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Abstract 

The quantum state of a single symmetry-broken condensate at zero temperature is calculated using perturbative techniques. 
For a fixed mean number of atoms, the state is found to closely approximate a number squeezed state. We propose a means 
of experimentally testing this state, based on the periodic collapses and revivals of its phase. @ 1998 Elsevier Science B.V. 
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The experimental creation of Bose-Einstein con- 

densates [ 1,2] has sparked great interest in their prop- 

erties. One of the most important and interesting ques- 
tions is what the quantum state of the condensate is. 

A calculation of this state forms the main focus of 
this Letter. As a secondary issue, we consider how the 
state evolves with time, due to diffusion. In this second 

part, we apply known techniques to demonstrate how 
an investigation of diffusion times could be used to 
test our prediction of the state. 

The first calculation of the state was provided by 
Lewenstein and You [ 31 and predicted an amplitude 
eigenstate. However, only terms of up to quadratic or- 

der were retained in their calculation. Here, we pro- 
vide a more rigorous treatment by retaining terms of 
all orders. For an assumption of Gaussian statistics, 
we predict a strongly amplitude squeezed state. When 
we include the effects of the non-Gaussian terms by 
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means of a perturbation, we find that this state is “bent” 

into something very close to a number squeezed state. 

The state of the condensate will depend critically 
on how it is prepared. We consider an idealized sys- 

tem consisting of two condensates where one is very 
much larger than the other and is treated simply as 

a phase reference. Furthermore, we take the damp- 

ing and pumping rates to be vanishingly small com- 
pared to the trap frequencies and collision rates. The 

consequence of this is that the condensate remains 

in thermodynamic equilibrium throughout its prepara- 
tion. Our calculations are all for a condensate at zero 

temperature, and the state we seek is that of a single 

symmetry-broken condensate * . 
In our calculation, we break the symmetry by intro- 

ducing a driving term of which we then take the van- 

ishing limit. We do not, however, propose that such a 
coherent driving term is real. Here it is simply a math- 

2 The Zeno effect prevents phase diffusion during the preparation. 
This is because, over sufficiently short time intervals, the driving 

and damping, which are hnear in time, beat the diffusion, which 

is quadratic in time. 
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ematical tool to select a single phase by comparison 

with the reference condensate. In the thermodynamic 
limit, the true quantum state will be a mixture, over 

all possible phases, of the state we find. 

We present results here for a condensate of 87Rb 

atoms in an isotropic harmonic trap with frequency, 

w/27r = 60 Hz. We take the mean number of atoms 

in the condensate to be &’ = 2000. These parameters 
closely match those of an experiment conducted by 

Anderson et al. [ 11. 

A full calculation would demand a treatment of all 
the non-condensate modes. However, it can be shown 
that, at zero temperature, these modes have a negligi- 

ble effect on the statistics of the condensate [4]. We 
therefore consider only the condensate mode. The free 

energy for this system is 

F = (riC;, - ,u)a+a + AKut2u2 + ifi (atE - uE*) 

+u+r+ur+, (1) 

where a, ut are the condensate mode operators, ,u is 

a chemical potential which constrains the mean num- 

ber of atoms, E is a driving field, and r is a coupling 
to a vacuum bath, which is appropriate since the sys- 

tem is at zero temperature. We are able to neglect the 

higher order modes, even though we are discussing 
fluctuations, since our description is of quasiparticles. 
At finite temperatures, we would need to account for 

real particle fluctuations. In such a case, we would 

of course need to retain higher order modes. In the 
present calculation, we retain the leading order effect 

of the fluctuations and have shown that higher order 

terms are very small in comparison. 
We take the limit in which the driving and damp- 

ing vanish in such a way that the coherent amplitude 
remains finite. The parameters ii, and K can be found 

in terms of the condensate wave function, PC, as fol- 

lows 3 , 

3 Strictly, K is not constant since the condensate mode changes 

as atoms are added to it. However, since the final state is strongly 

number squeezed, a good approximation is to take K corresponding 

to the fixed mean number of atoms in the condensate. 

where ZI is the S-wave scattering length and M is 
the atomic mass. For 87Rb, M = 87 amu and ~1 w 

100~0 151 where uo is the Bohr radius. The form of 
the interaction term rests on the standard assumption 

of point collisions. Techniques for determining PC are 

well established [ 61. For the parameters considered 

here, the value of K is about 0.38 s-i. 

We can rewrite the condensate mode operators in 
terms of a coherent amplitude and a fluctuation, a + 

cy + Su. We choose the phase so that LY is real. The 
condensate state will be the lowest energy eigenstate of 
the free energy. Our approach is to find the eigenstates 
for a Gaussian approximation and then to treat the non- 
Gaussian terms as a perturbation. We begin by splitting 

F into a Gaussian part, Fo, and a non-Gaussian part, 
F’. The criteria which these two components must 

fulfill are 

F=Fo+F’, (4) 

(F’) = 0, (5) 

([&,F’])=([Su+,F’])=O, (6) 

([au, [&z, F’]]) = ([au, [au+, F’]]) = 0. 

A straightforward calculation yields 

FO = const + Q&* + PGut6u + Q*8ut2, 

where 

(7) 

(8) 

P = (& - ,u) + 4hK (a2 + (&+&)) , (9) 

Q = fiKa* + fiK(&z+*). ( 10) 

F’ = fiK[6ut26u2 + 2a (6u+&z* + &z+*c%) 

- ((&)Su+* + 4(Su+c%)Su+~u + (Su+*)Su*) 

- a ((su*) + 4(&+&) + (su+‘)) (Su + Sat) 

+ (&z2)(6ut2) + 2fiK(c%+&1)*]. (11) 

We have neglected the damping and driving parts since 

these are taken to be vanishingly small. The unper- 
turbed free energy, Fo, can be diagonalized by making 
a transformation of the form 

Su= (coshr)&+e-*‘@(sinhr)%+. (12) 

It can be shown that the free energy is minimized when 
C$ = 0. Therefore, the state we seek has no correlation 
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between the quadratures 6X = 6a + 6a+ and SY = 
-i (6a - au+). This allows us to write 

(au+*) = (au*) = a ((6X*) - A) 9 

(Sa+6a) = i ((8X*) + & - 2) , 

(13) 

(14) 

where we have used the result (SX2)(SY2) = 1 for 
a pure Gaussian state. This assumption of Gaussian 
statistics is a perfectly valid one to make since, at this 
point, we are diagonalizing only the Gaussian part of 
the free energy. We can solve for this part precisely. 
Our Gaussian assumption at this stage will, in no way, 
make our later non-Gaussian perturbations invalid. A 
relaxation of the pure state assumption is currently 
under investigation. 

The driving strength, E, and the chemical potential, 
,!L, are found by setting the first time derivatives of 
(a) and (a+ a) equal to zero, using Eq. ( 1) . These 
conditions are true only during the state preparation. 
Obviously they do not hold later when we come to 
investigate how the condensate evolves with time. The 
solutions are 

E = 2 (a* + (GutSa)) , 

p = hi3 + 2fiK 
( 

ff* + (au*) 

+ 2(Sa+8a) + ~(Sa+6a2) 
> 

(15) 

+ ~(Satt3a). (16) 

The damping rate, y, is defined by y = p*( w)g’( w), 
where o is the frequency of the condensate mode, 
p is the bath density of states function, and g is the 
coupling function between the condensate mode and 
the bath [ 71. 

We are interested in the limit E, y --f 0. We can 
find the coupling parameter, r, by substituting (12) 
into (8) and setting the coefficients of 6b2 and Sb+* 
to zero. For CY* >> 1, this gives 

exp(2r) = (8X*) = /z x (,>,. (17) 

With this substitution, (8) takes the diagonal form 

FO = const + fiKdmSbt6b. (18) 
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Fig. 1. Error contour of the Wiguer function for (a) the condensate 
state with 2000 atoms, (b) the unperturbed state, and (c) part of 
the constant intensity line for comparison. 

The eigenstates of this free energy are clearly the num- 
ber states in the Sb representation, {Ii)}%. If we trans- 
form back to the 6a representation, it can be seen from 
the form of the transformation ( 12) that these states 
are ];)s~ = S(r) Ii), where S(I) is the familiar squeeze 
operator, S(r) = exp [r( Sa* - Sat*) /2]. 

Finally, we reintroduce the coherent amplitude, 
a, by means of the displacement operator, D(a) = 
exp(&at - cu*6a). The eigenstates of the Gaussian 
part of ( 1) are therefore 

17) E lT)a = D(cr)S(r)li). (19) 

For clarity, the notation 17) represents the number state 
Ii) operated on firstly by the squeeze operator S(r), 
where r is given by ( 17), then by the displacement 
operator D( cu) for the appropriate coherent amplitude. 

The condensate state is the eigenstate with low- 
est energy, namely 10). This is simply the amplitude 
squeezed state with (8X*) = ( ~cu)-*/~. It can be 
shown that this corresponds to the squeezed state with 
the minimum possible number fluctuations for a given 
coherent amplitude. The one standard deviation error 
contour of the Wigner function of this state is shown 
in Fig. 1. 

We see that retaining terms of all orders in the lluc- 
tuation operators has the important consequence of 
producing a finite width in the X-quadrature, Calcu- 
lations which neglect terms of higher than quadratic 
order give rise to the unphysical result of an amplitude 
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eigenstate since the chemical potential precisely can- 
cels the Y-dependence of the free energy to quadratic 
order. The higher order terms need to be treated so that 

at least the leading order Y-dependence is included. 
We now wish to relax the assumption of Gaussian 

statistics. We achieve this by treating the non-Gaussian 

part of the free energy, F’, as a perturbation to the state 
la). Using standard time-independent, non-degenerate 
perturbation theory, the state of the condensate, in- 

cluding a first-order perturbation, is 

(20) 

where F&, E (klF’[O) are the matrix elements of F’ 

in the basis of the unperturbed eigenkets, and E:” E 

ZfiKJm is the Ith unperturbed eigenvalue. 

We need to transform the operators in ( 11) using 

the canonical transformation ( 12). After some algebra 

and neglecting the constant, we obtain 

F’ = fiK [c’s2 (6bt4 + 8b4) 

+ 2( c3.s + cs3) @%+3C% + &t&3) 

+ ( c4 + s4 + 4sV) 66+*&2] 

+ 2fiKa[(cs2 + c2s) (Sbt3 + Sb3) 

+ ($3 + c3 + 2c2s + 2s%) (&+%b + Sb+sb2)], 

(21) 

where we have made the definitions s E sinh I and 
c = cash r. If we substitute (21) into (20) we obtain 
the following expression for the perturbed state 

l@(l)) = kojS) + k313) + k4/4), (22) 

where ka = 1, and 

k3 = - (23) 

h=-d$&)c’s’. (24) 

For the parameters chosen here, the largest of the coef- 
ficients jk3 I and 1 k41 is about b/15. So, treating these 
terms as a small perturbation to 10) seems a valid ap- 
proach and, in fact, improves for larger values of LY. 

The most direct way to see the effect of the non- 
Gaussian terms is to compare the Wigner function of 

the perturbed state with that of the state obtained by 
assuming Gaussian statistics. We begin by calculat- 
ing the symmetrically ordered characteristic function, 

x(v) = Tr{pexp(@a+ - ~*&z)}, where we take the 
density matrix to be, p = )@(‘))(@(i) 1. 

If we transform the operators in x( 7) using ( 12), 

and then normally order all the operators taking care 
with their commutation relations, we arrive at 

x(t7) = c kfkjxij, (25) 
{Lj}E{0,3,4} 

where 

Xij =exp [-i(qC - ?j*S)(v*C - ?,TS)] 

x(i(exp(~%+(vc-~*s))exp(--~%(~*c-77s))Ij). 

(26) 

The Wigner function of the state is then simply found 
by taking the two-dimensional inverse Fourier trans- 

form of this function. In practice, this is calculated 
numerically using a fast-Fourier-transform algorithm. 

In Fig. 1, the one standard deviation contour of the 

Wigner function of this perturbed state is compared 
with the unperturbed state. A significant “bending” is 
evident. The state of constant intensity is shown for 

comparison and is seen to closely match the curvature 
of the condensate state. We conclude that the conden- 

sate is very nearly in a number squeezed state. 

We would now like to study how this “banana” 
state evolves with time. In particular, we would like 
to consider the phase diffusion effects. We consider 
evolution while no measurements are being made. 
This means that there are none of the effects, asso- 

ciated with measurement, which try to localize the 
phase [ 8,9]. The Hamiltonian describing the time evo- 

lution of this system is 

H = fiata + fiKat2a2 , 

which gives 

(27) 

u(t) = exp [-i (0 + 2Kata) t] a(O). (28) 

For some initial state, Ii), we wish to investigate how 
(ilu( t) Ii) varies with time. The eigenstates of (27) are 
clearly the number states. We therefore write the initial 
condensate state as a superposition of number states, 
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Ii) = C, cn In), since the evolution of the condensate 

will be very simple in this representation. This gives, 

(a(t)) = ccn(_,c,& exp[-2iK(n-&t], (29) 
n 

where N is the mean number of atoms in the conden- 

sate and we have transformed to a frame rotating at 
frequency p/h to eliminate the deterministic motion 

of the condensate in phase space. 
The form of expression (29) is familiar from the 

Jaynes-Cummings model of quantum optics, which 

describes the interaction between a single-mode radi- 
ation field and a two-level atom, and exhibits the phe- 

nomenon of collapses and revivals [ lo]. The same 

behaviour is expected here [ 111. We can see directly 
from Eq. (29) that (a(t)) is periodic in time with pe- 
riod, T = r/K. This period is the time at which the 

phases of all the different components of the state get 

back in step with one another. 
Collapse times may be estimated by looking at the 

spread of frequencies present in the wavepacket for 

particle numbers in the range, n = fi f An/2, where 

An is the standard deviation of the number distribu- 
tion. From (29)) it is clear that this frequency spread 

is AD = 2KAn. The collapse time, &II, is estimated to 
be the time at which the spread in phase is 27r, which 

gives, rcOll M r/KAn = T/An. Since this depends on 

the number distribution, an experimental study of the 
timescale of the phase diffusion should reveal infor- 

mation about the number squeezing of the condensate. 

We consider three cases of initial states. 
For a coherent state, the set of coefficients, {c,,}:~, 

is given by the familiar Poisson distribution with mean, 
fl. This will serve as a useful comparison to the result 

for the true condensate state. Secondly, we consider the 

case of the amplitude squeezed state JLY, r) which was 
obtained when we assumed Gaussian statistics. The 

number distribution for this state is well known [ 121. 
Finally, we consider the number squeezed state which 
corresponds to the true condensate state. To find the set 
of coefficients for this state, we simply fit a Gaussian 
in the number and phase quadratures to the perturbed 

state shown in Fig. 1. 
By substituting these coefficients into (29), we can 

compare the rates of phase diffusion for the three 
cases. In Fig. 2, we have plotted the real part of (29) 
as a function of time. This variable is proportional to 

5- 
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Fig. 2. Phase collapses for (a) the number squeezed condensate 
state, (b) the amplitude squeezed Gaussian state, and (c) a co- 
herent state with the same mean number of atoms. 

the mean X-quadrature value of the state, since a = 

+(X+iY). 
The timescales of the collapses are seen to depend 

on the statistics of the condensate. The more strongly 

number squeezed the state is, the longer that the con- 
densate retains its phase. The timescales for the true 

condensate state and a coherent state differ by a fac- 

tor of about 4.3. This significant difference means that 
an experimental investigation of the rate of phase dif- 

fusion should give clear evidence for the state of the 
condensate. 

In practice, the diffusion of a condensate could 

be observed experimentally by studying the fringes 
formed by the interference of that condensate with 

a phase reference condensate [93. As the phase be- 
comes less well defined with time, we would expect 

the visibility of the fringes to decrease. A plot of the 
time dependence of this visibility should therefore re- 
veal the timescale of the phase diffusion. 

The theory developed here, however, is true only for 
a system on which no measurements are being made. 
Any measurement will, of course, alter the state of the 
condensate. For this reason, a new condensate must 
be identically prepared for each trial and then the vis- 

ibility of the interference fringes measured after a dif- 
ferent diffusion time. This will allow the timescale of 
the collapses to be determined and provides a possi- 
ble scheme for experimentally testing the state of the 
condensate. 
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