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Using quantum interferometers to make
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In recent work we proposed a quantum interferometer and showed how it could
be used to significantly enhance the resolution that could be achieved in
measurement schemes. In this paper, we outline a detailed scheme on how these
quantum interferometers could be implemented. We also analyze the effects of
dissipation and of imperfect detectors and show that this scheme is remarkably
robust to both. This suggests that quantum interferometers may provide
a promising route for implementing sub-shot-noise limited measurements in the
laboratory.

1. Introduction

A major factor in the advancement of science has been the ability to test new
theories with increasingly precise measurements of physical systems. Considerable
theoretical and experimental efforts have therefore been devoted to making ongoing
improvements in metrology. One of the key developments in the field was the
interferometer, which enabled path length differences to be detected through phase
shifts with unprecedented accuracy. In particular, it allowed phases to be measured to
the ‘shot noise limit’, where the uncertainty scales as 1=

ffiffiffiffi
N

p
and N is the total number

of particles involved. The discovery of non-classical (e.g. squeezed) states of light
[1–5] further enhanced the precision that could be achieved. By using squeezed light
with reduced phase fluctuations as the input to an interferometer [6], it is possible to
detect phase shifts below the shot noise limit and even approach the Heisenberg limit
where the uncertainty scales as 1/N [7]. This favourable scaling with N means that,
for large numbers of particles, a dramatic improvement in measurement resolution
should be possible. This may be of great importance in a number of areas of physics
including, for example, the detection of gravitational waves.
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One possibility for reaching the Heisenberg limit is to use dual Fock states as
the input to an interferometer, i.e. when each input port of the interferometer has
precisely the same number of particles [8]. This proposal has spawned a great deal
of interest particularly with regard to the details of its implementation. Kim et al.
showed that the number correlated light from an optical parametric oscillator (OPO)
or amplifier (OPA) would be a practical alternative to the dual Fock state input [9]
and recent experiments have demonstrated Heisenberg-limited interferometry with
ultrastable twin beams [10].

One problem with these schemes, however, is that the phase information cannot
be determined simply by measuring the population imbalance at the output ports,
as is the case for standard interferometry. Instead we need to measure coincidences
or correlations between the particles [9]. Such measurements have been shown to
be extremely sensitive to any imperfections in the detectors, which suggests that
these schemes are likely to be impractical [11]. One possibility is to use Bayes’
theorem to analyze the information that can be gleaned from the detections [8, 12].
Other promising proposals as to how this problem can be overcome include
disentangling the particles before measurements are made on them [13] or measuring
the collapses and revivals of the visibility of interference fringes for Bose-Einstein
condensates [14].

In recent work [15], we demonstrated a different route to achieving sub-
shot-noise limited measurements. This involved using ‘quantum beam splitters’ to
create maximally entangled states inside the interferometer. In the present paper,
we provide more detail on how this scheme could be implemented and show
that it has the highly favourable properties of being robust to the effects of both
dissipation and imperfect detectors.

We begin in section 2 by illustrating the usefulness of entanglement in precision
measurements. We calculate the resolution that can be achieved with a stream of
independent particles in an interferometer and compare this with the result for
entangled particles. We show that, although entanglement enables a significant
improvement, it comes at the price of placing severe restrictions on the detector
efficiencies that can be tolerated. In section 3 we outline a scheme for implement-
ing quantum beam splitters and, in section 4, we show how these can be combined to
create a quantum interferometer. An analysis of the quantum interferometer shows
that it enables measurements to be made below the shot noise limit and circumvents
the problems associated with detector efficiencies that have derailed other schemes.
Finally in section 5, we discuss the effects of loss and show that this too does not
prevent us from approaching the Heisenberg limit. Their robustness to these
imperfections suggests that quantum interferometers are promising candidates for
implementing sub-shot-noise measurement schemes in the laboratory.

2. Why is entanglement useful for measurements?

In this section, we want to illustrate how entanglement can improve the precision
of measurements. We consider the case of a Mach-Zehnder interferometer
which consists of two 50:50 beam splitters and a phase shift, !, on one of the
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paths (see figure 1). Each beam splitter transforms the annihilation operators,
a1 and a2 at the inputs according to

a1
a2

" #
!! 1ffiffiffi

2
p 1 i

i 1

" #
a1
a2

" #
: ð1Þ

The total transformation of the operators by the interferometer is therefore,

a1

a2

" #
¼ 1

2

1 i

i 1

" #
ei! 0

0 1

" #
1 i

i 1

" #
a3

a4

" #

¼
sinð!=2Þ cosð!=2Þ
cosð!=2Þ ! sinð!=2Þ

" #
a3

a4

" #
, ð2Þ

where a3 and a4 are the annihilation operators at the outputs (see figure 1) and
we have neglected an unimportant overall phase in the last line. If a particle enters
the interferometer at port 1, i.e. the input state is j1, 0i ¼ ay1j0, 0i, it is clear from
(2) that the output state is, j i ¼ sinð!=2Þj1, 0iþ cosð!=2Þj0, 1i and the probabilities
that the particle emerges in ports 3 and 4 are,

P3 ¼ sin2ð!=2Þ ð3Þ
P4 ¼ cos2ð!=2Þ: ð4Þ

We can treat a stream of N particles independently if they do not interact with
one another. This means that the number of particles at the two output ports is given
by a binomial distribution. The joint probability that m and N!m particles are
detected at ports 3 and 4 respectively is then,

Pðm,N!mÞ ¼ N
m

" #
Pm
3 P

N!m
4 ¼ N

m

" #
cos2mð!=2Þ sin2ðN!mÞð!=2Þ, ð5Þ

and the mean number of particles detected at port 3 is hn3i ¼ N cos2ð!=2Þ.
So, by measuring the populations at the outputs, we can infer the phase shift, !.
This is the principle behind interferometric measurements. Furthermore, we can

a3

a4

a1

a2

φ

1

2

3

4

Figure 1. Schematic of a standard Mach-Zehnder interferometer consisting of two mirrors,
two 50:50 beam splitters, and a phase shift, !.
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estimate the uncertainty in our measurement of ! from the variance in the number of
particles detected at each port,

ð!n3Þ2 ¼ ð!n4Þ2 ¼ NP3P4 ¼ N sin2ð!=2Þ cos2ð!=2Þ: ð6Þ

This uncertainty in particle number can be converted into an uncertainty in
the phase shift by a straightforward manipulation of the errors,

ð!n3Þ2 ¼
@hn3i
@!

" #2

ð!!Þ2: ð7Þ

Rearranging and substituting for hn3i and ð!n3Þ2, we obtain,

ð!!Þ2 ¼ 1

N
: ð8Þ

This means that the precision, !!, with which we can measure the phase shift
in the interferometer scales as 1=

ffiffiffiffi
N

p
. This is the so-called shot noise limit and is

a consequence of assuming independent particle statistics. By inputting increasingly
large numbers of particles, it is possible to improve the measurement resolu-
tion to the level required. This approach to interferometry has been highly successful
and is used in a wide range of contexts.

We would now like to consider what happens if we remove the assumption that
each of the particles can be treated independently. In particular, we would like
to see whether it is possible to improve the measurement resolution that can be
achieved with the same resources, i.e. the same number of particles. We shall
consider the specific case of ‘NOON’ states [16] of the form,

j i ¼ 1ffiffiffi
2

p jN, 0iþ ei"j0,Ni
$ %

, ð9Þ

where jk, l i represents the number of particles on each of the two paths and " is
a phase between the two terms. The NOON state is a macroscopic superposition
of all the particles being on one path of the interferometer and all on the other.
Bollinger et al. first proposed the idea of using such maximally entangled states
to make precise measurements of the frequency of atomic transitions [17]. They
showed that the resolution that could be achieved by this technique scales inversely
with the total number of particles, !! & 1=N.

NOON states can be created inside an interferometer by replacing the first
beam splitter with a ‘quantum beam splitter’ and in section 3 we will discuss a specific
scheme for realizing such a device. The particles in the NOON state are entangled
since, unlike the previous case, we cannot write the total state of the system as
a product of the states of each individual particle.

After a phase shift, ! on one arm of the interferometer, the NOON state
becomes, j i ¼ ðeiN!jN, 0iþ ei"j0,NiÞ=

ffiffiffi
2

p
. This can be written as,

j i ¼ 1ffiffiffiffiffiffiffiffi
N!2

p ei!ay1

& 'N
þei" ay2

& 'N( )
j0, 0i: ð10Þ
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If we now pass this state through the second (ordinary) beam splitter of figure 1,
the output can be found by transforming each of the operators according to (1).
This gives,

j i ¼ 1ffiffiffiffiffiffiffiffiffiffi
2N!1

p
XN

m¼0

N
m

" #1=2

cos
1

2
N!! " þ #ðm!N=2Þ½ (

* +
jm,N!mi: ð11Þ

If we were to detect m and N!m particles at ports 3 and 4 respectively,
the conditional probability distribution describing our knowledge of ! is given by
Bayes’ theorem, Pð!jm,N!mÞ / Pðm,N!mj!ÞPð!Þ. If we have no prior knowledge
of !, we take P(!) to be flat. This gives,

Pð!jm,N!mÞ / hm,N!mj i
,, ,,2/ 1þ ð!1Þm cos Nð!! #=2Þ ! "½ (: ð12Þ

We see that the fringes vary N times faster with ! in this case than they do for
independent particles. This means that ! should be measurable with a resolution
that scales as 1/N as compared with 1=

ffiffiffiffi
N

p
for independent particles and demon-

strates why entanglement may be useful in precision measurement schemes.
However, along with this enhanced resolution comes a problem. We see from

(12) that by changing the value of m by one, i.e. !m ¼ )1, the fringes are exactly
out of phase with what they were before. This means that if the number of particles
that emerge from each port is not measured exactly, the interference fringes wash out
and we do not obtain any information about !. Similar results have been expressed
elsewhere in terms of the parity of the detected particles [18] (i.e. whether an odd or
even number are detected), correlations between the detected particles [15], and
which-path information in the system [19].

The fact that every particle must be detected imposes prohibitively strict
conditions on the required detector efficiencies and threatens to consign this scheme
to being little more than a theoretical curiosity. It turns out, however, that it is
possible to overcome this major problem. We shall discuss how this can be achieved
in section 4 but, before we do that, it is worthwhile considering a detailed scheme
as to how NOON states may be created.

3. Scheme for a quantum beam splitter

We shall use the general term ‘quantum beam splitter’ to refer to any scheme or
device that creates a NOON state of the form of (9) from the initial state
j i ¼ jN, 0i. A quantum beam splitter is quite distinct from an ordinary beam
splitter, which, for the same input, would give a binomial distribution of particles
at the outputs. The operation of a quantum beam splitter can be seen to be
equivalent to that of an ordinary beam splitter if all the particles were somehow
‘stuck together’.

Various proposals have been made for producing NOON states in the lab-
oratory. These include the use of Fredkin gates [20–22], quantum switching [23],
coupling a quantum superposition state to a beam splitter [24], and coupling the
spin states and collective motion of trapped ions [25]. Experiments have successfully

Using quantum interferometers to make measurements 561
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created NOON states with three photons [26], and four 9Beþ ions [27], and could in
principle be scaled up to larger numbers. A particularly promising theoretical scheme
involves making use of ordinary beam splitters and nonlinear unitary evolution
to produce states of the form of (9) [28]. This scheme is shown in figure 2 and consists
of a standard Mach-Zehnder interferometer with a phase shift on one arm that
depends quadratically on the number of particles in that arm. We can study this
device by explicitly calculating the transformation it performs on the input state
j i ¼ jN, 0i.

The unitary operator for a 50:50 beam splitter is,

U ¼ exp !i
#

4
ðay1a2 þ ay2a1Þ

h i
, ð13Þ

where, as before, a1 and a2 are the annihilation operators for particles in each of
the two input ports. If we consider successive operations of (13) on the initial state,
the outputs we obtain are,

jN, 0i!!j 1i!!ð!iÞNj0,Ni!!ð!1ÞNj 1i*!!ð!1ÞNjN, 0i, ð14Þ

where

j 1i ¼
1ffiffiffiffiffiffi
2N

p
XN

k¼0

N
k

" #1=2

e!i#ðN!kÞ=2jk,N! ki, ð15Þ

and j 1i* is the complex conjugate of j 1i. The operation of a balanced beam splitter
is cyclic: four successive operations of (13) return the system to its original state,
apart from an overall phase.

We can use (14) to understand the action of the scheme depicted in figure 2.
If we begin with the state j i ¼ jN, 0i and pass it through the first beam splitter,
it is transformed to j 1i. The operator corresponding to the nonlinear evolution
has the form expð!i$tðay1a1Þ

2Þ, where $ is a parameter governing the strength of
the nonlinearity and t is the duration of the nonlinear evolution. This operation
could be implemented with nonlinear crystals for photons or by exploiting the

a1

a2

a3

a4
|0>

|N>
χ

Figure 2. Schematic of a quantum beam splitter. This consists of an ordinary Mach-
Zehnder interferometer but with a nonlinearity, $, on one arm.
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interactions between atoms in Bose-Einstein condensates. If we choose $t ¼ #=2,
after this transformation, the state becomes,

e!i#ðay
1
a1Þ2=2j 1i ¼

ð!iÞNffiffiffiffiffiffi
2N

p
XN

k¼0

N
k

" #1=2

e!i#kðk!1Þ=2jk,N! ki: ð16Þ

It is straightforward to check that, since k can only take integer values, this can
be written equivalently as,

j i ¼ ð!iÞNffiffiffiffiffiffiffiffiffiffi
2Nþ1

p e!i#=4
XN

k¼0

N

k

 !1=2

ei#k=2 þ ie!i#k=2
$ %

jk,N! ki ð17Þ

¼ 1ffiffiffi
2

p e!i#=4 j 1iþ ið!1ÞNj 1i*
- .

: ð18Þ

Finally, we pass this state through the second beam splitter. We can see from
(14) how each term is transformed. The total transformation of the interferometer
depicted in figure 2 is therefore

jN, 0i!! ð!1ÞNffiffiffi
2

p ei#=4 jN, 0iþ iN!1j0,Ni
$ %

: ð19Þ

Ignoring the irrelevant overall phase, we see that the interferometer creates a state of
the general form of (9) where " ¼ #ðN! 1Þ=2. A similar calculation for the converse
input state reveals,

j0,Ni!! 1ffiffiffi
2

p ei#=4 j0,Niþ ð!1ÞNiN!1jN, 0i
- .

: ð20Þ

This shows how a simple scheme combining a Mach-Zehnder interferometer with
nonlinear evolution allows us to create NOON states of the form we want for
precision measurements. Furthermore, we shall show in section 5 that this scheme is
not completely destroyed by loss and that we do not need to create perfect NOON
states to realise much of the associated advantage in interferometry. This suggests
that this scheme may be feasible in future experiments.

Of course, if we were to use these NOON states directly in measurement schemes
as discussed above, we would run into difficulties associated with detector efficien-
cies. We now discuss how this major problem can be circumvented by combining
quantum beam splitters to create a ‘quantum interferometer’.

4. The quantum interferometer

A quantum interferometer is simply a Mach-Zehnder interferometer where both
beam splitters have been replaced with quantum beam splitters. This set-up is shown
in figure 3. Since, as discussed above, a quantum beam splitter can be realised with a
nonlinear Mach-Zehnder interferometer, a quantum interferometer can equivalently
be depicted schematically by figure 4. In this set-up, the nonlinearities are placed on

Using quantum interferometers to make measurements 563
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different arms of the two quantum beam splitters to ensure the correct phases are
obtained.

We would now like to consider the output from this quantum interferometer and
demonstrate that measurement schemes which make use of this technique are not
undermined by the effects of detector inefficiencies. If we start with the input state
j i ¼ jN, 0i then, after the first quantum beam splitter (QBS1), the state is given
by (19). If there is a phase shift, ! on one arm as shown in figure 3, the state becomes,

j i ¼ ð!1ÞNffiffiffi
2

p ei#=4 eiN!jN, 0iþ iN!1j0,Ni
$ %

: ð21Þ

Finally, we pass this state through a second quantum beam splitter (QBS2). It is
straightforward to see how (21) is transformed by this operation by using
(19) and (20). This gives as the output state,

j i ¼ i

2
ð!1ÞNðeiN! ! 1ÞjN, 0iþ iN!1ðeiN! þ 1Þj0,Ni
- .

: ð22Þ

We can see from the form of this state that all N particles will be detected at one
output or all N at the other. This suggests that this scheme will be robust against the

a3

a4

a1

a2
|0>

|N>
φ

QBS1 QBS2

Figure 3. Schematic of a Mach-Zehnder quantum interferometer composed of two
quantum beam splitters.

a1

a2

a3

a4

φ
χ

QBS1 QBS2

χ

Figure 4. Full scheme for a Mach-Zehnder quantum interferometer. Each of the quantum
beam splitters in figure 3 has been replaced with a Mach-Zehnder interferometer with a
nonlinearity on one path.
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effects of imperfect detectors since, even if some of the particles are not detected,
we still know with certainty at which port they all emerged. The probabilities
of detecting all the particles at output ports 3 and 4 respectively are given by,

P3 ¼ sin2 N!=2ð Þ ð23Þ
P4 ¼ cos2 N!=2ð Þ: ð24Þ

Comparing this result with (3) and (4) we see that there is an N-fold enhancement
in the phase shift relative to the result for standard interferometry.

Following the standard approach to interferometry, we take the population

difference between the outputs as our signal, i.e. n ¼ ay4a4 ! ay3a3 ¼ N! 2ay3a3. The
second equality follows from the fact that the total number of particles, N, is fixed.
It is then straightforward to show that the mean and variance are given by
hni ¼ N cosN! and ð!nÞ2 ¼ hn2i! hni2 ¼ ðN sinN!Þ2. The phase resolution of this
scheme is,

ð!!Þ2 ¼ ð!nÞ2

@hni=@!ð Þ2
¼ 1

N2
: ð25Þ

This is the result that we want, and shows that the quantum interferometer allows
us to achieve the Heisenberg limit for the phase resolution. This is the same
resolution afforded by using cats states directly, as discussed in section 2.
However, the true advantage of the quantum interferometer scheme is that it
overcomes the problem of detector inefficiencies as we shall now show.

According to the model of nonideal photodetection, the detected field mode
i 2 f3, 4g is described by a photon annihilation operator,

a0i ¼
ffiffiffiffi
%

p
ai þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1! %

p
vi, ð26Þ

where vi is the annihilation operator for the vacuum state mode [29, 30] and
0 + % + 1 is the efficiency of the detector. For simplicity, we have taken % to be
the same for both detectors. This is equivalent to considering two perfectly efficient
detectors and a beam splitter with transmission coefficient % in front of each of them.
The beam splitters coherently remove a fraction ð1! %Þ of the particles, leaving the
fraction % to be detected.

The number operator for the detected photons at each output port is given by
n0i ¼ a0yi a

0
i and the signal is n0 ¼ n04 ! n03. This allows us to obtain the relations,

hn0i ¼ %hni ¼ %N! 2hn03i ð27Þ
ð!n0Þ2 ¼ %2ð!nÞ2 þ %ð1! %ÞN: ð28Þ

Substituting in the values for hni and ð!nÞ2 that we found above, gives hn0i ¼
%N cosN! and ð!n0Þ2 ¼ ð%N sinN!Þ2 þ %ð1! %ÞN. Using these relations, the phase
uncertainty is given by

ð!!Þ2 ¼ ð!n0Þ2

@hn0i=@!ð Þ2
¼ 1

N2
þ 1! %

%

" #
1

N3 sin2 N!
: ð29Þ

Using quantum interferometers to make measurements 565
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The first term on the right hand side, which is independent of the detector efficiency,
represents the ideal case. The second term accounts for detector imperfections and
hence vanishes for perfect detectors, %¼ 1. The key point is that this second term
scales as 1/N3, for values of N! not too close to integer multiples of #. This means
that the destructive effects of realistic detectors are negligible for NOON states with
large N.

We can get a better understanding of the restrictions on the values that N! can
take by linearizing sin2 N! around N! ¼ 0 in (29). This shows that, for large N, the
first term dominates so long as ! > 1=N3=2. This is a restriction we can happily accept
since the smallest phase that we can distinguish from zero scales as ! & 1=N. In other
words, the effects of detector inefficiencies are unimportant for all relevant cases.
This is a remarkable result as detector efficiencies are a major obstacle to beating the
standard quantum limit in other precision measurement schemes.

We have shown in this section how the measurement scheme is robust to
imperfections in the detectors. In the next section, we shall consider the effects of
imperfect quantum beam splitters and shall focus, in particular, on how loss affects
our results.

5. Effects of loss

It is well known that macroscopic superposition states, such as the NOON state
we have been considering, are highly fragile. In the presence of dissipation, such
superpositions are destroyed on timescales corresponding to the loss of a single
particle. For this reason, any practical implementation of the measurement scheme
outlined above must pay special attention to carefully isolating the NOON state
from its environment. It is important that the phase shift, !, is applied to the NOON
state on a timescale shorter than that corresponding to the loss of a particle.

In this section, we shall consider a related question. Rather than considering loss
on the NOON state itself, we shall investigate the effects of loss during its creation
process. Another way of thinking of this is that the quantum beam splitters in our
scheme are imperfect or lossy. Such a consideration is clearly important with regard
to practical implementations of this scheme.

In figure 5, we have divided the quantum interferometer into three distinct
regions (labelled I, II, and III) where loss can occur. We shall see that region II
corresponds to dissipation acting on the NOON state and, as discussed above, we
will ignore this region in the present discussion. The two remaining regions (I and III)
are essentially the same and consist of a nonlinearity and an ordinary 50:50 beam
splitter. We shall consider the effects of loss in these two regions together.

The first helpful observation is to recognize that, on the ensemble average,
loss and the 50:50 beam splitter operation commute. This means that it makes no
difference whether the loss is before or after the beam splitter. Therefore, any loss in
region I (for example) up to (but not including) the nonlinearity is equivalent to loss
only before the first beam splitter. Following the same argument, loss anywhere in
region II is equivalent to loss on the NOON state that exists between the two central

566 J. Dunningham and T. Kim
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beam splitters. Let us now consider why loss and the beam splitter operation
commute.

If the state of a system at time t is given by the density matrix &(t), the evolved
state under the influence of dissipation is given by the master equation,

_&&ðtÞ ¼ " 2a1&ðtÞay1 ! ay1a1&ðtÞ ! &ðtÞay1a1 þ 2a2&ðtÞay2 ! ay2a2&ðtÞ ! &ðtÞay2a2
h i

ð30Þ

where we have taken the rate of dissipation, ", to be the same in both modes.
The operator, U, corresponding to a 50:50 beam splitter is given by (13).

To check that these two operation commute, we need to show that
U _&&ðtÞUy ¼ d=dtðU&ðtÞUyÞ, i.e the master equation (and therefore the evolution of
the state) is the same whether the loss comes before or after the beam splitter.
This can be checked term by term. For example, if we use UUy ¼ 1, we get,

a1U&Uyay1 þ a2U&Uyay2 ¼ UðUya1UÞ&ðUyay1UÞUy þUðUya2UÞ&ðUyay2UÞUy

¼ 1

2
U ða1 þ ia2Þ&ðay1 ! iay2Þ þ ðia1 þ a2Þ&ð!iay1 þ ay2Þ
h i

Uy

¼ U a1&a
y
1 þ a2&a

y
2

h i
Uy, ð31Þ

as required. A similar result holds for the remaining terms of (30) and demonstrates
that the processes of equal dissipation in each mode and a 50:50 beam splitter
commute.

Referring to figure 5, we see that this result means that any loss in region III
(apart from the nonlinearity) is equivalent to loss at the output of the quantum
interferometer. We have already shown in section 4 that loss at the output (e.g. by
inefficient detectors) does not adversely affect the performance of our scheme.
Similarly, any loss in region I (apart from the nonlinearity) is equivalent to loss in
the input state. Since we start with a state of the form j i ¼ jN, 0i, the loss simply
changes the value of N and does not otherwise affect the performance of our scheme.

This is a useful result: it means that, to account for any loss in regions I and III,
we only need to consider loss during the nonlinear evolution. We now consider how
this affects our results. For simplicity we will consider loss only during the nonlinear

a1

a2 a4

a3χ

I II III

χ

φ

Figure 5. The quantum interferometer with different regions marked I, II, III. We consider
how loss of particles in regions I and III affects the precision measurement scheme.
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evolution of region III, however, similar results should apply when there is loss in
both nonlinearities.

Let us consider that an atom is lost at time ft, where 0 + f + 1 is the fraction of
the total nonlinear interaction time, t, at which the loss occurred. The state at the end
of the interaction time can be shown to be [28],

j i ¼ 1
ffiffiffiffiffiffi
2 ~NN

p
X~NN

k¼0

~NN
k

" #1=2

e!i# kðk!1Þ½ (=2 e!i#fk jkij ~NN! ki, ð32Þ

where ~NN ¼ N! 1. We notice that this loss introduces a phase factor that shifts
the relative phases of the modes by f#. For multiple losses, the effect is to simply
introduce a phase shift of the same general form as that shown in (32). In other
words, many losses can be treated in the same way as a single loss.

The effect of loss during the nonlinear evolution has been studied in detail
elsewhere [28]. In particular, it has been shown that the phase shift, introduced by
loss, degrades the quality of the NOON state at the output. For a flat distribution
of random phases introduced by the loss, a simple simulation shows that about 80%
of trials give rise to states that look ‘cat-like’. This suggests that we may be able
to achieve enhanced measurement resolution in these cases. Indeed, for small phase
shifts, it should be possible to recover the Heisenberg limit as we shall now
demonstrate.

In figure 6, we have plotted the probability distribution for particles in output
mode 3 for a state that has acquired a phase shift of 0:1# due to losses in the non-
linearity of region III, i.e. f¼ 0.1 in equation (32). We see that it is a good approxi-
mation to a NOON state, but somewhat degraded by the loss, as discussed above.

0 5 10 15 20
0

0.1

0.2

0.3

m

|C
m

|2

Figure 6. Plot of the coefficients jCmj2 of (33) for a state that has acquired a phase shift of
0:1# due to losses in the nonlinearity of region III in figure 5. This plot represents the
probability distribution of particles in each of the output ports. (The colour version of this
figure is included in the online version of the journal.)
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We can write the general form of this state by a simple modification of the output
state for no loss (22),

j i ¼ i

2

XN=2

m¼0

Cm ð!1ÞNðeiN' ! 1ÞjN!m,miþ iN!1ðeiN' þ 1Þjm,N!mi
- .

, ð33Þ

where
P

m jCmj2 ¼ 1. If, as before, we measure n ¼ n4 ! n3 as the signal, a straight-
forward calculation gives,

hni ¼ ðN! 2 #mmÞ cosN! ð34Þ
ð!nÞ2 ¼ ðN! 2 #mmÞ2 sin2 N!þ 4ð!mÞ2, ð35Þ

where ð!mÞ2 , #m2m2 ! #mm2, #mm ,
P

m jCmj2m and #m2m2 ,
P

m jCmj2m2. The square of
the phase uncertainty is then given by,

ð!'Þ2 ¼ 1

N2
þ 4ð!mÞ2

NðN! 2 #mmÞ sinN!½ (2
: ð36Þ

In the case that the disturbance to the NOON state is small, i.e. #mm - N=2 and
#m2m2 - N2=4, which is valid for the state shown in figure 6, equation (36) can be
simplified to,

ð!!Þ2 . 1

N2
þ 4ð!mÞ2

N4 sin2 N!
: ð37Þ

This reduces to ð!!Þ2 . 1=N2 so long as N! is not too close to an integer multiple
of #. This is a promising result since it means that we can still expect to approach
the Heisenberg limit even if there are small imperfections in the quantum beam
splitter.

Finally, we would like to consider the full result and investigate the effect on
the phase sensitivity of our scheme when we include both imperfect detectors and
an imperfect quantum beam splitter. Following a similar calculation to the above
one, we obtain,

hn0i ¼ %ðN! 2 #mmÞ cosN! ð38Þ
ð!n0Þ2 ¼ %2ðN! 2 #mmÞ2 sin2 N!þ 4%2ð!nÞ2 þ %ð1! %ÞN: ð39Þ

This gives the phase uncertainty as,

ð!!Þ2 ¼ 1

N2
þ 1

NðN! 2 #mmÞ2 sin2 N!

4ð!mÞ2

N
þ 1! %

%

( )
: ð40Þ

In the limit that #mm ! 0 and #m2m2 ! 0, this reduces to (29) as it should. If we consider
the same case as before, i.e. #mm - N=2 and #m2m2 - N2=4, and N! is not too close to
an integer multiple of #, then (40) is dominated by the first term. This means that
we can once again achieve a resolution in the measurement of the phase shift that
scales as !! & 1=N even if both the quantum beam splitter and the detectors
are inefficient. Similar results hold when both beam splitters are imperfect. This is
because, if the first quantum beam splitter is slightly imperfect, the state inside
the interferometer is very close to a NOON state and should allow measurements
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resolutions close to the Heisenberg limit. Since the output beam splitter only
marginally degrades the signal, it should still be possible to obtain enhanced mea-
surement resolution when both beam splitters are imperfect. So, while it would be
preferable to eliminate losses during the nonlinear evolution, they do not completely
destroy the scheme. This ability to tolerate some loss in the cat creation process
may be of key importance for practical realizations of this scheme.

6. Conclusion

We have presented a detailed scheme for implementing quantum beam splitters
with a simple combination of ordinary 50:50 beam splitters and nonlinearities.
By combining two quantum beam splitters into a quantum interferometer, we have
shown how it is possible to measure phase shifts with a resolution approaching the
Heisenberg limit. The true value of this scheme is that it is remarkably robust to
effects that are likely to be important in experiments and have been major stumbling
blocks in other similar proposals. In particular, we have shown that quantum
interferometers overcome the major problem of detector inefficiencies and can
also tolerate some degree of dissipation. While further work would undoubtedly
be valuable for understanding fully the practical limitations of this scheme, it is
clear that the robustness of quantum interferometers makes them favourable
candidates for a practical implementation of entanglement-enhanced measurements.
Experiments have already successfully created NOON states in the laboratory and
should be able to be scaled up to larger numbers of particles. This suggests that
quantum interferometry schemes will be feasible in upcoming experiments and
may well provide a valuable route to achieving precision measurements beyond
the shot-noise limit.
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