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Manipulating the motion of a single atom in a standing wave via feedback

J. A. Dunningham, H. M. Wiseman, and D. F. Walls
Department of Physics, University of Auckland, Auckland, New Zealand

~Received 8 July 1996!

A standing light wave appears to a highly detuned two-level atom as a sinusoidal potential. This causes the
atoms to be channeled to the minima of the potentials. At the same time, the atom changes the phase of the
light field. Detecting this phase shift yields information about the position of the atom. In this paper we show
that this information may be used to control the intensity of the light field so as to modify the effective shape
of the potential ‘‘seen’’ by the atom. Our numerical simulations show that the effectiveness of the channeling
may be significantly enhanced by such quantum-limited feedback. We discuss possible applications to atom
lithography.@S1050-2947~97!00502-7#

PACS number~s!: 42.50.Dv, 42.50.Lc, 03.65.Bz
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I. INTRODUCTION

It is well known that a highly detuned light field acts as
scalar potential for a two-level atom@1#. The force from this
potential is known as the dipole force and is proportiona
the intensity gradient of the field. A standing wave in
optical cavity thus appears to a first approximation as a se
of potential hills and valleys that channel the atoms. Ch
neling has been shown to occur in the vicinity of the node
the laser field is blue detuned (D.0) from the atomic reso-
nance and near the antinodes for red detuning (D,0) @2#.
This channeling could be applied in atomic lithography,
the laying down of a series of lines on a substrate has b
demonstrated experimentally using chromium atoms@3#.
There are many reasons why such atomic deposition is
perfect, but one fundamental limit is that the potential we
created by the standing wave are sinusoidal rather than
monic @4#.

Although the dominant physical effect of placing an ato
in a standing wave is the dipole force on the atom, the fi
is also affected. That is because there is a small but
necessarily negligible refractive index due to a single ato
This causes the phase of the light to be shifted, and
amount of this shift depends on the position of the atom. T
phase shift is zero for the atom at a node and maximal a
antinode. It has been shown theoretically that this phase
can be used to make a quantum-limited measurement o
position~modulo half a wavelength! of an atom by passing i
through a standing wave for a time sufficiently short for
transverse motion to be negligible@5#. More recently it has
also been shown theoretically that one can track the osc
tory motion of an atom in a standing wave by continua
monitoring the phase of the field using homodyne detec
@6#.

In this paper we draw together these two aspects of
interaction of an atom with a detuned standing wave in
different proposal. On the quantum optics side we take
monitoring of the atom’s position one step further by cons
ering the continuous feedback of the homodyne photocur
to influence the atom’s future evolution. On the atom opt
side we show that this feedback can be used to improve
degree of channeling in atomic lithography. This is done
modifying the effective potential the atom ‘‘sees’’ to b
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closer to harmonic rather sinusoidal. The basic idea is
whatever position for the atom is indicated by the measu
ment, the intensity of the field is modified so that the loc
potential seen by the atom is that of a parabola. The cu
ture of the parabola is chosen to fit with the sinusoid that
atom sees in the absence of feedback, near the base o
potential wells. This is an interesting application of the qua
tum theory of feedback because, unlike most previous ap
cations, it produces a substantial change in the system
namics@7#.

In order to find the ultimate limits to atom channeling b
this method we have done a fully quantum-mechanical tre
ment of the atomic motion. In Sec. II we derive our model
the atom in the standing wave with feedback. To simplify t
calculation we adiabatically eliminate the field, but th
vacuum fluctuations entering into the cavity~necessary in
order to extract information from the light! still affect the
atom and are manifest as back-action noise terms in
Hamiltonian. In addition to this, the feedback also introduc
noise into the system, due to the homodyne photocur
shot noise@7,8#. As expected, the more we modify the p
tential, the more noise we introduce. The question ari
whether modifying the potential~and taking into account the
noise that we inevitably introduce! gives improved localiza-
tion over the case with no feedback. In order to answer
we present in Sec. III the results of numerical simulatio
comparing four cases:~i! no feedback,~ii ! linear feedback
~LF!, ~iii ! nonlinear feedback~NLF!, and~iv! linear feedback
with an optical nonlinearity~LFON!. Our results show tha
feedback~and particularly nonlinear feedback! can poten-
tially improve channeling beyond the standard quantum li
with no feedback. In Sec. IV we discuss experimental pr
ticalities and Sec. V concludes.

II. THEORY

A. Conservative motion

The starting point for our theory is the Hamiltonian d
scribing the coupling between a two-level atom and a sing
mode electromagnetic standing wave inside a cavity. We
note the position of the atom~along the cavity axis! by z and
its momentum in this direction byp. The one-photon Rab
frequency is denotedV and the detuning of the atomD. The
1398 © 1997 The American Physical Society
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55 1399MANIPULATING THE MOTION OF A SINGLE ATOM IN . . .
atom lowering operator iss and the field annihilation opera
tor is a. Then the Hamiltonian is

H5
p2

2
1Vsinz~a†s1as†!1Ds†s. ~2.1!

Here we are using atom optics units

\5M5
l

2p
51, ~2.2!

whereM is the mass of the atom andl the wavelength of the
light. For example, in these units the recoil frequency~or
energy! is 1/2.

Now we assume that the atom is highly blue detun
with uDu much greater than all other rates. This is necess
to avoid spontaneous emission. The atom will then remai
the ground state and may be treated as a scalar particle
the effective Hamiltonian@9#

H5
p2

2
1ga†aS~z!, ~2.3!

wherez is the unitless ratio of the position along the cav
axis to the laser wavelength. Here we are usingg5V2/uDu
and also

S~z![sin2~z!. ~2.4!

As far as the field is concerned, the second term represe
detuning that depends on the position of the atom. As fa
the atom is concerned, the field intensity gives a potentia
this section we are interested only in this effect on the at
so that we treat the field classically by replacinga†a with
uau2. This gives a conservative atomic Hamiltonian

Hcons5
p2

2
1

v2

2
S~z!, ~2.5!

wherev252guau2.
Nearz50 this Hamiltonian is approximated by

Hcons.
p2

2
1

v2

2
z2, ~2.6!

which is that of a harmonic oscillator. Clearlyv is the fre-
quency of oscillation of an atom near the bottom of the p
tential wells. Now, sinceS(z)<1, the maximum height of
the potential wells isv2/2, so that the number of energ
levels per well is of orderv @10#. Thusv is a measure of the
classicality of the problem, in that forv@1 the atom dynam-
ics should be well approximated by classical dynamics
times long compared tov21 @11#.

The defining property of a harmonic oscillator is of cour
that its dynamics is characterized by a single frequencyv.
This has the following consequence. If a classical ensem
of atoms were to enter a region of space where the pote
was harmonic, as in Eq.~2.6!, with an initial momentum of
zero, then after exactly one-quarter of a period all of
atoms will havez50. Quantum mechanically, if att50 the
atomic wave function is in the zero-momentum eigenstate
t5p/2v it will be in the zero-position eigenstate. Of cour
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with the true potential of Eq.~2.5! this will not occur. Nev-
ertheless, we expect that at this time the atomic posit
distribution will become peaked at the nodes of the stand
wave, wherez5np for n an integer. This is the essence
the idea behind channeling of atoms.

B. Continuous observation

As stated in the Introduction, we wish to consider m
nipulating the motion of the atoms by feedback. In order
do this we first need to consider measurement of the posi
of the atom. This is possible because the position of the a
is coupled to the phase of the field, which is something t
can be observed. Here, as in Ref.@6#, we want to continu-
ously monitor the phase of the field in order to find out abo
the position of the atom. The easiest way to monitor
phase of the field is to give the cavity a finite intensity dam
ing rate ofk. In fact, such cavity loss is unavoidable. With
leaky cavity, in order to maintain a constant intensity of lig
inside the cavity~and hence a constant potential for th
atom! it is necessary to drive that cavity. This can be done
shining a laser into the lossy mirror. We model this by ha
ing the input field~in the sense of Gardiner and Collett@12#!
given by

bin~ t !5Ak
2 ia

2
1n~ t !. ~2.7!

Here a is a real dimensionless coherent amplitude a
bin(t) is normalized such that the photon flux
^bin

† (t)bin(t)&5kuau2/4. The other termn(t) is operator-
valued white noise@12# of zero mean obeying

@n~ t !,n†~ t8!#5d~ t2t8!5^n~ t !n†~ t8!&, ~2.8!

where this last expression is the unique nonvanish
second-order moment. It can be thought of as vacuum fl
tuations, which can be decomposed into two statistically
dependent but noncommuting quadratures

j~ t !5n~ t !1n†~ t !, y~ t !52 i @n~ t !2n†~ t !# ~2.9!

satisfying

^j~ t !j~ t8!&5^y~ t !y~ t8!&5d~ t2t8!. ~2.10!

The Hamiltonian including the coupling of the cavit
mode to the external field is@12,8#

Hdamped5
p2

2
1ga†aS~z!2 iAk@bin~ t !a

†1abin
† ~ t !#.

~2.11!

Up until now our approach has been similar to that of R
@6#, although we have made an additional approximation
adiabatically eliminating the upper state of the atom. Ho
ever, in order to keep the problem tractable we wish to m
the substantial further approximation of eliminating the fie
This will be valid provided thatk is sufficiently large. To do
this we first obtain the Heisenberg equation for the field o
erator a. Treating the noise terms in Eq.~2.11! carefully
yields the following Itôequation fora:
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1400 55J. A. DUNNINGHAM, H. M. WISEMAN, AND D. F. WALLS
ȧ52
k

2
a2Akbin~ t !2 igS~z!a. ~2.12!

Assumingk to be large, we can set the time derivative
Eq. ~2.12! to zero, obtaining

a.
ia22n~ t !/Ak

112igS~z!/k
. ~2.13!

Strictly this expression cannot be true becausen(t) has
white-noise fluctuations so that it is impossible fora to relax
fast enough to be slaved to the vacuum noise. Howeve
we interpret the noise term as vacuum fluctuations restric
to the bandwidthk, then they can be thought of as finite, a
even small compared toa@1. Therefore, it is appropriate t
linearize the expression fora†a to get

a†a.
uau222ay~ t !/Ak

11@2gS~z!/k#2
. ~2.14!

Now if (g/k)2!1, the second term in the denominator m
be ignored, makinga†a independent of the position of th
atom. This allows the expression fora†a to be simply sub-
stituted into Eq.~2.3! to yield the effective Hamiltonian for
the atom alone

Hmeas5
p2

2
1

v2

2
S~z!S 12

2y~ t !

aAk
D . ~2.15!

This does not involve any operators for the cavity mo
but it does involve a noise operator from the exter
vacuum fluctuations. The effect of that noise is to produc
noisy potential for the atom. This will of course disturb th
momentum of the atom, as it gives rise to the term

ṗdisturbance5 i F2
v2

2
S~z!

2y~ t !

aAk
,pG ~2.16!

5ga2sin2z y~ t !/Ak. ~2.17!

Consider a short timet1!v21. This allows one to use the
Raman-Nath approximation@13# of neglecting the kinetic-
energy term so that the position of the atom remains c
stant. Over this short timet1 the noisy evolution~2.16! will
result in a mean-square disturbance of the atom’s momen
of

~dp!disturbance
2 54g2a2t1^sin

22z&/k. ~2.18!

This disturbance can be ascribed to the Heisenberg un
tainty relation as follows. The damping of the cavity gives
output field that may be measured

bout~ t !5bin~ t !1Aka ~2.19!

.2Ak@n~ t !/Ak2 ia/222gS~z!a/k#.
~2.20!
if
d

,
l
a

-

m
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As stated above, we wish to measure the phase of the fi
This can be done by doing a homodyne measurement of
phase quadrature of the output. The resultant photocurr
suitably normalized, is

I hom~ t !5Ak@bout~ t !1bout
† ~ t !# ~2.21!

54gS~z!a2Akj~ t !. ~2.22!

This contains a term proportional toS(z), which gives infor-
mation about the position of the atom, plus a noise te
Over a time t1 within the Raman-Nath regime as abov
one’s best estimate forS(z) is obviously

Ŝ5
1

t1
E
0

t1I hom~ t !

4ga
dt. ~2.23!

Note that we are using a circumflex to denote an experim
tal estimate of a quantity, not an operator.

The experimental error inŜ, as opposed to intrinsic un
certainty inS(z), is determined by

~dŜ!error
2 5K S 1t1E0t1Akj~ t !

4ga
dtD 2L ~2.24!

5
k

16g2a2t1
. ~2.25!

Thus we can derive the relation

~dŜ!error
2 ~dp!disturbance

2 5
1

4
^sin22z&. ~2.26!

This equality ispreciselythe minimum expected from Rob
ertson’s generalization@14# of Heisenberg’s uncertainty prin
ciple, given the commutator

@S~z!,p#5 isin2z. ~2.27!

Of course the atom’s momentum will be disturbed by t
amount~2.18! regardless of whether the experimenter und
takes a homodyne measurement of the outgoing field in o
to obtain information about the atom’s positions. Neverth
less, it is the fact that the experimenter can obtain such
formation, with experimental errordŜerror, which implies
that the momentum must be disturbed by at least
dpdisturbanceof Eq. ~2.18!. The more accurately one wishes
know the position~in a given timet1) the more noise one
will necessarily add to the atom’s momentum. This will ha
important consequences when we consider feeding back
information in I hom(t), in subsequent sections.

C. Linear feedback

In this section we introduce feedback into our system. T
motivation behind the feedback is, as explained in the Int
duction, to change the effective potential shape the atom
from sinusoidal to something that is closer to a periodic ar
of parabolas, as shown in Fig. 1. Nearz5np, these parabo-
las match the minima of the sinusoid, but away from t
minima the sinusoid falls short of the parabola. In order
make the atom see a more parabolic shape, one would
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to increase the intensity of the light~and hence the height of
the sinusoid! if the atom is away from the potential minima,
but leave it unchanged if it is near the minima. This infor
mation ~the displacement of the atom away from the poten
tial minima! is encoded in the operatorS(z). Furthermore,
this operator can be estimated~with finite accuracy of
course! from the homodyne photocurrentI hom(t), as shown
in Sec. II B. By feeding back the information inI hom(t) to
control the intensity of the light, one could hope to modify
the motion of the atom to good effect. To model this
quantum-limited feedback we use the quantum Langevin a
proach rather than the quantum trajectory approach@8#.

To simplify the problem, we assume that the feedback
Markovian. That is to say, we assume that the response fun
tion of the feedback loop is approximately flat from zero to
frequency much larger than that of the atomic evolutionv.
Furthermore, in this section, we assume that the intensity
the cavity mode is controlled by varying the amplitude of th
driving linearly with the instantaneous photocurrent, a
shown in Fig. 2. This can be achieved using electro-opt
polarization modulators and polarization-sensitive bea
splitters @15#. This feedback can be modeled simply by
changing the input beam from Eq.~2.7! to

bin~ t !5
2 iAk

2 Fa1l
I hom~ t !

k G1n~ t !, ~2.28!

wherel is a dimensionless quantity whose magnitude is ye
to be determined. However, we expect that the best value
l will be positive, as this will lead to an increased driving
when the atom is estimated to be far from a potential minim
@whenS(z) is large and henceI (t) is expected to be posi-
tive#.

As in Sec. II B, we wish to eliminate the internal field
from the problem. It is necessary to include the cavity fiel
to begin with, however, because the feedback acts on th
field, not directly on the atom. Once the feedback has be

FIG. 1. Diagram of the~a! pseudoharmonic potential as a func-
tion of the position along the cavity axisz ~in units of the laser
wavelength!. Also shown are the~b! nonlinear feedback@see below
Eq. ~3.13!#, ~c! linear feedback@see Eq.~2.43!#, and~d! unmodified
sinusoidal potentials.
-
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included, we can then proceed to eliminate the field to d
cover the effect of the feedback on the atom alone. The fi
obeys the same equation as before@Eq. ~2.12!#, but with the
modified bin(t). For convenience we introduce the quadr
tures of the field

x5a1a†, y52 i ~a2a†!. ~2.29!

In terms of these the homodyne photocurrent is given by

I hom~ t !5kx1Akj~ t !. ~2.30!

Substituting this into Eq.~2.28! and that into Eq.~2.12! and
separating into the quadratures yields

ẋ52
k

2
x2Akj~ t !1gS~z!y, ~2.31!

ẏ52
k

2
y2Aky~ t !1ka1kl@x1j~ t !/Ak#2gS~z!x.

~2.32!

Ignoring terms of order (g/k)2, as in Sec. II B, we find the
stationary solutions to be

x

2
.F12

4lS~z!g

k G21F2
j~ t !

Ak
1

agS~z!

k G , ~2.33!

y

2
.F12

4lS~z!g

k G21Fa2
y~ t !1lj~ t !

Ak
G . ~2.34!

These are the same as the previously derived expres
for a @Eq. ~2.13!# apart from the term proportional tol in the
denominator. This denominator is still of order one ifl is of
order one~as will be chosen! becauseS(z) is bounded above

FIG. 2. Setup used for the feedback scheme. A homodyne
tector is used to make a phase measurement of the outputbout from
the cavity giving information about the transverse position of
atom in the light field. The homodyne currentI hom is fed into a
signal processor and the output is some function ofI hom depending
on the sort of feedback under study. This output is used to vary
amplitude of the drivingbin of the optical cavity. Although this
appears to differ from the description given in the text, which w
for a one-sided cavity, this arrangement is equivalent providing
loss rate at the driving~left! mirror is much less than that at th
detection~right! mirror.
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by unity andg/k is small. Thus the total decay rate is still o
order k as required for the adiabatic elimination. The pu
pose of the elimination is to find an expression fora†a in
terms of external field operators and atom operators. Lin
izing the noise terms we find

a†a.~y/2!2 ~2.35!

.F12
4lS~z!g

k G22F uau222a
y~ t !1lj~ t !

Ak
G . ~2.36!

In this case the expression fora†a does depend on th
atom’s position. This is as desired for the feedback to wo
but it means that we cannot simply substitute it into E
~2.3!. As a field operator,a†a should commute with all
atomic operators, but the above expression~2.36! does not.
This apparent contradiction is because the atomic opera
in Eq. ~2.36! should strictly be evaluated at a slightly earli
time, even under the Markovian approximation for the fee
back. The consistent procedure is to use Eq.~2.3! to generate
the force on the atom, treatinga†a as a field operator, and
then to substitute in the expression fora†a @Eq. ~2.36!# in
terms of the atomic operators, that is,

F~z![ i @H,p# ~2.37!

52ga†aS8~z! ~2.38!

.2g
S8~z!

@12bS~z!#2 F uau222a
y~ t !1lj~ t !

Ak
G . ~2.39!

Here we have defined

b54lg/k ~2.40!

and a prime denotes differentiation. Now we define the
fective potential for determining the atom’s motion to be

VLF~z![2E
0

z

dz F~z!

5
S~z!

12bS~z! H v2

2
2Av2b

2 F y~ t !

Al
1j~ t !AlG J ,

~2.41!

where we are usingv252guau2 as before.
Evidently, the effect of the feedback is to change t

shape of the potential the atom sees, as desired. To find
what feedback strength should be chosen we expand the
terministic part of the new potential aroundz50 to find

^VLF~z!&.
v2

2
@z22z4/31bz41O~z6!#. ~2.42!

Obviously we wish to choseb51/3 in order to make the
linear feedback potential closer to harmonic. This impl
g/k5(12l)21. It is also apparent from Eq.~2.41! that the
feedback has introduced extra noise into the potential
addition to the disturbance of the momentum due to the m
surement of position, proportional toy(t), there is the noise
due to the error in the measurement of position, proportio
-

r-
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rs
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f-

e
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e-
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to j(t), being fed back due to the modification of the pote
tial. As noted in Sec. II B, the magnitude of these noises
reciprocally related because an accurate measurement o
sition implies a large disturbance of the momentum. In E
~2.41! this uncertainty principle is manifest in that the me
surement back-action noise scales as 1/l, while the fed-back
measurement error scales asl. Clearly the minimum overall
noise is whenl51. This impliesg/k51/12, so the above
approximation of ignoring terms of order (g/k)251/144
seems quite reasonable. The final expression for the ato
Hamiltonian from linear feedback is

HLF5
p2

2
1

S~z!

12S~z!/3 H v2

2
2Av2

6 F y~ t !1j~ t !

A6 G J .
~2.43!

The shape of the deterministic part of the potential is sho
in Fig. 1~c!.

Validity of the linear feedback Hamiltonian

In the above adiabatic elimination of the field we ha
assumed first that the cavity decay rate is large compare
the rate of change of the atomic position. That is to say,
require

v!k. ~2.44!

A more subtle requirement is that the linearization ofa†a be
valid. This requires that we can regard the white-noise te
as small compared to the coherent amplitudea. To do this
we have to imagine averaging over some timet2 such that

2

kt2
!a2, ~2.45!

which gives

1

t2
!6v2. ~2.46!

Now the elimination of the field can only be valid if the ato
does not move significantly during this averaging time. T
requires

v!
1

t2
!6v2. ~2.47!

The final condition is therefore

v@@
1

6
. ~2.48!

This indicates that the linear feedback Hamiltonian is n
valid in the very strong quantum regime, wherev is of order
one.

D. Nonlinear feedback

In the preceding subsection we showed how varying
driving field linearly with the photocurrent from the phas
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quadrature measurement of the field can lead to an effec
potential for the atom that is considerably closer to pseu
harmonic than the original sinusoid. By pseudoharmonic
mean a periodic potential consisting of harmonic potent
repeated every half wavelength. In this section we show
by feeding back a nonlinear function of the photocurrent o
can in principle produce an effective atomic potential tha
arbitrarily close to pseudoharmonic.

As above, we model the feedback as a modulation of
coherent amplitude of the driving field, but this time we s

bin~ t !5
2 iAk

2 Fa1hS I hom~ t !

k D G1n~ t !, ~2.49!

whereh is a function that is to be determined. Now becau
I hom(t) contains a white-noise term, this expression o
makes sense if the photocurrent is interpreted as a ti
averaged photocurrent such that the fluctuations in it
small. For this reason we must use

hS I hom~ t !

k D.h~ x̄!1h8~ x̄!@dx~ t !1j~ t !/Ak#, ~2.50!

wheredx(t) are the rapid fluctuations in the field quadratu
due to the vacuum noise inputs andx̄ is the mean value o
x. Note, however, thatx̄ will still be an operator in that it
depends on the assumed slowly varying atomic oper
S(z).

Using this linearization yields the following expressio
for the rapid fluctuations in the field quadratures:

ḋx52
k

2
dx2Akj~ t !1gS~z!dy, ~2.51!

ḋy52
k

2
dy2Aky~ t !1kh8~ x̄!@dx1j~ t !/Ak#,

~2.52!

while the mean values obey the nonlinear equations

x̄52rS~z!ȳ, ~2.53!

ȳ52a12h~ x̄!, ~2.54!

where we have neglected terms of orderr 2[(g/k)2 as
above. Substituting the first of these into the second yiel

h„2rS~z!ȳ…52a1 ȳ/2. ~2.55!

Now say that we wish to use this feedback to creat
mean force on the atom that is of the form

^FNLF~z!&52v2v~z!, ~2.56!

wherev(z) is a periodic function obeying

v~z!5v~z1p!52v~2z!. ~2.57!

From the procedure used for linear feedback it is appa
that to achieve this we require

a†aS8~z!.S ȳ2D
2

S8~z!52a2v~z!; ~2.58!
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in other words,

ȳ52a f ~z!, ~2.59!

where we have defined

f ~z![A2v~z!

S8~z!
. ~2.60!

Substituting this into Eq.~2.55! yields

h„4raS~z! f ~z!…5a@ f ~z!21#. ~2.61!

Differentiating both sides with respect toz gives

h8„4raS~z! f ~z!…4ra@S8~z!v~z!1S~z!v8~z!#5a f 8~z!.
~2.62!

Thus

l ~z![h8„x̄~z!…5h8„4raS~z! f ~z!… ~2.63!

5
f 8~z!

4r @S8~z! f ~z!1S~z! f 8~z!#
. ~2.64!

Now from Eq.~2.52! we have

dy

2
52@124rl ~z!S~z!#21@y~ t !1 l ~z!j~ t !#/Ak.

~2.65!

Therefore

a†a.
ȳ212ȳdy

4
~2.66!

.a2@ f ~z!#22
2a f ~z!@y~ t !1 l ~z!j~ t !#

Ak@124rl ~z!S~z!#
~2.67!

and the force on the atom is

F~z!52gS8~z!a†a ~2.68!

.2v2v~z!1vA2rS8~z! f ~z!
y~ t !1 l ~z!j~ t !

124rl ~z!S~z!
. ~2.69!

The effective potential for the atom is again

VNLF~z!52E
0

z

dz F~z!. ~2.70!

If the atom’s positionz is close to a node~e.g.,z50) then
the feedback need not operate in order to make the pote
harmonic. In our theory this statement amounts to saying
v(z).z for z.0. In that case we find
f (z)512z2/31O(z4) and so

l ~z!→~12r !21 as z→0. ~2.71!

It is then evident from Eq.~2.68! that the overall noise is
minimized whenr51/12, at least nearz5np, as found in
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Sec. II C. Assuming that this small value forr gives the total
expression for the effective Hamiltonian for the atom w
nonlinear feedback,

HNLF5
p2

2
1

v2

2
V0~z!2Av2

6
@V1~z!j~ t !1V2~z!y~ t !#.

~2.72!

Here the three integrals

V0~z!5E
0

z

dz 2v~z!, ~2.73!

V1~z!5E
0

z

dz S8~z! f ~z!l ~z!@12 l ~z!S~z!/3#21,

~2.74!

V2~z!5E
0

z

dz S8~z! f ~z!@12 l ~z!S~z!/3#21 ~2.75!

in general have to be evaluated numerically up toz5p/2.
One case of great interest is for

v~z!5 z̃[z modpP~2p/2,p/2!, ~2.76!

for which the effective potential will be exactly pseudoha
monic. Then from Eq.~2.60! we find that asz→p/2, f (z)
has a simple pole andf 8(z) a double pole. But Eq.~2.62!
implies that

4rl ~z!@S8~z! f ~z!1S~z! f 8~z!#5 f 8~z!. ~2.77!

Since S8(z);(z2p/2) near z5p/2, we find that
4rl (z)S(z)21;(z2p/2)2. That is to say, for any value o
r , the integrand in the noise termsV1(z),V2(z) has a double
pole atz5p/2. The noise terms themselves therefore hav
simple pole at this position. This infinite noise is easily u
derstood from the following argument. Atz̃56p/2, S(z) is
flat as a function ofz. That is to say, the photocurrent@which
measuresS(z)# is very insensitive to changes inz. Yet in
order for the feedback to change the sinusoidal potential
a pseudoharmonic potential it is necessary to use an esti
for z sinceV0(z)5 z̃ 2 is not flat as a function ofz near the
peaks. Thus, forz near (n11/2)p the feedback function
h(x) must be very sensitive to small changes in the pho
current. As the signal becomes weak the proportion of no
being fed back increases to the point where the noise is
finite at z5(n11/2)p. At this point the approximations
made in the above derivation clearly break down. The
nominator in Eq.~2.65! vanishes and the fluctuations in th
field diverges. It can be shown that this will happen for a
v(z) that does not go smoothly to zero whereS8(z) is zero.
In order to avoid these divergences, in the simulations
are to be presented in Sec. III, we choose a functionv(z) that
is close toz̃ but becomes flat atz̃56p/2.

Validity of the nonlinear feedback Hamiltonian

The same conditions as derived above also apply in
case as for the case of linear feedback, but now we hav
consider the extra approximation of using the linearized
pression for the nonlinear feedback~2.50!. In order to con-
-
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to
ate

-
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sider this we need to know just how nonlinear the functio
h(x) is. Up until now we have used only the implicit defini-
tion of this function~2.61!, which for the casev(z)5 z̃ and
r51/12 becomes, foruzu<p/2,

hS a

3
sin2zA z

sinzcoszD 5aA z

sinzcosz
2a. ~2.78!

In Fig. 3 we have plotted this function for the casea510.
Now we can use this implicit expression to get an an ap
proximate explicit expression forh(x) by expanding both
sides in powers ofz:

hS a

3
@z21O~z6!# D5a@z2/31z4/101O~z6!#. ~2.79!

Thus, forx small compared toa, we find that

h~x!.x1
9x2

10a
. ~2.80!

This is also shown of Fig. 3 and appears to be quite close
the true function over the range of interest.

Using this expression, the linearization ofh(x) is the ap-
proximation of

x̄1dx~ t !1
j~ t !

Ak
1

9

10a S x̄1dx~ t !1
j~ t !

Ak
D 2 ~2.81!

by

x̄1dx~ t !1
j~ t !

Ak
1

9

10a S x̄ 212x̄dx~ t !12x̄
j~ t !

Ak
D . ~2.82!

This is valid only if we consider averaging the noise over
time t3 and then ignoring the term

FIG. 3. ~a! Plot of the functionh given in Eq. ~2.78! for
a510. ~b! Plot of the quadratic approximation to this for smallx
given in Eq.~2.80!, along with~c! the form ofh for linear feedback.
Both h andx are unitless.
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9

10a S 1t3E0t3Fdx~ t !1
j~ t !

Ak
GdtD 2. 9

10akt3
. ~2.83!

It is valid to ignore this term if it is much smaller than th
other terms in Eq.~2.82!. Since the signalx̄ need not be
different from zero, the leading term is of order

K S 1t3E0t3Fdx~ t !1
j~ t !

Ak
GdtD 2L 1/2

.
1

Akt3
. ~2.84!

Thus we require

1

Akt3
@

9

10akt3
, ~2.85!

which gives

1

t3
!
1200

81
v2. ~2.86!

Now, as in the preceding case, in order to be able
average over this time and yet treat the atomic evolution
being Markovian, it is necessary to assume that the timet3 is
small compared to the characteristic time of the atomic m
tion v21. This gives

v@@
81

1200
.

1

15
. ~2.87!

This is to be compared with the previously derived constra
~2.48! from the linearization ofa†a, that v@@1/6. It is
therefore apparent that, at least for the atom near the bo
of the well, the linearization of the nonlinearity of the fee
back does not impose more of a constraint on the classic
of the problem than that already derived.

E. Linear feedback with optical nonlinearity

It is apparent from Secs. II C and II D that in order
make the effective potential for the atom closer to pseu
harmonic one wishes to increase the driving~to increase the
potential! when the phase of the field shifts~due to the pres-
ence of the atom away from a node!. In terms of the field
quadratures, one wishes to increase the driving of the am
tude quadraturey in proportion to the displacement of th
phase quadraturex from zero. One way to do this is to mea
surex indirectly and to feed this back onto the driving. How
ever, it would seem reasonable to expect that one could
achieve this directly, without measurement or feedback,
introducing a nonlinear crystal into the cavity. The nonli
earity required is one that makes the driving ofy propor-
tional to thex quadrature, namely,

Hx52
kx

4
x252

kx

4
~a21a†212a†a11!, ~2.88!

wherex is a dimensionless parameter. This could in pr
ciple be achieved using a process of degenerate param
down-conversion, with an appropriate detuning of the cav
also. In this section we investigate the effect of this opti
nonlinearity on our system.
o
s

-

t

m

ity

-

li-

so
y

-
tric
y
l

The total Hamiltonian for the system we now take to
Hdamped1Hx . It is still necessary to include damping as
Eq. ~2.11! because without it exponential parametric amp
fication will occur. The equations of motion for the quadr
tures are

ẋ52
k

2
x2Akj~ t !1gS~z!y, ~2.89!

ẏ52
k

2
y2Aky~ t !1ka1kxx2gS~z!x, ~2.90!

where bin(t)52 iAka/21n(t) as in Eq. ~2.7!. Ignoring
terms of orderr 2 as usual, the stationary solutions of the
equations are

x

2
.@124xS~z!r #21@2j~ t !/Ak1arS~z!#, ~2.91!

y

2
.@124xS~z!r #21$a2@y~ t !12xj~ t !#/Ak%. ~2.92!

This solution is very similar to those resulting from line
feedback~2.33! and~2.34!, with l replaced byx. However,
there is actually more noise in they quadrature, withj(t)
multiplied by 2x rather thanl. The consequence of this i
that the final noise in the atomic Hamiltonian, for the optim
choice ofx51/2 andr5g/k51/6, is larger by a factorA2
than that in the linear feedback Hamiltonian~2.43!.

On the basis of this result it would not seem worthwh
pursuing the idea of an optical nonlinearity as an alterna
to feedback. Although this is true from considering an op
cal nonlinearity alone, the combination of an optical nonl
earity and linear feedback turns out to give very interest
results. AddingHx to Hdampedbut with

bin~ t !5
2 iAk

2
$a1l@x1j~ t !/Ak#%1n~ t ! ~2.93!

as in Eq.~2.28! yields

ẋ52
k

2
x2Akj~ t !1gS~z!y, ~2.94!

ẏ52
k

2
y2Aky~ t !1ka1kxx1kl@x1j~ t !/Ak!]

2gS~z!x. ~2.95!

The approximate stationary solutions are

x

2
.@124~x1l!S~z!r #21@2j~ t !/Ak1arS~z!#,

~2.96!

y

2
.

a2@y~ t !1~2x1l!j~ t !#/Ak

124~x1l!S~z!r
. ~2.97!
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Now the difference between the noise from the optical n
linearity and the linear feedback is crucial. If we choose
nonlinearity to have the sign opposite to that sugges
above, with

x52l/2, ~2.98!

then we can eliminate the noise due toj(t):

y

2
.@122lS~z!r #21@a2y~ t !/Ak#. ~2.99!

Now choosing 2lg5k/3 as the optimum for feedback
we find

F~z!.2g
y2

4
S8~z! ~2.100!

.2
S8~z!

@12S~z!/3#2
Fv2

2
2A2gv2

k
y~ t !G ,

~2.101!

wherev252ga2 as usual. Now since the optical nonlinea
ity has exactly canceled the noise due to the feedback,
only noise present is that which can be attributed to meas
ment, as in Sec. II B. This noise can be made arbitra
small by lettingg/k→0. Stating this more carefully, we le

g/k→0, a→`, l522x→` ~2.102!

such that

v252ga2, k56lg ~2.103!

are constants. Then the final atomic Hamiltonian result
from linear feedback and optical nonlinearity

HLFON5
p2

2
1

S~z!

12S~z!/3

v2

2
~2.104!

contains no noise, only a modified potential. This is a v
interesting example of the interplay of quantum noise a
nonlinear dynamics, but it would be very difficult to realiz
experimentally.

III. RESULTS

A. Method of simulation

Numerical methods are used to simulate the evolution
wave functions in potentials modified by the different fee
back schemes discussed above. Due to the periodicity o
optical potential, we need only consider one potential w
We consider an atomic beam that is initially perfectly w
collimated with a well-defined velocity. For simplicity, w
have ignored effects due to angular and velocity distributi
of the initial atomic beam. These effects are covered well
a classical sense, by McClelland@4#. The motion can be
treated classically in a direction perpendicular to the stand
wave, but must be treated quantum mechanically paralle
the standing wave. For the cavity field far detuned from
atomic resonance, the probability of an atomic transition
tween the ground and an excited state is small. We can th
fore ignore incoherent effects and simulate only the cohe
-
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-
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evolution of the wave packet as is done by Janicke and W
ens @16#. Since we are studying channeling, we cannot
glect the kinetic-energy term in the Hamiltonian~which is
done in the Raman-Nath regime@13,17#!. Instead we use the
split operator method to evolve the wave function with tim
We begin with the normalized plane-wave wave functi
C, given by

C~z!5H 1/Ap for 2p/2<z,p/2

0 otherwise.
~3.1!

In addition to considering four cases of feedback, we c
sider two different cross-section profiles for the stand
wave. First, a step profile in which the intensity is effective
turned on sharply att50 and turned off sharply at the foca
time. Second, a half-Gaussian profile case in which the li
intensity is increased with a Gaussian dependence, reac
its maximum at the deposition~focal! time. This situation is
more physically realistic since a laser beam typically ha
Gaussian intensity cross section.

1. Split operator method

If we write our Hamiltonian as

H5
p2

2
1V~z!, ~3.2!

whereV is a position-dependent potential, then the time e
lution operator that evolves the wave function by timet is
given by

U~ t !5expF2 i S p2z 1V~z!t D G . ~3.3!

For smallt we can write

U~ t !.expF2 i
p2

2
t Gexp@2 iV~z!t#. ~3.4!

This equation would be exact if the commutator ofp2 and
V were zero, but it is not. This form of the split operat
method is thus only accurate to first order int, since it ig-
nores terms of ordert2 and above, which involve the com
mutator ofp2 andV. The split operator method is superior
expandingU(t) to first order int because it evolves the sta
unitarily, so that the norm of the wave function remains co
stant to all orders int. Higher-order split operator method
also exist@18#.

To propagate the wave function numerically by a sm
time incrementdt, we multiply the wave function in position
space by the factor exp@2iV(z)dt#. We then take the Fourie
transform of the result giving a wave function in the mome
tum representation. Multiplying by exp@2ip2dt/2# and taking
the inverse Fourier transform returns us to a position sp
wave function evolved by timedt. This is the essence of th
split operator method used in the simulations here. For
noisy potentials, we propagate many wave functions thro
the cavity and average over the results.

If we consider the Hamiltonian given by Eq.~2.5!
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H5
p2

2
1

v2

2
S~z!, ~3.5!

the errore introduced per stepdt by this form of the split
operator method is

e5UexpF2 i S p22 1
v2

2
S~z! D dt G

2expS 2 i
p2

2
dt DexpS 2 i

v2

2
S~z!dt D U ~3.6!

'
1

8
v2~dt !2u@p2,S~z!#u. ~3.7!

So the total errore total in propagating by a given time is

e total5~number of steps!3~error per step! ~3.8!

;
1

vdt
v2~dt !25vdt. ~3.9!

So, for the propagation to stay within a given error bou
the time increment for the simulations must scale as

dt;
1

v
. ~3.10!

This means that the number of steps required to fully pro
gate a wave function up to the focal time~approximately
p/2v) is approximately constant withv.

However, in performing numerical simulations, we ne
to account for the fact that the number of energy levels in
well varies asv. The spatial period of wave functions de
scribing particles in an harmonic oscillator varies invers
with the energy level occupied. So, to maintain the sa
order of resolution of the wave functions for different valu
of v, the number of bins inz andp space must scale linearl
with v. This is the case since we can write the wave funct
for an atom passing through a potential well in the cavity
a linear combination of the wave functions for the differe
levels in the well. Specifically, we require

v!~number of bins!. ~3.11!

The calculation time for propagating wave functions the
fore scales linearly withv.

2. Form of the nonlinear feedback

As was discussed at the end of Sec. II D, we need
choose an approximation to the pseudoharmonic pote
that becomes flat atz5(n11/2)p. This is necessary to en
sure that the noise terms in the Hamiltonian remain finite.
do this, we use the analysis of Sec. II D 2, in which w
derive a quadratic approximation~2.80! for the nonlinear
feedback functionh(x) in the casev(z)5 z̃. This approxima-
tion is useful not only for establishing the range of validity
the nonlinear feedback Hamiltonian in this singular case
can also be used as the feedback function in its own righ
a way of avoiding the singularity in the noise. That is to s
,
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e
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e
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we can assume thath(x) is given by the quadratic~2.80! and
then determine av(z) from it that will smoothly go to zero at
z5p/2.

We proceed using Eq.~2.61!, which gives the following
equation forf (z):

1
3 S~z! f ~z!1 1

10 @S~z! f ~z!#25 f ~z!21, ~3.12!

which has the meaningful solution

f ~z!5
12 1

3 S~z!2A@12 1
3 S~z!#22 2

5 @S~z!#2

1
5 @S~z!#2

.

~3.13!

From this, v(z)5sinzcosz@f(z)#2 may be easily found and
verified to go smoothly to zero atz5p/2. The deterministic
potentialV0(z)5*0

zdz 2v(z) of Eq. ~2.72! is then found nu-
merically and is shown in Fig. 1~b!.

3. Theory for the Gaussian profile

In order to simulate channeling for standing waves with
Gaussian dependence, we need to be able to modify
theory to deal with time-dependent potentials. The Hamil
nians derived in Sec. II are for the step profile case, but
easily be applied to the Gaussian profile situation by mak
a simple substitution. In the case of no feedback, the li
intensity is modified as

sin2z→~sin2z!e2bt2, ~3.14!

whereb is a parameter to be determined. In practice,b is
calculated numerically to be such that the spread param
~defined below! has its minimum value at the peak of th
Gaussian~where t50). We note that the intensities of th
Gaussian and step cases coincide at the Gaussian peak~sur-
face of the substrate!.

With feedback, the same procedure works. That is to s
everywhere thatS(z) appears it is replaced byS(z)e2bt2.
For linear feedback, this may be done directly in the Ham
tonian ~2.43!. For nonlinear feedback it must be done in t
equation for f (z) @Eq. ~3.13!#, which then feeds into the
Hamiltonian~2.72!.

B. Measures of localization

It is important to have an appropriate measure to comp
the sharpness of peaks. The full width at half maximu
~FWHM! measurement of peak widths is not particula
useful here, due to the presence of fine structures in
atomic distributions. It is only near the focal times that the
is clearly one main peak for which the FWHM method c
satisfactorily be applied. The use of the FWHM would n
allow us to consider how the position distribution evolves
the atoms pass through the standing wave. Standard de
tion is not an ideal measure of localization either, as it do
not take into account the periodic nature of the atomic d
tribution.

Instead we develop a scheme motivated by this perio
ity of the deposited atom peaks. For a position probabi
distribution of atoms, deposited on the substrate, given
the functionP(z), whereP(z) in normalized so that
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E
2`

`

P~z!dz51, ~3.15!

we define a measureFspreadas

Fspread512S E
2`

`

P~z!cos2z dzD 2. ~3.16!

This measure of localization has the useful limits

Fspread5H 0 for perfect localization

1 for a flat probability disribution.
~3.17!

For atomic distributions well localized about the nodes
the standing wave, spread is approximately proportiona
the variance ofz, var~z!, where the mean is zero

Fspread'12S E
2`

`

P~z!~122z2!dzD 2 ~3.18!

'4 var~z!. ~3.19!

This spread measurement gives more weight to the ce
region of the peak. It allows us to better distinguish betwe
different distributions. Furthermore, in this physical situ
tion, we are not laying down a single line, but a series
parallel lines. This measure of the position distribution h
the advantage that it can be applied to a series of par
lines, separated byDz5p, equally as well as to a single line
Spread has the additional favorable property that a plo
spread againstv asymptotes horizontally for largev. This
property allows us to compare different feedback schem
more easily, as is discussed below in Sec. III C. Sprea
recorded at the time at which it is a minimum~i.e., the opti-
mum focal time!.

Optimum focal time

We have shown that near the nodes of the laser stan
wave, the Hamiltonian is well approximated by that of
harmonic oscillator Eq.~2.6!. Making this approximation, we
would expect the optimum focal time to be equal to on
quarter of the natural period of the harmonic oscillator.
discussed in Sec. II A, this is the time at which all atoms
zero initial transverse momentum would be localized
z50, independent of their initial positions. The true optic
potential, of course, is only approximately harmonic, and
need to make a correction to the focal time for this anharm
nicity. It turns out that this correction is not small.

Typical results are shown in Fig. 4. We see that, by
spread criterion, the optimum focal time for the case with
feedback is approximately 0.36 oscillator periods~for
v5100 s21!. This is a significant correction to the harmon
prediction of 0.25 periods. It is clearly not reasonable
compare results at the harmonic-oscillator focal time, si
this would reflect not only the best localization achievable
different feedback schemes but the focal time for ea
method. Such a comparison would be biased in favor of
tentials close to harmonic. Instead we record values of sp
at the optimum focal time for the particular potential expe
enced by an atom. This time is determined numerically.
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These results display all the features we would expect.
the potential becomes more closely harmonic, not only d
the optimum localization improve, but the focal time a
proaches one-quarter of a period, the result predicted fo
harmonic oscillator. Also evident here is the periodic focu
ing and defocusing of the atomic wave function, which
characteristic of channeling. Of course, these results dep
on how we quantify the localization of the atoms. Howev
an investigation of different schemes of measurement rev
that all the same qualitative features appear for all reason
measures such as FWHM, peak height, and standard de
tion.

C. Comparison of results

The step and Gaussian profile cases are treated separ
Results for different sorts of feedback are compared by p
ting spread againstv ~a measure of the well depth!, as
shown in Figs. 5 and 6. All values of spread are recorded
the optimum focal time. In each of the figures the results
nonlinear, linear, and no feedback are plotted, where
noise has been set to zero. These serve as a comparis
the noisy results. The curves shown for linear feedback w
no noise are the results arising from linear feedback with
optical nonlinearity Eq.~2.104!. In this case, as discussed
Sec. II E, we achieve a modified potential with no nois
Displayed on the same graphs are the results with noise
cluded. For the noisy potentials, we averaged over the w
functions until the standard deviation in*2p/2

p/2 P(z)cos2z dz
was less than 1%.

For no feedback, we would expect there to be no no
since we are not modifying the potential. These noise-f
results for no feedback can be seen in Figs. 5~a! and 6~a!.
Also displayed, for comparison, are noisy results for no fe
back. The noise in this case is purely back-action noise

FIG. 4. Diagram of the evolution with time of the spread of t
atomic wave functions. The time is in units of the natural period
the harmonic approximation to the potential. Results forv5100
s21 are shown for~a! no feedback,~b! linear feedback, and~c!
nonlinear feedback. Better localization is achieved for potent
that are closely harmonic. The optimum focal time tends to o
quarter of a period as the feedback is increased.
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troduced when we measure the atom’s position. The no
results represent measuring the atom’s position but not fe
ing this information back. For the noise-free results, we
not even monitoring the atom’s position as it passes thro
the standing wave. The only unphysical case shown in th
results is that for nonlinear feedback with no noise.

We need to be cautious about making comparisons
tween the different feedback cases for the following reas
For a given value ofv, the depth of the potential wells~and
hence the number of energy levels! is not the same for the
three cases of feedback. It therefore seems unfair to com
the value of spread for the three cases at the same valu
v. Fortunately, however, the problem is alleviated for lar

FIG. 6. Variation of spread withv ~in units s21) for a Gaussian
profile standing wave for~a! no feedback,~b! linear feedback, and
~c! nonlinear feedback. The error bars shown on the noisy res
are 6 one standard deviation~i.e., 61%, as discussed in Sec
III C !.

FIG. 5. Diagram showing the variation of spread withv ~in
units s21) for a step profile standing wave. Noisy and noise-fr
results are compared for~a! no feedback,~b! linear feedback, and
~c! nonlinear feedback. The error bars shown on the noisy res
are 6 one standard deviation~i.e., 61%, as discussed in Sec
III C !.
y
d-
e
h
se

e-
n.

re
of
e

v ~the region where our theory is valid! since spread varies
slowly with v in this region. This is another advantage of th
spread measurement over some of the other measurem
schemes. The most notable feature of these results is that
sufficiently large values ofv, nonlinear feedback gives bet-
ter localization than linear feedback which, in turn, give
better localization than no feedback. This is true for bo
Gaussian and step profile cases.

We see also that the noisy quantum results tend to t
noise-free results for largev. This is what we would expect.
For each time stepdt, the noise is given by an independen
Gaussian distributed random variable with meanm50 and
variances251/dt. Given that the number of time steps
scales asv ~see Sec. III A!, the signal-to-noise ratioRSN for
the potential varies withv approximately as

RSN;Av. ~3.20!

So the noise becomes less important asv tends to infinity.
To give an indication of their shape and scale, typical dep
sition peaks are compared in Fig. 7.

1. Comparison of step and Gaussian cases

By comparing Figs. 5 and 6, we see that for nonline
feedback the step profile gives improved localization ov
the Gaussian profile, but for no feedback, the Gaussian c
gives better localization. This is what we would expect intu
itively as is demonstrated by the following argument.

The standing light wave serves the dual purpose of pr
viding the optical potentials, which channel the atoms, a
allowing us to monitor the atom’s position by making phas
measurements. For the Gaussian case, the coupling of
phase measurement to the feedback is set at its ideal va
for the intensity at the maximum of the Gaussian. When
atom enters the standing wave, the intensity is low and so
phase shifts are small. In the low-intensity wings, the fee

lts

lts

FIG. 7. Comparison of the atomic deposition profiles with n
noise forv5100 s21 at the optimum focal times for~a! nonlinear
feedback,~b! linear feedback, and~c! no feedback. The profiles are
shown as a function of position along the cavity axisz ~in units of
the laser wavelength!.
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back for an atom near an antinode would be the same a
an atom much closer to a node, near the Gaussian maxim
As the intensity increases, the feedback improves, reac
its optimum value at the Gaussian maximum. For nonlin
feedback, the step profile is superior since, in this case
atom experiences the optimum feedback throughout its
sage through the cavity. On average, therefore, the pote
experienced by an atom in the step case is more clo
harmonic than for the Gaussian case.

Of course, if we knew what part of the Gaussian the at
was in at any given time, we could arrange to have a tim
varying coupling between the phase shift and the feedb
By matching the coupling with the Gaussian dependenc
the standing wave, this would allow atoms in the Gauss
case to experience optimum feedback throughout their
sage through the cavity. Knowledge of the atom’s whe
abouts could be achieved by using a shutter system on
atomic beam combined with knowledge of the longitudin
velocity of the atoms. The calculations for this situatio
however, are more complicated and are not considered h

By comparison, for no feedback, the Gaussian case is
perior. This is understood since in the low-intensity wings
the Gaussian, the optical forces are small. The time take
an atom to move a given small distancedz from near an
antinode towards a node is longer than for the step c
However, the momentum imparted to the atom in mak
this translation is less than for the step case. By the time
atom reaches the high-intensity and relatively strong opt
forces, it is already partially localized in a region where t
potential is more closely harmonic. The momentum given
the atom in achieving this situation is less than that for
step case. In some sense, we can consider the velocity
tribution brought about by the anharmonic part of the pot
tial to be less for the Gaussian case than for the step pr
case. The anharmonicity of the potential has less of a dis
tive effect in the Gaussian case.

2. Comparison in the classical limit

In considering the results in Figs. 5 and 6 we need to
aware that we cannot give much emphasis to the results
small values ofv. The Hamiltonians derived in Sec. II d
not hold in the strongly quantum regime. In this region, t
conditionv@@1/6 breaks down. It seems reasonable to c
sider thatv.100 satisfies these two conditions and so
results shown are valid.

Our results for largev show that, even when noise
taken into account, the use of feedback systems improve
localization we can achieve. The noisy quantum results t
to the noise-free results for largev. A calculation of the
classical limits~not shown! gives about the same value, a
expected by the correspondence principle.

IV. EXPERIMENTAL PARAMETERS

Our aim in this paper was to compare the localization a
to be achieved by different theoretical schemes. We sho
however, consider how well our simulations would descr
experimental results. In this section we show to what ext
the approximations we have made are valid and also cons
other effects such as spontaneous emission and feedbac
lay times.
for
m.
ng
r
an
s-
ial
ly

-
k.
of
n
s-
-
he
l
,
re.
u-
f
by

e.
g
e
al

o
e
is-
-
le
p-

e
or

-
e

he
d

e
d,
e
nt
er
de-

We consider the example of rubidium atoms for which t
resonant wavelength for the 5S1/2→5P3/2 transition is
l5780 nm and the linewidth isG537.7 MHz. Using the
parameters proposed by Treussartet al. @19# gives a maxi-
mum one photon Rabi frequency of

Vmax54.43108 Hz. ~4.1!

As above, we wish to use atom optics units defined by

\5M5k51. ~4.2!

The conversion between these units and SI units is found
considering the recoil energy of an atom that has absorbe
emitted a photon (M585 amu for rubidium!

v recoil5
Erecoil

\
5

\k2

2M
5
1

2
'24 kHz, ~4.3!

so

1'48 kHz. ~4.4!

In these unitsVmax'104 andG'800.
In the derivations above, we have the constraints

k@v, ~4.5!

g

k
5

1

12
~4.6!

and the definitions

g5
V2

D
, ~4.7!

v252guau2. ~4.8!

Substituting Eqs.~4.6! and~4.8! into Eq.~4.5! gives the con-
dition

6A2g@a. ~4.9!

In all the following, we useVmax for V. In the derivation of
the Hamiltonians, the adiabatic elimination of the field va
ables gives us the additional requirement

Vmaxa!D. ~4.10!

We take

Vmaxa

D
5

1

10
, ~4.11!

so from Eq.~4.7!,

g5
Vmax

2

D
5S Vmaxā

D DVmax

a
5
103

a
. ~4.12!

To satisfy both Eqs.~4.9! and ~4.12!, we choosea510 and
g5100. These values give

v5A2ga5140 ~4.13!

and a spontaneous decay rateg of
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g5GS Vmaxa

D D 2'8, ~4.14!

and so the assumptiong!v ~that is, that the rate of sponta
neous emission is much less than the frequency of oscilla
of an atom in the potential! may also be justified.

Since atoms need to interact with the light field for a tim
approximately equal to one-quarter of an oscillation peri
this gives an interaction timet of

t'
p

2v
'231027 s. ~4.15!

This interaction time defines the ratio of the cavity width
the atomic beam longitudinal velocity. For a cavity mo
width of order 1026 m ~required for the large coupling
Vmax), the beam velocity would have to be of order 10 m
which presents no great problems. Finally, for succes
feedback, we require a feedback loop delay that is m
shorter than the interaction time. This seems reasonabl
experimentalists can certainly achieve loop delays sma
than 1028 s @15#.

V. CONCLUSION

Our results show that the use of feedback systems all
better atom localization to be achieved than in a system w
out feedback. Furthermore, nonlinear feedback is an
provement over linear feedback. Quantitatively, for a lig
wave with a rectangular profile, the variance@20# of the final
atomic position in the case of nonlinear feedback can be
than half of that in the case of no feedback. An improvem
is also evident for a half-Gaussian light profile, but it is le
dramatic.

Despite these promising results, it is not clear that t
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method would be useful for lithographic purposes since,
measure the position of an atom, there can be only one a
in the light field at any time~see Ref.@5#!. This limits us to
a typical deposition rate of only 106 atoms per second, which
may be too slow for practical purposes.

Also, in deriving our theory we have neglected terms th
when one examines realizable experimental parameters
found to be of only marginal smallness. For example,
neglect of spontaneous emission relies on the approxima
that 8!140. To a first approximation it seems reasonable
ignore these complicating effects. A more accurate simu
tion, however, would need to take these into account. T
would include dropping the assumption of Markovicit
which would probably entail using an alternative quantu
theory of feedback, based on quantum trajectories@7,8#. In
order to describe experimental results, simulations wo
need to begin with atoms with some velocity distribution
both the transverse and longitudinal directions and to mo
accurately the intensity profile of the cavity mode.

In summary, we have demonstrated that, by using a fe
back scheme, we can successfully manipulate the motio
a single atom in a standing wave. Although the uses for s
a scheme are unclear at this stage, it is nonetheless an i
esting application of quantum measurement theory and
quantum theory of feedback to atom optics. There may w
be other areas of atom optics besides channeling, suc
cooling and trapping, in which similar feedback schem
could prove useful.
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