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There has been a great deal of debate surrounding the issue of whether it is possible for a single photon
to exhibit nonlocality. A number of schemes have been proposed that claim to demonstrate this effect, but
each has been met with significant opposition. The objections hinge largely on the fact that these schemes
use unobservable initial states and so, it is claimed, they do not represent experiments that could actually
be performed. Here we show how it is possible to overcome these objections by presenting an
experimentally feasible scheme that uses realistic initial states. Furthermore, all the techniques required
for photons are equally applicable to atoms. It should, therefore, also be possible to use this scheme to
verify the nonlocality of a single massive particle.
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John Bell identified nonlocality as the key feature dis-
criminating quantum and classical physics [1]. The viola-
tion of Bell’s inequalities [2–7] forces us to give up either
the view that the world is local or the view that the world is
real, i.e., independent of observation. Although nonlocality
is widely accepted, there has been a long-standing debate
about whether it applies to a single photon. A number of
schemes have been proposed to test this case, but they have
been criticized for either relying on unobservable initial
states or for not representing true single-particle effects.
Here we show how it is possible to overcome these objec-
tions with a scheme that uses realistic states and can be
applied to single massive particles as well as photons. This
conclusively demonstrates that we must not view nonlo-
cality as pertaining to particles themselves, but see it
instead as a property of quantum fields whose significance
is, therefore, more fundamental than that of particles.

Feynman once famously claimed that superposition is
the only mystery in quantum mechanics. Others would add
nonlocality to the list. If, however, single particles can
exhibit nonlocality, then these two mysteries become one
and the same. This is an important issue since, in quantum
field theory, excitations rather than particles are the most
fundamental entities. If nonlocality only existed when we
had two or more particles, this would present a serious
problem, since there would suddenly be something pecu-
liar about two excitations that would not exist when we had
only one. More than 60 years ago, Eddington [8] pointed
out that quasiparticles, such as Cooper pairs of electrons
are as much ‘‘particles’’ as are individual electrons. A
single electron should, therefore, be able to exhibit non-
locality as much as a Cooper pair.

Up until 1991, any discussion of nonlocality always
involved two or more particles. Tan, Walls, and Collett
(TWC) were the first to claim that a single photon could
also exhibit this effect [9]. Hardy [10] modified their
scheme to extend the class of local models it ruled out
[11,12]. He did not, however, manage to stem a growing

tide of controversy. Greenberger, Horne, and Zeilinger
(GHZ), in particular, argued ‘‘loudly and clearly’’ against
Hardy’s scheme [13,14]. They said it did not represent a
real experiment and was really a multiparticle effect in
disguise. Despite much debate, there is still no clear con-
sensus on the matter [15,16].

What is needed is an experiment that can unambigu-
ously demonstrate the nonlocality of a single particle. Here
we propose just such an experimental scheme by modify-
ing Hardy’s work to overcome the concerns of GHZ. In
particular, we eliminate any unphysical inputs and consider
only mixed and number states. A fascinating consequence
is that this scheme could be used to verify nonlocality for
single particles with mass. Hardy felt that ‘‘. . . nonlocality
with single particles of this type could not be observed’’
[10]. However, all the techniques employed in our scheme
are equally applicable to atoms as to photons and so the
results should apply to both.

Let us begin by reviewing the Hardy scheme (see Fig. 1).
A state, qj0i � rj1i, and a vacuum state, j0i, are incident
on the two input ports of a 50:50 beam splitter. The two
output modes u1 and u2 are then, respectively, combined
with local oscillators at two other 50:50 beam splitter and
detections are made at the four output ports c1;2 and d1;2.
We have chosen the particular values q � 1=

���
3
p

and r ���������
2=3

p
ei� to simplify the analysis and enable us to develop a

specific experimental scheme, but this does not reduce the
generality of our arguments.

After the first beam splitter, the state is

 j i �
1���
3
p �j0ij0i � ei��j0ij1i � ij1ij0i��; (1)

where the first ket in each term represents the number of
particles on path u1 and the second ket represents the
number of particles on path u2. Now suppose that u1 is
sent to Alice and path u2 is sent to Bob. Alice and Bob each
have two choices open to them. They can either directly
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measure the number of particles on their path—repre-
sented by the dashed detectors in Fig. 1—or they can
make a homodyne detection by combining their path
with a local oscillator at a 50:50 beam splitter—repre-
sented by the solid detectors. These choices lead to four
possible experiments.

Experiment 1.—Alice and Bob both decide to measure
the number of particles on their paths (dashed detectors). In
this case, it is clear that they cannot both detect a photon
since no more than one photon is emitted from the source at
any time. This means that detecting a particle on u1 and
detecting a particle on u2 never happens.

Experiment 2.—Alice elects to make a homodyne de-
tection at c1 and d1, by combining the state on path u1 with
a coherent state, j�ei�ic at her 50:50 beam splitter (we will
use the subscript c throughout to distinguish coherent
states from Fock states). Bob, meanwhile, makes the
same measurement as in experiment 1. If Bob records
zero photons on path u2, we see from (1) that the state
for path u1 is,

 j i �
1���
2
p �j0i � iei�j1i�: (2)

The output from Alice’s beam splitter can then be shown to
be

 j i � j0ij0i � i
���
2
p
ei�j1ij0i � . . . ; (3)

where the first and second kets, respectively, denote the
number of particles on paths c1 and d1 and we have
neglected any terms containing more than one particle.
We see that if Alice detects a single particle, it must be
at c1, since there is no term j0ij1i in (3). Turning this
argument on its head, if Alice detects a particle at d1 and
nothing at c1, then Bob cannot detect no photons, which
means he must detect one (since this is the only other
possibility).

Experiment 3.—The roles of Alice and Bob are reversed:
Alice detects the number of photons in path u1 and Bob
makes a homodyne detection at c2 and d2. Following a
similar argument to experiment 2 above, if Bob detects one
particle at d2 and nothing at c2, then he can infer that Alice
must have detected a particle in path u1.

Experiment 4.—Both Alice and Bob choose to make
homodyne detections. One of the possible outcomes of
this experiment is that Alice records one particle at d1

and nothing at c1, while Bob records one particle at d2

and nothing at c2 [10].
The result of experiment 4 is rather curious as can be

seen by the following argument. Alice infers from her
measurement that a single particle must have traveled
along path u2 towards Bob (see experiment 2). At least,
this is true in the sense that, had Bob put his detector in
path u2, he would have been guaranteed to detect a particle.
However, at the same time Bob infers from his measure-
ment that a single particle must have traveled along path u1

towards Alice (see experiment 3). The problem is that they
cannot both be right (see experiment 1). So what has led to
this contradiction?

Hardy pointed out that this reasoning makes an implicit
assumption of locality, without which there is no contra-
diction. The assumption is that the probability of Alice
obtaining a particular result is independent of the measure-
ment that Bob performs. For example, Alice might deduce
from her result that, had Bob measured the number of
particles in path u2, he would definitely have detected
exactly one. However, if Bob had measured u2 instead of
the homodyne measurement he did make, there might have
been a nonlocal influence from Bob’s end to Alice’s end
and then she might have obtained a different measurement
outcome.

Though compelling, this argument was met with signifi-
cant opposition. GHZ, in particular, did not like Hardy’s
introduction of states they termed ‘‘partlycles’’—super-
positions of a single particle and the vacuum [13,14]. They
argued that these states were unobservable and could only
be part of a real experiment if there were also photons in
other modes to ‘‘keep track of the experiment.’’ They
proposed a scheme to reproduce Hardy’s results that did
not need partlycles. However, the additional particles they
needed to make the measurement also introduced nonlo-
cality into the system and so it was clear that, in their case,
the nonlocality could not be attributed to a single particle.
While it is true that extra particles are required to keep
track of the experiment, that does not preclude the possi-
bility of a single particle exhibiting nonlocality. The key is
to ensure that the additional particles do not introduce any
nonlocality into the system. We now show how this can be
achieved.

To allay the concerns of GHZ, we will present a modi-
fied version of Hardy’s scheme that does not rely on states
that violate the number conservation superselection rules.

Alice

u1

u2

c2 d2

c1

d1

Bob

FIG. 1. The scheme proposed by Hardy for verifying the non-
locality of a single photon.
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These superselection rules prohibit superpositions, e.g.,
coherent states or particles, but mixed states are always
allowed. Our only input states will be the number states, j0i
and j1i, and the mixed state,

 � � e�j�j
2
X1
n�0

j�j2n

n!
jnihnj (4)

 �
1

2�

Z 2�

0
jj�jei�ihj�je�i�jd�; (5)

where � � j�jei�. We see that (4) can be decomposed into
a classical mixture of coherent states averaged over all
phases. This means that it is convenient to consider a
coherent state with arbitrary phase, �, and then average
over � at the end. We stress that these coherent states are
just calculational tools that will be eliminated at the end of
the calculation. We never physically rely on them.

The input state ��j0i �
���
2
p
ei�j1i�=

���
3
p

[17] can be cre-
ated by the method of quantum state truncation [18] as
described in Fig. 2. We will consider only the case that we
detect one particle at A and none at B (the states for all
other measurement results will be discarded). In this case,
the total state of the system is projected onto [18]

 j i � ji
������������������
j�j2 � 2

q
ei�ic � �j0i �

���
2
p
ei�j1i�: (6)

The first ket is the ‘‘leftover’’ output from beam splitter 1
and will form our reference state. The second ket is jouti in
Fig. 2 and has the form we want. Importantly, these two
states are not entangled with one another and so they share
only classical correlations.

The key to our scheme is to use the reference state to
provide the local oscillators for Alice and Bob’s homodyne
detections. This technique of using a common phase ref-
erence for both the preparation and measurement of a state
is standard in atom-optics experiments. Here we show that
it still works even when we average over all phases. This
offers extra justification why, in general, we do not need to
introduce additional nonlocality in order to test nonlocal-
ity. The full scheme is described in Fig. 3. For comparison,
the original Hardy scheme from Fig. 1 is highlighted in the
shaded area.

The first beam splitter that the reference state encounters

(BS1) is chosen to have reflection coefficient i=
������������������
j�j2 � 2

p
,

which means it splits off, on average, one particle. The
factor of i is just the �=2 phase change due to reflection.

The output state from BS1 can then be shown to be j i �

j�ei�icji
������������������
j�j2 � 3

p
ei�ic. These outputs are not entangled.

The first part, j � ei�ic, is sent towards Alice and is
precisely the state she requires for homodyne detection.
The second part is reflected by a mirror to BS2.

BS2 is chosen to have a reflection coefficient of i=�����������������
j�j2�3

p
. This again ensures that, on average, one particle

is reflected away from the reference state. The output from

BS2 can be shown to be j i � j�iei�icj�
������������������
j�j2 � 4

p
ei�ic

(see Fig. 3). The first part is sent to Bob and, after a phase
shift of� becomes jiei�ic, which is the state he requires for

homodyne detection. The second part, j�
������������������
j�j2 � 4

p
ei�ic,

is what remains of the reference state.
Overall, the state of the system just before it enters Alice

and Bob’s homodyne detection beam splitters is

A

B
1

2

3

FIG. 2. (a) Scheme for creating the initial partlycle state. The
shaded region is the optical state truncation technique of Pegg
et al. [18]. Beam splitter 1 has input states j�ic and j0i and is
chosen to have a transmission coefficient of

���
2
p
=j�j. The output

state is j
���
2
p
ei�icji

������������������
j�j2 � 2

p
ei�ic. Beam splitter 2 is a 50:50

beam splitter with inputs j1i and j0i. Outputs from beam splitters
1 and 2 are combined at another 50:50 beam splitter (labeled 3)
and particles are detected at A and B. If one particle is detected at
A and none are detected at B, the output state, jouti, has the form
we want.

BS1

BS2

π

FIG. 3. Modified Hardy scheme. The shaded area is the origi-
nal Hardy scheme as depicted in Fig. 1. The state creation
process depicted by the ‘‘black box’’ is shown in Fig. 2. The
two beam splitters (BS1 and BS2) are chosen to have reflection
coefficients i=

������������������
j�j2 � 2

p
and i=

������������������
j�j2 � 3

p
, respectively.
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j i � �j0ij0i � ei��j0ij1i � ij1ij0i�� � j�ei�ic � jie
i�ic

� j�
������������������
j�j2 � 4

q
ei�ic: (7)

The first factor, in square brackets is the state of paths u1

and u2 given by Eq. (1). The remaining three factors are,
respectively, the other inputs to Alice and Bob’s beam
splitters and the remaining output from BS2. These three
last states are neither entangled with each other nor with
the state in square brackets. They contain only classical
correlations and so do not introduce any additional non-
locality. The last step is for Alice and Bob to each perform
a local unitary operation (beam splitter) on the state (7).
This cannot create nonlocality between them and means
that the observed nonlocality can only be due to the state in
square brackets, i.e., the single-particle state.

Crucially, all of these results are independent of the
phase, �. This means that the results will not change if
we average over all phases. In other words, this scheme
should also show evidence of single-particle nonlocality
when the only inputs are number states and mixed states
and could, in principle, be carried out in the laboratory.
When we average over all phases, the partlycle input also
becomes a mixed state and so our scheme does not, in any
way, rely on these unobservable states. This means that the
objections of GHZ are overcome and the single-particle
nonlocality must be taken seriously.

Both Hardy and GHZ concluded (for different reasons)
that their schemes could not verify nonlocality for single
massive particles. By contrast, all the techniques employed
in our scheme apply equally well to both atoms and pho-
tons: beam splitters with variable reflectivities have been
realized for atoms [19–21] and spectacular progress has
been made in the ability to detect individual atoms. This
means that there is no fundamental reason why our scheme
could not also be used to verify the nonlocality of a single
massive particle.

Finally, we note that this result is reminiscent of the
principle of identity of indiscernibles—one of the pillars
of Leibniz’s metaphysics. This principle states that two
objects are identical if and only if all their properties are in
common. In other words, two objects cannot differ solely
in number. Since entangled quantum particles are indistin-
guishable, this principle suggests that a single-particle
system should not behave differently from a multiparticle
one. This strengthens our belief that the world described by
quantum field theory, where fields are fundamental and
particles have only a secondary importance, is closer to
reality than might be expected from a naı̈ve application of
quantum mechanical principles.
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