
Journal of Russian Laser Research, Volume 30, Number 5, 2009

SUPERDENSE CODING
WITH SINGLE-PARTICLE ENTANGLEMENT

Jacob A. Dunningham

School of Physics and Astronomy, University of Leeds
Leeds LS2 9JT, United Kingdom

e-mail: J.A.Dunningham@leeds.ac.uk

Abstract

Recent work has explored the idea that nonlocality or entanglement involving a single particle should
be taken seriously and has real measurable consequences. Theoretical and experimental schemes
have shown, for example, that single-particle states can violate Bell’s inequalities. Here we discuss
the possibility of using single-particle entanglement for implementing a superdense coding protocol.
Particle-number superselection rules restrict this scheme to being able to transmit log2(3) bits of
information. While this falls short of the two-particle limit of two bits, it still exceeds what can be
achieved without entanglement.
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1. Introduction

The idea that a single particle can exhibit nonlocality with observable consequences was first put
forward in 1991 [1]. Since then, there has been a lot of discussion about the nature of this entanglement,
whether it can truly be observed in realistic experiments, and whether it differs in any fundamental way
from entangled states consisting of more than one particle [2–8].

A lot of this debate stems from subtleties related to how measurements would be made in an experi-
ment. The standard method for confirming that there is nonlocality in a system is to seek violations of
Bell’s inequality. This involves sending each particle from an entangled pair to two spatially separated
parties (Alice and Bob). These two parties then measure some property of their particle such as spin
or polarization, and the two parties later compare their results. Nonlocality (or entanglement) allows
correlations that are stronger than anything possible classically. A problem arises, however, if we try to
apply the same method to single-particle states. If there is only one particle and (say) Alice measures
some property of it, then Bob will have no particle to measure. This means that the two parties cannot
correlate their measurement outcomes and so cannot detect nonlocality by this method. Theoretical
schemes [9, 10] and experiments [11] have found ways of circumventing this problem by using reference
states to supply additional particles to the system. Of course, this opens up these schemes to the criticism
that what they are measuring is not truly a single-particle effect. However, by carefully ensuring that
the additional particles are added as a part of the local measurement process, it is possible to conclude
that they cannot be responsible for any of the nonlocality that is observed.

If single-particle states really can be entangled, then they should be able to be used as a resource
for performing quantum information tasks. Specifically, they should enable us to perform tasks beyond
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the capability of states that are not entangled. In this paper, we consider the specific case of superdense
coding. We begin by giving a brief overview of superdense coding for two-particle entangled states and
then highlight the problems associated with extending it to the case of a single particle. We then propose
a protocol that overcomes the problems; however, the trade-off is that we can only transmit one ‘trit’
(i.e., log2(3) bits) of information as opposed to the standard two-particle approach that can transmit two
bits. Despite this, our scheme surpasses anything that is possible classically and lends further weight to
the notion that single-particle entanglement is not just a mathematical curiosity, but a real effect with
measurable consequences.

2. Superdense Coding

Superdense coding is a technique that enables two bits of information to be transmitted between
parties by sending only a single qubit between them [12]. This cannot be achieved by classical means
and relies on the two parties sharing an entangled state that could, for example, be distributed to them
a priori by some third party. To take a specific example, suppose Alice and Bob share an entangled state
of two spin-1/2 particles of the form

|Ψ〉 =
1√
2

(| ↑〉A| ↓〉B + | ↓〉A| ↑〉B) , (1)

where | ↑〉 and | ↓〉, respectively, denote the spin-up and spin-down states, and Alice has qubit A and
Bob has qubit B. Alice then makes one of the four local unitary operations {σ0,σx,σy,σz} on her qubit,
where σ0 is the identity, and σx,σy,σz are the Pauli matrices. Finally Alice sends her single qubit to
Bob, who is now in possession of the total state. The final states that Bob receives after each of Alice’s
operations are shown in Table. 1.

Table 1. Final States that Bob Received after Alice’s Operation.

Alice’s operation Final state
σ0

1√
2
(| ↑〉| ↓〉+ | ↓〉| ↑〉)

σx
1√
2
(| ↑〉| ↑〉+ | ↓〉| ↓〉)

σy
1√
2
(| ↑〉| ↑〉 − | ↓〉| ↓〉)

σz
1√
2
(| ↑〉| ↓〉 − | ↓〉| ↑〉)

These final states are the four Bell’s states and, since they are orthogonal, can all be distinguished
by Bob at least in principle. If each of these states represents one piece of information, then Alice has
managed to send one out of four messages (i.e., two bits of information) by transmitting only a single
qubit. Until recently, experiments have only been able to distinguish three out of these four states [13].
However, more complicated schemes that make use of so-called hyper-entanglement whereby more than
one degree of freedom is entangled simultaneously can now distinguish all four states [14].
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3. Single-Particle Entanglement

It is interesting to see how superdense coding could be implemented using single-particle entangled
states. Suppose that we have a state of the form

|Ψ+〉 =
1√
2

(|1〉A|0〉B + |0〉A|1〉B) . (2)

This state is analogous to (1); however, instead of each ket representing the state of a particle, each ket
now represents the population of a mode. In this case, we have a single particle in a coherent superposition
of being in mode A and mode B. Such a state could be created, for example, by passing a single photon
through a 50:50 beam splitter. Each ket then represents the number of photons in each output port of
the beam splitter. Although there is only a single particle, this state is still entangled because it is the
modes (rather than particles) that are entangled.

Suppose that Alice and Bob share this entangled state and that they want to implement superdense
coding. To do this, Alice needs to be able to perform local operations that transform the total state into
each of the four Bell’s states. To access the |Ψ−〉 state, Alice needs only to apply a π phase shift to each
particle in her mode. This could be achieved, for example, with a phase plate for photons or by adjusting
the trapping potential for trapped atoms or ions. The state then becomes

|Ψ+〉 −→ 1√
2

(−|1〉A|0〉B + |0〉A|1〉B) = |Ψ−〉. (3)

A problem arises when Alice tries to access the other Bell’s states

|Φ±〉 =
1√
2

(|0〉A|0〉B ± |1〉A|1〉B) , (4)

because these require her to be able to make non-number-conserving operations, i.e., she needs to violate
the number-conservation superselection rule. This problem can be circumvented by the use of reference
states that act as a reservoir of additional particles. Such an idea was used, for example, in a theoretical
proposal for creating and observing a superposition of an atom and a molecule [15]. Such a technique,
however, requires that the same reference state is used to create and read out the superposition. Therefore,
it cannot be employed in a superdense coding scheme because Alice would need to send the reference
state along with her qubit to Bob to enable him to read out the signal. This defeats the purpose of
sending two bits of information by sending only a single qubit. We now discuss how this problem can be
overcome (at least partially) enabling us to surpass the classical limit for information transfer.

We have already seen that Alice is able to transform from |Ψ+〉 to |Ψ−〉 with a simple phase shift.
In order to access the other two Bell’s states, |Φ±〉, from |Ψ±〉, Alice could bring in an auxiliary single-
particle Fock state, |1〉, i.e., the total state is then

|Ψ±〉 −→ 1√
2
|1〉A (|1〉A|0〉B ± |0〉A|1〉B) . (5)

She could then perform the following transforms:

|1〉|1〉 −→ |2〉|0〉, (6)
|1〉|0〉 −→ |0〉|1〉, (7)
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which can be implemented with the use of a nonlinear interferometer, as we will discuss in the next
section. The state is then

1√
2

(|2〉A|0〉A|0〉B ± |0〉A|1〉A|1〉B) . (8)

Finally Alice transmits one of her qubits to Bob,

1√
2

(|2〉A|0〉B|0〉B ± |0〉A|1〉B|1〉B) . (9)

Bob’s part of the state now looks just like the Bell’s states |Φ±〉 that we want. The problem is that it
is entangled with the qubit that remains with Alice. She is not able to give this qubit to Bob without
violating the spirit of the superdense coding protocol, so if Bob is to make only local measurements, he
does not have access to the state of Alice’s qubit. This means that he must trace out Alice’s qubit and
he is left with the mixture

ρ =
1
2

(|0〉|0〉〈0|〈0| + |1〉|1〉〈1|〈1|) , (10)

where we have dropped the subscripts for notational simplicity. This is an equal mixture of Bob having
no particles or two particles. Clearly this can readily be distinguished from the one-particle states, |Ψ±〉,
by simple number counting. Bob is also able to distinguish |Ψ+〉 and |Ψ−〉 by applying a π/2 phase shift
(PS) to one mode and then passing both modes through a 50:50 beam splitter (BS),

|Ψ+〉 PS−→ 1√
2

(i|1〉|0〉+ |0〉|1〉) BS−→ |0〉|1〉, (11)

|Ψ−〉 PS−→ 1√
2

(−i|1〉|0〉+ |0〉|1〉) BS−→ |1〉|0〉, (12)

where we have ignored any irrelevant overall phase. The 50:50 beam splitter transforms the annihilation
operators a1 and a2 of the two qubits in the following way:

(
a1

a2

)
−→ 1√

2

(
1 i

i 1

)(
a1

a2

)
. (13)

We see from (11) and (12) that, by recording which port the particle emerges from, |Ψ+〉 and |Ψ−〉 can
be distinguished. Overall Bob is able to distinguish three possibilities |Ψ+〉, |Ψ−〉, and ρ given by (10).
This means that Alice can transmit one ‘trit’ of information (i.e., log2(3) ≈ 1.585 bits) by sending only
a single qubit. This falls short of the ultimate two-particle limit of two bits, but it coincides with what
is usually achieved in experiments due to the fact that it is impossible to deterministically discriminate
all four states using linear optics [13, 16, 17]. An important difference is that recent experiments [14]
have shown that it is possible to reach the two-bit limit for two-particle entanglement by making use
of hyper-entanglement — whereby quantum systems are simultaneously entangled in more than one
degree of freedom. It is not clear how this limit could be achieved with single-particle entanglement,
and whether this difference is fundamental requires further investigation. However, it is interesting that
the single-particle case still enables us to exceed what is possible without entanglement and is a further
demonstration of the existence of single-particle entanglement.
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4. Nonlinear Interferometer

This superdense coding scheme relies on Alice being able to perform the transforms given by (6) and
(7). These are nontrivial but can be achieved, for example, by the nonlinear interferometer shown in
Fig. 1.

Fig. 1. Nonlinear double interferometer
that can be used by Alice to implement the
state transforms (6) and (7). Alice com-
bines her qubit from the entangled state
with the auxiliary state |1〉 as the inputs
to the interferometer. The three beam
splitters are each balanced, i.e., 50:50, χ
and Γ represent nonlinearities, and the π/2
blocks represent π/2 phase shifts.

In this scheme, Alice combines her qubit from the entangled
pair (that she shares with Bob) with the ancillary Fock state,
|1〉, as the inputs to the interferometer. Each of the beam split-
ters in the scheme is taken to be 50:50 and the boxes containing
π/2 represent π/2 phase shifts per particle on that path. The
boxes containing χ and Γ represent nonlinearities that could be
provided, for example, by a nonlinear crystal in the case of pho-
tons, or simply by the collisional interactions between particles
for atoms. The Hamiltonians associated with these nonlineari-
ties are H = χa†2a2 and H = Γa†2a2, where a is the annihilation
operator for a particle on the path of the interferometer where
the nonlinearity acts. The unitary transforms that they perform
are exp[iχna(na − 1)] and exp[iΓna(na − 1)], where na = a†a
is the number operator. This means that they simply bring
about a phase shift that depends nonlinearly on the number of
particles on that path. For our scheme, we take Γ = 2χ = π/2.

We can directly check that this scheme gives the correct
transforms by propagating the initial states through the interfer-
ometer. We will use the convention that the first ket represents
the state on the left-hand path at each stage of the scheme and
the second ket represents the state on the right-hand path. Let
us begin with |1〉|0〉,

|1〉|0〉 BS−→ 1√
2

(i|1〉|0〉+ |0〉|1〉) χ,π/2−→ i√
2

(|1〉|0〉+ |0〉|1〉)

BS−→ eiπ/4

√
2

(|1〉|0〉+ |0〉|1〉) Γ,π/2−→ eiπ/4

√
2

(i|1〉|0〉+ |0〉|1〉)

BS−→ ei3π/4|0〉|1〉, (14)

which is the result we want. Of course, there are much simpler ways of performing this transform if that
is all we need. For example, the nonlinearities play no role in this case because there is only ever at
most one particle on each path. However, we need our interferometer to also simultaneously carry out
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the other transform (7) and, in this case, the nonlinearities play an important role,

|1〉|1〉 BS−→ i√
2

(|2〉|0〉+ |0〉|2〉) χ,π/2−→ i√
2

(|2〉|0〉 − i|0〉|2〉)

BS−→ ei3π/4

2

(
−|2〉|0〉+ |0〉|2〉+

√
2|1〉|1〉

)

Γ,π/2−→ ei3π/4

2

(
|2〉|0〉 − |0〉|2〉+ i

√
2|1〉|1〉

)

BS−→ −ei3π/4|2〉|0〉, (15)

which again gives the transform we want — the overall phases do not affect our scheme. This confirms
that the interferometer shown in Fig. 1 successfully makes the transforms we require.

5. Full Scheme

Everything can now be combined into a full superdense coding scheme as shown in Fig. 2. A third
party (Charlie) begins by creating the single-particle entangled state,

1√
2

(i|1〉|0〉+ |0〉|1〉) , (16)

by passing a single photon through a 50:50 beam splitter. He then sends one mode to Alice and the
other to Bob. Alice then performs one of three operations on her qubit corresponding to one of the three
possible pieces of information she wants to send. These operations, which are represented by a black-box
in Fig. 2, are: do nothing (identity), a π-phase shift, and the transform outlined in Sec. 4. above. Alice
then passes a single qubit to Bob, shown as the lower path in Fig. 2. Finally Bob combines the qubit
that Alice gives him with his own qubit at a 50:50 beam splitter and detects the number of particles in
each output port. There are three possible measurement outcomes:

1. Bob detects a single particle at the upper detector;

2. Bob detects a single particle at the lower detector;

3. Bob detects either zero or two particles at the output detectors.

Each of these correspond to one of the three messages that Alice was able to send.

Fig. 2. Full superdense coding scheme for single-particle states.
Charlie creates a single-particle entangled state by passing a
single particle through a 50:50 beam splitter and then dis-
tributes this state to Alice and Bob. Alice makes one of three
local unitary transforms on her qubit (as discussed in the text)
represented in the diagram by her ‘black box’. She then passes
her qubit to Bob, who combines it with his qubit at a 50:50
beam splitter. By detecting the output from this beam split-
ter, Bob can unambiguously determine which of the three op-
erations Alice performed.

432



Volume 30, Number 5, 2009 Journal of Russian Laser Research

6. Discussion

A natural question that arises is whether it is possible to improve this scheme so that it is able to
distinguish four possible messages, i.e., two bits of information. This certainly would be possible if Alice
were allowed to pass her ancillary state to Bob as well as the other qubit. However, this defeats the
purpose of superdense coding since now two qubits would be passed between parties and it should not
surprise us at all that two bits of information are able to be transferred. Indeed this could be achieved
without any entanglement.

Instead, Alice must retain the ancillary qubit that is created when the transform in Sec. 4. is per-
formed. The question then becomes — can Alice perform local operations that wash out which way the
information is contained in this ancillary qubit, i.e., can she disentangle her qubit from the rest of the
state? We can easily see from the following example that this cannot be possible since it would allow
superluminal communication. Suppose Alice and Bob share the state (1),

|Ψ+〉 =
1√
2

(| ↑〉A| ↓〉B + | ↓〉A| ↑〉B) . (17)

Alice can convert this to |Ψ−〉 with a local π-phase shift on her qubit. Now let us assume that he is able
to disentangle her qubit from the rest of the state by local operations. This would give a final state

|η〉A ⊗
1√
2

(| ↓〉B ± | ↑〉B) , (18)

where |η〉A is the (disentangled) qubit that Alice is left with. Now Bob should be able to distinguish
the two possibilities for his state (| ↓〉B ± | ↑〉B) /

√
2, which suggests that Alice could communicate with

Bob without ever sending a qubit to him, i.e., superluminal communication. We know that this is not
possible and so clearly our assumption that Alice can disentangle her qubit from the rest of the system
in this way is not valid.

7. Conclusions

We have proposed a simple scheme for implementing a superdense coding protocol using single-
particle entanglement. Subtleties relating to number-conservation superselection rules make the scheme
more complicated than two-particle entangled state schemes. They also mean that this scheme is limited
to transferring log2(3) bits of information per qubit sent between the parties. Whether different schemes
that employ other ideas such as hyper-entanglement allow the ultimate two-bit limit to be achieved
remains to be seen. That aside, the present scheme is able to surpass the limit of what can be achieved
in the absence of entanglement and gives further support for the idea that single-particle entanglement
is real and has observable consequences.
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