This means that this scheme may be well suited to
creating superpositions involving large numbers of particles. Such states may have interesting technological
applications such as making quantum-limited measurements of angular momentum.
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I. INTRODUCTION

Quantum mechanics allows objects to exist in a coherent
superposition of different states. This does not depend on the
size of the system and so offers the fascinating prospect of
being able to create superpositions of macroscopically dis-
tinct states. Multiparticle superposition states have been ob-
served in a number of systems including three photons �1�,
C60 molecules �2�, and the internal state of four 9Be+ ions
�3�. Experimental signatures of larger-scale quantum phe-
nomena were shown when Rouse et al. �4� observed resonant
tunneling between two macroscopically distinct states in a
superconducting quantum interference device �SQUID�. The
observed superposition was between states of different flux
or opposite currents flowing around a loop. These currents
consisted of approximately 109 Cooper pairs, meaning tun-
neling between two macroscopically distinct states had been
achieved. Similar systems have also been used to create mac-
roscopic superpositions of these two supercurrent states
�5,6�.

Bose-Einstein condensates �BEC’s� are a promising sys-
tem for realizing similar results. They are composed of up to
109 atoms with a high proportion in the same quantum state
and are sufficiently cold to undergo a quantum phase transi-
tion from a superfluid to a Mott insulator �7�. There have
already been a number of theoretical proposals for producing
macroscopic superpositions of BEC’s in a range of different
setups �8–12�.

In this paper, we present a scheme for producing a mac-
roscopic superposition of different superfluid flow states �or
equivalently angular quasimomentum states� in a ring of
coupled BEC’s �12�. This is important because it provides a
direct manifestation of quantum mechanics at the macro-
scopic level in a new system. As discussed by Leggett �13�,
such states are important for testing the limits of the validity
of quantum mechanics. All the steps in our scheme are
straightforward and should be achievable with present ex-
periments. The BEC system may also have significant advan-
tages over SQUID’s since it is highly controllable: the cou-
pling between condensates and the strength of the
interactions between atoms can be tuned over many orders of

magnitude. This scheme has the added advantage that the
degree of control over the system that is required to create a
superposition state scales favorably with the number atoms
involved. This suggests that such a scheme may be well
suited to creating “large” superpositions. Finally, we discuss
how a macroscopic superposition of different superfluid
flows may also be of technological interest. One possibility
is quantum-limited measurements of angular momentum or,
equivalently, ultraprecise gyroscopes �14�.

II. THE SCHEME

The system we consider consists of condensed atoms
trapped by the optical dipole force in a lattice formed by
laser light. In particular, we shall consider three lattice sites
in a ring geometry �see Fig. 1�. Each of the lattice sites is
coupled to its neighbors by quantum-mechanical tunneling
through the potential barriers separating them. This setup can
be achieved experimentally by trapping condensates in the
optical potential created by the diffraction of a laser beam by
a liquid crystal spatial light modulator. This modulator al-
lows arbitrary three-dimensional trapping potentials to be
achieved, which have the added advantage of being able to
be varied smoothly with time. Experiments in Oxford �15�
have used this technique to trap BEC’s in precisely the con-
figuration that we are interested in—i.e., the three-site ring
shown in Fig. 1.

FIG. 1. Diagram of the setup. Three BEC’s respectively denoted
a, b, and c, are trapped in an optical lattice in a ring geometry. It is
convenient to describe this setup in polar coordinates �r ,��.
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This system can be described by the Bose-Hubbard
Hamiltonian �16�

H = − J�a†b + b†c + c†a + H.c.� +
U

2
�a†2a2 + b†2b2 + c†2c2� ,

�1�

where a, b, and c are the annihilation operators for an atom
at the respective lattice sites. The strength of the tunneling
between sites, J, can be adjusted in experiments by changing
the intensity of the standing wave, thus altering the potential
barrier between sites. The interaction strength between at-
oms, U, is at best only weakly dependent on the potential,
but can be controlled by using Feshbach resonances. In the
scheme presented here, we will be concerned only with
changing the value of J.

Using Bloch’s theorem, which describes the wave func-
tion of a particle in a periodic potential, we can write the
wave function of a Bose-Einstein condensate in polar coor-
dinates as

��r,� + 2�n/3� = ei2��n/3��r,�� , �2�

where n is an integer and � is some number to be deter-
mined. We can interpret � as being the angular quasimomen-
tum of the mode in units of �. Normally when using Bloch’s
theorem �e.g., to describe electrons moving in a periodic lat-
tice� periodic boundary conditions are put in by hand as an
approximation to simplify the analysis. In the geometry con-
sidered here, periodic boundary conditions are true physical
constraints needed to ensure that the wave function is single
valued everywhere. This means that the description of this
system using Bloch states is exact. The boundary condition
can be written as

��r,� + 2�� = ��r,�� , �3�

and we see from Eq. �2� that this requires that � be an inte-
ger. Another way of say this is that the angular momentum
must be quantized in units of �. Moreover, we see from Eq.
�2� that changing � by an integer multiple of 3 does not
change the wave function. This means that a complete basis
is formed by restricting � to the values �� �0, ±1�. The an-
nihilation operators for this complete quasimomentum basis
are

� =
1
�3

�a + b + c� , �4�

� =
1
�3

�a + ei2�/3b + ei4�/3c� , �5�

� =
1
�3

�a + e−i2�/3b + e−i4�/3c� . �6�

Let us now consider the details of the process for creating
the superposition state. The great advantage of the scheme
presented here is that it is straightforward to carry out and
within reach of present experiments. Macroscopic superposi-
tions can be created simply by starting with the ground state
in the lattice when the barriers are low, rapidly increasing the

intensity of the optical lattice, and then waiting for a certain
time before rapidly decreasing the intensity of the optical
lattice again.

For simplicity we begin by considering a system of only
three atoms �17� �we will consider larger numbers later in the
paper�. We want to create a state of the form

��	 =
1
�3

��3,0,0	��� + �0,3,0	��� + �0,0,3	���� , �7�

i.e., a superposition of all the atoms having no angular mo-
mentum and all having one unit of angular momentum clock-
wise and all having one unit of angular momentum anti-
clockwise.

The Hamiltonian for the condensate in the lattice when
the potential barriers are sufficiently low that the energy as-
sociated with tunneling dominates the energy associated with
interactions, J�U, is given approximately by

H = − J�a†b + b†c + c†a + H.c.� = − J�2�†� − �†� − �†�� .

�8�

This is a very good approximation for modest numbers of
atoms and can be further improved using Feshbach reso-
nances to reduce the interaction strength. The effects of any
residual interactions may be treated using perturbation theory
and will form the subject of future work. The eigenstates of
the Hamiltonian �8� are the quasimomentum modes �4�–�6�
and the ground state is when all the atoms are in mode �
�i.e., the zero-quasimomentum Bloch state�. For three atoms,
this can be written in the basis of the number of atoms per
lattice site as

��	 =
1

9�2
�a† + b† + c†�3�0,0,0	 =

1

3�3
��3,0,0	 + �0,3,0	

+ �0,0,3	� +
�2

3
�1,1,1	 +

1

3
��1,2,0	 + �2,1,0	 + �1,0,2	

+ �2,0,1	 + �0,1,2	 + �0,2,1	� . �9�

Figure 2 shows the number distribution of atoms in the lat-
tice sites, P�Na ,Nb�= �
Na ,Nb ,3−Na−Nb ��	�2, for this
ground state. As we might expect, we see that it is relatively
unlikely to find all the atoms in a single lattice site, but more
likely to find them equally distributed between sites.

Our claim is that, if we start with a state of the form of
Eq. �9�, we can create a superposition state of the form of Eq.
�7� by first rapidly increasing the intensity of the optical
lattice, then waiting for a certain time, and finally rapidly
decreasing the light intensity again. We now study the details
of this process.

The first step is to rapidly increase the intensity of the
trapping laser light, thereby increasing the height of the po-
tential barriers between the sites and so decreasing the cou-
pling, J. We want to do this in such a way that we “lock in”
the number distributions in the three sites, but do not excite
any higher-lying vibrational states in each site. Such a con-
dition requires that the rate at which the intensity is increased
be much faster than the rate of tunneling between lattice
sites, but still adiabatic with respect to the spacing of vibra-
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tional levels at each site. It turns out that the time scales for
these two processes are well separated. Experiments have
been carried out that rapidly raise the barriers between
trapped BEC’s within a time of 50 	s and satisfy precisely
these two conditions �18�. If the coupling between the sites is
decreased sufficiently by the increase in intensity that the
coupling energy is small compared with the energy due to
the interactions between atoms, the Hamiltonian can be writ-
ten approximately as

H =
U

2
�a†2a2 + b†2b2 + c†2c2� . �10�

It turns out that this is an excellent approximation as the
energy associated with the coupling is negligible when the
intensity has been increased in experiments �18�. As before,
any corrections due to a small residual coupling could be
accounted for using perturbation theory. Immediately after
the barriers have been raised, the state is given by Eq. �9�
since it has not had time to evolve. If we now allow this state
to evolve under the influence of the Hamiltonian �10�, after
time t, the state is

��	2 =
1

3�3
ei3Ut��3,0,0	 + �0,3,0	 + �0,0,3	� +

�2

3
�1,1,1	

+
1

3
eiUt��1,2,0	 + �2,1,0	 + �1,0,2	 + �2,0,1	 + �0,1,2	

+ �0,2,1	� . �11�

We now want to see whether this evolves to a state of the
form of Eq. �7�. For this to happen, we need the probability
for all three atoms to be found in mode �, P��3�, to be
one-third and similarly for the probabilities for modes �,
P��3� and �, P��3�. Calculating these probabilities directly
we get

P��3� =
1

34 �41 + 24 cos�Ut� + 12 cos�2Ut� + 4 cos�3Ut�� ,

�12�

P��3� = P��3� =
1

34 �41 − 12 cos�Ut� − 6 cos�2Ut�

+ 4 cos�3Ut�� . �13�

If we pick the evolution time to be t=2� / �3U�, we get
P��3�= P��3�= P��3�=1/3. This is precisely what we want:
an equal superposition of all the atoms in �, all in �, and all
in �. A plot of the full number distribution in the quasimo-
mentum basis is shown in Fig. 3 and confirms that a state of
the form of Eq. �7� has been created.

The last step is to rapidly lower the potential barriers
again. As before, this is done much faster than the rate of
tunneling between the potential wells, but slowly with re-
spect to the spacing between vibrational levels within each
well. This leaves us with the state �7� �19� evolving due to
the Hamiltonian �8�. Since this Hamiltonian has no terms
that couple different quasimomentum modes, the population
in each does not change with time and so the form of the
state is preserved. Of course, this is strictly true only if we
can ignore the nonlinear interaction terms, as discussed
above. Finally, we should note that the relative phases be-
tween the terms of the state �7� change with time since the
different quasimomentum modes have different energies; i.e.,
the nonrotating mode � has a lower energy than the rotating
modes � and �.

III. LARGER NUMBERS

We have now demonstrated how the state-creation process
works for three atoms. In order for this to be a truly powerful
technique, we need to demonstrate that it also works for
larger numbers of particles, N
3, to create states of the form

FIG. 2. Probability distribution of the number of atoms in lattice
sites a and b for the initial ground state of the system—i.e., all
atoms in the � quasimomentum mode—for N=3.

FIG. 3. Final number distribution of atoms in the � and � modes
after the state-creation process when N=3.
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��	 =
1
�3

��N,0,0	��� + �0,N,0	��� + �0,0,N	���� . �14�

For simplicity, let us suppose that the total number of atoms
in the system is a multiple of three—i.e., N=3n, where n is
an integer. The initial ground state of the condensed atoms
trapped in the lattice when the energy of the coupling term
dominates, J�U, is

��	 =
1

�3NN!
�a† + b† + c†�N�0,0,0	

=
1

�3N �
p=0

N

�
q=0

N−p� N!

p!q!�N − p − q�!
�p,q,N − p − q	 .

�15�

The probability distribution of the number of atoms in lattice
sites a and b is plotted in Fig. 4 for N=30.

We now follow exactly the same procedure as for three
atoms: rapidly raise the potential barriers, hold for time t
=2� / �3U�, and then rapidly reduce the barriers to their ini-
tial height. It is straightforward to calculate the probabilities
for all the atoms to be in a single quasimomentum mode and,
as before, we get P��N�= P��N�= P��N�=1/3. The full num-
ber distribution is shown in Fig. 5 for N=30 and confirms
that a state of the form �14� has been created. This is a great
result—it means that we do not need to know the number of
atoms in the initial state. As long as the total number of
atoms is a multiple of three, we get Eq. �14�.

We would now like to consider what happens when N
�3n. To achieve this, it is helpful to define a measure C of
how similar our final state is to Eq. �14�. For this, we choose

C = 3�P��N�P��N�P��N��1/3. �16�

We choose this quantity as our measure rather than the �per-
haps more obvious� fidelity because we are not interested in
the phases between the terms, but only in whether we have a
macroscopic superposition state. It is possible to have a state
that is an equally weighted superposition of all the atoms

being in each of the three quasimomentum states and, with
carefully chosen phases, is orthogonal to Eq. �14�; i.e., the
fidelity of this state is zero. This, however, is still a state of
the form we want and so C is a better choice for a measure
since it is insensitive to the relative phases between the
terms. C can take values ranging from 0, when the state is
very different from Eq. �14�, up to 1, when the state has the
same form as Eq. �14�. In Fig. 6, we have plotted the value of
C for the final state �created by the procedure outlined
above� for a range of values of N. We see that we get a state
of the form of Eq. �14� if N is a multiple of 3, but not
otherwise �20�. This, however, should not overly concern us.
For one, this is a very simple procedure for creating large
superposition states. The straightforward implementation of
this scheme far outweighs the fact that it only works for one
in three trials, which is certainly not a prohibitively low suc-
cess rate for usefulness in a range of schemes. Second, in
certain measurement schemes that require a state of the form
of Eq. �7�, it is possible to post-select trials where the state

FIG. 4. Probability distribution of the number of atoms in lattice
sites a and b for the initial ground state of the system—i.e., all
atoms in the � quasimomentum mode—for N=30.

FIG. 5. Final number distribution of atoms in the � and � modes
after the state-creation process when N=30.

FIG. 6. �Color online� Plot of C defined by Eq. �16� as a func-
tion of the total number of atoms in the system, N. A state of the
form of Eq. �14� is created �i.e., C=1� only if N is a multiple of 3.
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was successfully generated and discard the unsuccessful tri-
als. Of course, the superposition is destroyed by the measure-
ment, but post-selection allows us to retain measurement
data only from trials that involved the desired state. An ex-
ample of such a procedure is discussed in Sec. V.

IV. DISCUSSION

One of the great advantages of this scheme over a proce-
dure we previously proposed �12� is that, instead of having to
control the rate of rotation of the lattice to a high degree of
precision, we need only control the time that the system is
allowed to evolve when the potential barriers are high. This
should be much easier to achieve in practice. In this section,
we investigate how sensitive the state-creation process is to
the accuracy of this timing.

As our benchmark we will take a value of C=0.9. This
corresponds �in the case of the state being symmetric in �, �,
and �� to 90% of the atoms being in a state of the form of
Eq. �14�. We would now like to investigate how accurately
we need to control the time of the nonlinear evolution in
order to achieve a value of C�0.9 for the final state. If we
take the time of the nonlinear evolution to be t= �1
+��2� / �3U�, where � is the error in the timing, we would
like to find the maximum value of � such that C�0.9 as a
function of N. We denote this maximum value as �0.

A plot of these results is shown in Fig. 7. The crosses
show the points for total numbers of atoms that are a mul-
tiple of 3 and the solid curve is a best-fit line. The approxi-
mate scaling from this fit is

�0 � 0.24/N . �17�

This means that the error that can be tolerated in the timing
scales as 
t
1/UN. We note that this result is consistent

with the calculation in the previous section for three par-
ticles. Eqs. �12� and �13�, the most rapidly varying terms are
proportional to cos�3Ut�, which means that the error in t
scales as 
t
1/ �3U�.

Here we see the great advantage of this scheme: the ac-
curacy with which we need to control the timing scales as
1 /N. This is much more favorable than the exponential de-
pendence on N that the rate of rotation of the lattice had to be
controlled in a previous scheme �12�. This means that the
present scheme has a relatively low premium on creating
macroscopic superposition states with large numbers and so
is particularly well suited to this purpose. This is good news
since the advantages of superposition states in quantum
schemes and investigating fundamental issues of physics are
more fully exploited the larger the superposition is.

The fact that the nonlinear evolution needs to be con-
trolled more accurately the larger the superposition is will
ultimately limit the size of states that can be created by this
process. However, this fact could also be turned to an advan-
tage. For example, we could use this scheme to measure the
value of U accurately—something that is difficult to achieve
experimentally. One way this could be achieved is to carry
out the procedure outlined above for different values of t and
then make measurements on the final state. Whenever Ut is a
multiple of 2� /3, a state of the from of Eq. �14� will be
created when N is a multiple of 3. This means that one-third
of the time we would find all the atoms in the same angular
momentum mode—a highly unlikely event if a state of the
form of Eq. �14� had not been created. This, then, provides a
clear means of calibrating Ut to within 1/N and, since time
can be measured extremely accurately, would enable a pre-
cise determination of U.

It is well known that macroscopic superposition states are
fragile to the effects of loss and that this sensitivity increases
as the superposition gets larger. In practice, this will limit the
size of superposition states that can be created in the labora-
tory. This restriction, however, is not fundamental and, by
carefully eliminating sources of decoherence, superpostions
of increasing size should be able to be realized. Experiments
have already successfully observed superpositions of large
numbers of particles in C60 molecules �2� and supercurrents
�5,6�.

V. READOUT AND INTERFEROMETRY

One interesting application of macroscopic superpositions
of flow states is that they may allow for quantum-limited
measurements of angular momentum—i.e., ultraprecise gy-
roscopes �12,14�. To achieve this, we would like to carry out
a form of interferometry using macroscopic superposition
states. A similar idea makes use of “quantum beam splitters”
to accurately measure phase shifts in optical and double-well
BEC systems �21,22�.

The basic idea is to create a macroscopic superposition of
superfluid flows using the procedure outlined above. The
state is then held for some time 
t, and any rotation of the
lattice during this time will shift the energy levels of the
different angular quasimomenta and so encode phases on the
state. The state-creation procedure is then repeated, in anal-

FIG. 7. �Color online� Plot of 1 /�0 as a function of N, where �0

is the maximum value of the error in the timing of the nonlinear
evolution, �, that allows C�0.9. The crosses are numerically cal-
culated data points for values of N that are multiples of 3. The solid
curve is a line of best fit intended to find the scaling. The solid
curve should not be interpreted as an interpolation between points,
since the state-creation process only works when N is a multiple of
3.
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ogy with the second beam splitter in a Mach-Zehnder inter-
ferometer, and the number of atoms in each angular momen-
tum mode is measured. This should enable the rotation of the
lattice to be determined accurately.

In the present discussion, we will limit ourselves to the
case where the total number of atoms is a multiple of 3. In
this case, it can be shown that the transformation of the state
by the state-creation process is

��N,0,0	���

�0,N,0	���

�0,0,N	���
� → U��N,0,0	���

�0,N,0	���

�0,0,N	���
� , �18�

where U is the unitary transformation,

U =
1
�3�e−i2�/3 1 1

1 e−i2�/3 1

1 1 e−i2�/3� . �19�

It is straightforward to show that U3=1. This means that,
since that the state-creation process corresponds to the op-
erator U, we pick the second operation �corresponding to the
second “beam splitter”� to be U2. This ensures that the sec-
ond operation is the inverse of the first. Experimentally, this
could be achieved simply by allowing the state to evolve
twice as long with the nonlinear interactions—i.e., t
=4� / �3U� �23�.

We now need to consider how rotations of the lattice shift
the energy of �, �, and �. For small changes in the angular
momentum, 
L, we can write


E �
�E

�L

L = �L , �20�

where � is given by L / I and I is the moment of inertia of the
atoms. We saw earlier that the angular momenta of �, �, and
� are 0, �, and −�, respectively. This means that the respec-
tive energy shifts of these modes are 0, ��, and −�� and the
Hamiltonian describing the system at this stage can be modi-
fied from Eq. �8� to give

H = ��− 2J�†� + �J + ���†� + �J − ���†�� . �21�

The matrix describing the phase shift of each mode due to
evolution with this Hamiltonian for time 
t, eiH
t/�, can be
written in the basis ��N ,0 ,0	��� , �0,N ,0	��� , �0,0 ,N	���� as

Q = �e−i3NJ
t 0 0

0 eiN�
t 0

0 0 e−iN�
t� , �22�

where an overall phase has been neglected.
Before discussing the results, let us first summarize the

interferometry scheme. We first create a superposition state
by the process described earlier and then hold it for some
time, 
t. It is during this time that any slight changes in the
rotation of the lattice are detected. Finally, we repeat the
state-creation process, but this time for double the duration
of the nonlinear interaction, and detect which angular mo-
mentum modes the atoms of the final state are in. Even
though we have two state-creation processes in this scheme,

the overall chance of success in any given trial is still one-
third. This is because either both processes are successful or
both are not depending on whether the total number of par-
ticles in the system is a multiple of 3; i.e., the successes of
the two processes are not independent. Furthermore, we can
throw away any unsuccessful trials since we will know that it
has been unsuccessful when we measure it if all the atoms
are not found in the same angular momentum mode �, �, or
�. This means that the restriction that the total number of
atoms must be a multiple of 3 should not overly concern us.

The final state created by this scheme, if we begin with
the ground state of the system �i.e., all the atoms in the
nonrotating � mode�, is ��	final=U2QU�N ,0 ,0	���. When
�
t=0—i.e., there is no rotation of the lattice or the time
over which the rotation is applied is vanishingly small—we
get Q=1 and the final state is the same as the initial state, as
it should be. The probabilities for finding all the atoms in �,
�, and �, respectively, are

P� =
1

9
�1 + 4 cos2�N�
t� + 4 cos�N�
t�cos�3NJ
t�� ,

�23�

P� =
1

9
�1 + 4 cos2�N�
t − 2�/3� + 4 cos�N�
t

− 2�/3�cos�3NJ
t�� , �24�

P� =
1

9
�1 + 4 cos2�N�
t + 2�/3� + 4 cos�N�
t

+ 2�/3�cos�3NJ
t�� , �25�

and P�+ P�+ P�=1, as it should when N is a multiple of 3.
We see that the frequency of oscillation of the probabili-

ties �23�–�25� scales as N. So by changing �
t=L
t / I by an
amount of the order of 1 /N all the atoms can be transferred
from one angular momentum mode to another. This is a dra-
matic observable that should be able to be measured experi-
mentally, thereby enabling measurements of angular momen-
tum with a precision that scales as 1 /N. This is the same
scaling as the fundamental quantum limit �Heisenberg limit�
and, since N can be large for macroscopic superpositions,
opens up the exciting possibility of achieving ultraprecise
gyroscopes.

VI. CONCLUSION

We have presented a detailed scheme for creating macro-
scopic superpositions of different superfluid flow states in an
optical lattice. Such states are of fundamental interest in ex-
ploring the boundary between the regimes where quantum
and classical physics are valid. The scheme we have pro-
posed has some pleasing features. BEC’s in optical lattices
present a system free from impurities that is highly
controllable—the coupling between sites and the interactions
between atoms can be adjusted over several orders of mag-
nitude. Furthermore, this scheme is very simple and well
within reach of present experiments. Macroscopic superposi-
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tion states can be created simply by rapidly switching the
intensity of the laser beams that form the optical lattice. This
scheme has the great advantage that there is a relatively low
premium on creating superpositions with large numbers of
atoms. The timing of the nonlinear interaction needs to be
controlled to an accuracy that scales as 1 /N, which is much
more favorable than the degree of control required in other
schemes. This suggests that this scheme may present a viable
route to achieving macroscopic superpositions of superfluid
flow states in the laboratory. Along with enabling detailed

studies of quantum mechanics, these states may have inter-
esting technological applications including ultraprecise
quantum-limited gyroscopes.
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