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Measuring a completely unknown phase with sub-shot-noise precision in the presence of loss
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We present a practical scheme for measuring completely unknown phases with a precision beyond the
shot-noise limit even in the presence of loss. Our scheme consists of sending a sequence of unentangled
particles and NOON states through an interferometer and analyzing the measurement outcomes using a Bayesian
analysis. We compare our results with two recent schemes [L. Pezzé and A. Smerzi, Europhys. Lett. 78, 30004
(2007); B. L. Higgins et al., Nature (London) 450, 393 (2007)] that are closely related but operate in the lossless
regime. We show that our technique outperforms the previous schemes when even a modest amount of loss is
present and so may prove to be a valuable technique for making precision measurements beyond the classical
limit in a range of practical scenarios.
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I. INTRODUCTION

The ability to make evermore precise measurements of
physical quantities lies at the heart of progress of science.
Since the precision that can be achieved in a measurement is
related to the resources we have at our disposal, there are two
key ways we can improve measurements: either we use more
resources or we use our resources more efficiently. The first
approach can be understood by the fact that, if we repeat
a measurement many times, we improve the statistics and
hence glean more information about the unknown quantity. A
stream of N independent particles, for example, would enable
us to make N separate interactions with the system and N

separate measurements. This approach is commonly used in
interferometry, for example, and gives a precision that scales
as 1/

√
N . This is called the shot-noise limit and arises from

the inevitable “jitter” in the measurement outcomes due to the
discreteness of the particles.

The second approach involves using the resources more
efficiently, which can be achieved by entangling them. This
is the field of quantum metrology and is one of the most
exciting emerging applications of quantum entanglement
[1–4]. For linear systems with no loss, it can be shown that the
measurement precision using entanglement can scale as 1/N ,
and for systems with interactions between the particles, the
scaling can be even more favorable [5]. This suggests that there
is a lot to gain from entanglement. However, the problem is that
any realistic system contains loss, and it is well known that
loss undermines the advantage gained by entanglement [6].
Indeed it has been shown recently that in the limit N → ∞, if
there is any loss in the system, the best precision that can be
obtained is reduced to a small numerical factor improvement
over the unentangled case, i.e., 1/

√
N [7–9]. Nonetheless, the

value of N at which this crossover to unentangled behavior
occurs can be quite large, and so it is still very fruitful to study
quantum metrology for entangled states with a modest number
of particles. This means that quantum metrology schemes
are likely to come into their own when there are reasons we
might want to limit the resources we use, for example, if we
are imaging a delicate sample that would be damaged by a
high incident flux or trying to detect gravity waves where the
signal is so small that photon pressure noise risks completely
swamping it.

Most entanglement-based measurement schemes are some-
what limited in that they require the experimenter to initially
know the phase that they wish to measure to a high degree of
accuracy. This is not always practical or possible. However,
recent work has shown how it is possible to achieve sub-shot-
noise precision even when the initial phase is unknown. Pezzé
and Smerzi (PS) developed a theoretical scheme that was able
to achieve a measurement precision that scaled as 1/N [10].
Higgins et al. (HBBWP) took this further and performed an
experiment that used feedback to demonstrate sub-shot-noise
scaling [11]. These are both beautiful demonstrations of the
potential advantages of quantum metrology, but both operate
in the lossless regime. In this paper we will extend these ideas
to consider the effects of loss and demonstrate a simple scheme
that outperforms them when there is more than a modest
amount of loss present.

II. THE SCHEME

The basic measurement scheme is shown in Fig. 1. It con-
sists of a device that creates a (single particle or multiparticle)
superposition on the two paths. One path is then subjected to
the phase shift φ that we wish to measure before a second
device undoes the effect of the first one. Finally, particles are
detected at the two output ports, D1 and D2. This is really
just a generalized Mach-Zehnder interferometer that admits
multiparticle entangled states on the two paths.

In the lossless case without interactions between the
particles, it is known that the best possible measurement
precision is given when the first device creates the NOON
state |ψ〉 = (|Ne,0〉 + |0,Ne〉)/

√
2 on the two paths. There are

schemes for performing this transformation in optical [4,12]
and atomic systems [13]. For our purposes, we want this
process to be unitary, which can be achieved by using a
nonlinearity as described in [13,14]. An alternative used in the
HBBWP scheme was to create a single-particle superposition
using an ordinary beam splitter and then to pass it through
the phase shift multiple times [11]. This is a clever idea
that simplifies experimental implementations but suffers from
a bandwidth problem in the sense that the time to make a
measurement scales with Ne. The same is not true for NOON
states where the measurement time is independent of Ne.
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FIG. 1. A schematic of the phase measurement scheme. In stage
1 the input state is transformed unitarily by device 1 to some
superposition state on the two paths. In stage 2, one of the two
modes acquires the phase φ that we wish to measure. Finally, in
stage 3, device 2 undoes the transformation of device 1, and particles
are detected at D1 and D2 with probabilities that depend on φ. In a
standard Mach-Zehnder interferometer devices 1 and 2 would simply
be 50:50 beam splitters.

If the NOON state is propagated through the scheme
shown in Fig. 1, the output state (ignoring a global phase)
is |ψ〉 = cos(Neφ/2)|Ne,0〉 + sin(Neφ/2)|0,Ne〉. From this
we see that all particles are detected at D1 with probability
P1 = cos2(Neφ/2) or all at output D2 with probability P2 =
sin2(Neφ/2), which allows us to estimate the phase φ.

The probability of detecting the Ne particles at either of
the two output ports has a period of 2π/Ne, and so we can
measure the phase φ to within 2π/Ne. However, the periodicity
means that we are not able to distinguish phases that differ by
multiples of 2π/Ne. This is a problem if the phase is initially
completely unknown: we need to know in which 2π/Ne period
φ lies.

One possible way to do this is to make a simple initial mea-
surement of φ using unentangled particles. This is achieved by
inputting |Nu,0〉 into a standard Mach-Zehnder interferometer
and recording the number of particles detected at D1 and
D2. Each particle has a probability P1 = cos2(φ/2) of being
detected at D1 and P2 = sin2(φ/2) of being detected at D2.
This means that (unlike for the NOON state) the probability
distribution has a single peak on the 2π range, and so φ can
be uniquely identified. In this case the measurement precision
is limited by shot noise, i.e., �φ � 1/

√
Nu. Therefore, in

order to narrow down our estimate of φ to a 2π/Ne period we
require Nu ≈ [Ne/(2π )]2 [15]. Since in any given experiment
we have a fixed total number of particles, we ideally want Nu

to be small so as to save as many particles as possible for
the more precise NOON state measurement. In this paper we
investigate this scheme to see how we can use a combination of
Nu unentangled particles and γ copies of NOON states (each
with Ne particles) to precisely measure an unknown phase in
the presence of loss [16]. This means that the total resources
are NT = Nu + γNe.

III. PHASE READOUT

The readout mechanism is a key part of any measurement
scheme. Often in quantum metrology, the quantum Fisher
information FQ [17,18] and its associated Cramér-Rao bound
�φ � 1/

√
FQ [9,19–21] are used to quantify the precision

that a given quantum state can achieve. However, this is a
theoretical limit that is optimized over all possible readout

FIG. 2. The phase distribution resulting from using a single NT =
15 particle NOON state as the measurement resource. The periodicity
of the distribution means that the phase can only be estimated modulo
2π/NT .

schemes, and often it is not at all clear how to implement the
best possible case. Instead we take a more pragmatic approach
and consider a particular readout scheme that was also used in
the PS and HBBWP schemes. This should be useful in guiding
possible experimental implementations. The readout scheme
involves detecting particles at the outputs D1 and D2 and using
Bayesian analysis to determine φ.

It is helpful to start by reviewing this. In the PS scheme,
a sequence of ν NOON states with particle numbers Ne =
1,2,4,8, . . . ,2ν−1 were used to achieve a measurement pre-
cision �φ = 2.55/NT when there is no loss and φ = 0. As
discussed above, detectors D1 and D2 in Fig. 1 will detect all
the particles at either output 1 or 2 with respective probabilities
P1 = cos2(Neφ/2) and P2 = sin2(Neφ/2). Repeating for all ν

NOON states, the probability that x times we detect all the
particles at output 1 and ν − x times at output 2 can be written
as Pν(x|NT ,φ), which is often called the forward probabil-
ity. According to Bayes’ theorem, the posterior probability
Pν(φ|NT ,x), i.e., our knowledge of φ given total resources NT

and x detections at output 1, is given by

Pν(φ|NT ,x) = Pν(x|NT ,φ)P (φ)

P (NT ,x)
, (1)

where P (φ) describes our prior knowledge of φ and is com-
pletely flat for an unknown phase, P (φ) = 1/(2π ). P (NT ,x)
can be treated simply as a normalization constant. The value
of φ for which the distribution Pν(φ|NT ,x) is maximum is
taken to be our estimate of the phase φest, and the uncertainty
�φ is taken to be the one-standard-deviation confidence
interval. This is the phase interval containing 68.27% of the
phase distribution, i.e.,

∫ φest+�φ

φest−�φ
dφPν(φ|NT ,x) = 0.6827. For

simplicity the PS scheme considered the case where x = ν,
which occurs with certainty for φ = 0.

When all NT particles are put into a single NOON state,
all the particles will be detected at output 1 (since φ = 0),
and our estimate of the phase is P (φ) cos2(NT φ/2), which is
shown in Fig. 2 for NT = 15 and shows the 2π/NT periodicity
issue discussed above. The PS scheme avoids this issue by
using ν NOON states with particle numbers that increase in a
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FIG. 3. The phase distribution resulting from the PS scheme [10]
for ν = 4, NT = 15. All the peaks except the one centered at the true
phase value, φ = 0, vanish.

geometric sequence as Ne = 1,2,4,8, . . . ,2ν−1. This results in

P (φ)
ν−1∏
k=0

cos2

(
2kφ

2

)
, (2)

which is shown in Fig. 3 for ν = 4. We see all the peaks, except
the one centered at the true phase value, have been suppressed.
This scheme should therefore allow us to unambiguously
measure an unknown phase on the full 2π period.

This is an interesting result, but it suffers from two
problems. The first is that it does not account for loss. We
know that loss will be present in any realistic system, and the
fact that this scheme relies heavily on NOON states, which are
known to be very fragile, suggests that it will be significantly
degraded when loss is accounted for. This issue is addressed
in Sec. V. The second problem is that the scheme only works
when φ = 0, so although it gives us a single peak in the 2π

range, it does not allow us to find a general unknown phase.
PS suggested how this scheme could be generalized to

φ �= 0 [10], and HBBWP found a clever solution by using
an adaptive feedback mechanism [11]. A schematic of this
idea is shown in Fig. 4. The unknown phase, φ, on path 1 that
we wish to measure can take any value, and a second phase,
θ , which is controlled by the experimenter, is placed on path
2. The PS scheme is then implemented with the difference
that, after each detection, some information is gained about
φ and this is used to keep updating the value of θ so that it
always corresponds to our best estimate of φ, i.e., φest. In this
way, the phase difference between the two paths converges
to a value close to zero, and this is the regime in which we

FIG. 4. A schematic of the measurement scheme with the feed-
back mechanism. Path 1 contains the phase φ we wish to measure,
and path 2 contains a known phase shift θ that is adjusted after each
detection so that it always corresponds to our best estimate of φ, i.e.,
θ = φest.

know that the PS scheme works. Of course there is some
resource cost associated with this feedback mechanism. In
particular, HBBWP found that they needed to repeat each state
in the PS scheme at least four times to get Heisenberg-limited
scaling.

In the next section, we investigate the performance of our
measurement scheme as discussed in Sec. II for different phase
shifts and compare it with unentangled particles and HBBWP
when φ = 0.

IV. LOSSLESS RESULTS

The first stage of our scheme begins with the unentangled
measurement; i.e., Nu particles pass independently through
a Mach-Zehnder interferometer with a phase, φ, on path 1
and a (controllable) phase, θ , on path 2. The probability of
detecting particle i at output 1 is P1 = cos2(φ/2 − θi−1/2)
and at output 2 is P2 = sin2(φ/2 − θi−1/2), where θi−1 is the
value θ takes after the detection of the (i − 1)th particle. After
each detection event our phase distribution and hence phase
estimate are modified. The process then continues by passing
γ Ne-particle NOON states through the measurement scheme
again using feedback to adjust θ after each detection. From
this φest and �φ are determined.

By numerically optimizing Nu, Ne, and γ (subject to the
constraint NT = Nu + γNe) such that �φ is minimized we
can determine the best precision afforded by this method for
a given value of NT . The exact form of the phase distribution,
however, depends on the number of detections made at D1 and
D2, meaning there will be variations between experiments.
We take the phase distribution averaged over 200 runs in
our simulations. The results are shown in Fig. 5(a) as a
function of NT for different values of φ. We see that the
precision is best for φ = 0 (as is also true for HBBWP). This
is because in this case we have θ = φ for every measurement,
whereas when φ �= 0, it takes a while for feedback to achieve
this.

In Fig. 5(b), we have taken the case of φ = 0 and compared
the results from our scheme [i.e., the solid line in Fig. 5(b)]
with the case that all NT particles are unentangled (dashed
line) and the HBBWP scheme (crosses) where each state
is repeated four times as discussed above. Only two points
are displayed for HBBWP because they are the only values
of NT that correspond to this scheme on the range shown:
NT = 12 corresponds to one- and two-particle states each
repeated four times, and NT = 28 corresponds to one-, two-,
and four-particle states each repeated four times. We see that,
in the case of no loss, our measurement scheme outperforms
the case of unentangled particles and gives a similar level of
precision to the HBBWP scheme on the range shown. This is
also true for phases other than φ = 0, as we shall see in the next
section.

However, so far everything has been treated by ignoring
the effects of loss. One may also intuitively expect that our
scheme will perform much better than PS or HBBWP in the
presence of particle losses since these latter schemes use a
large number of NOON states [22], which are known to be
very fragile. By contrast, our scheme uses a large number of
unentangled particles, which are more robust.
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FIG. 5. (a) The measurement precision �φ as a function of NT

achieved using the optimum combination of Nu, Ne, and v in our
measurement scheme for φ = 0 (solid line), φ = π/4 (dotted line),
and φ = π/2 (dashed line). The best precisions are achieved for
φ = 0; however, the scheme holds its precision well over a range of
phase values. (b) Comparison of the measurement precision �φ of
our scheme (solid line), a scheme that uses only unentangled particles
(dashed line), and the HBBWP scheme [11] (crosses), all for the case
of φ = 0.

V. INCLUDING PARTICLE LOSSES

Particle losses are commonly modeled by placing “ficti-
tious” beam splitters on each of the paths of the system, as
shown in Fig. 6 [18,23–25]. If the beam splitter on path i

has transmissivity ηi , it will skim off a fraction (1 − ηi) of
the particles into environmental modes, which are then traced
over.

A general two-mode NOON state with Ne particles (created
by device 1) is transformed by the fictitious beam splitters and
phase shifts φ and θ to

|ψ(φ)〉 = 1√
2
eiNe(φ−θ)

Ne∑
l1=0

(
Ne

l1

)1/2

×
√

η
Ne−l1
1

√
(1 − η1)l1 e−il1φ |Ne − l1,0〉1,2|l1,0〉a,b

FIG. 6. (Color online) Schematic of the measurement scheme
when particles on each path are lost to the environment. Losses are
modeled by placing a fictitious beam splitter with transmissivity η1,2

on paths 1 and 2, respectively.

+ 1√
2

Ne∑
l2=0

(
Ne

l2

)1/2√
η

Ne−l2
2

√
(1 − η2)l2

× e−il2θ |0,Ne − l2〉1,2|0,l2〉a,b, (3)

where subscripts a and b refer to environmental modes, as
shown in Fig. 6. For clarity, Eq. (3) represents the state
just before device 2. Device 2 then acts to undo the unitary
transformation of device 1. The state just after device 2 is then

|ψ(φ)out〉 = 1

2
eiNe(φ−θ)

Ne∑
l1=0

(
Ne

l1

)1/2√
η

Ne−l1
1

√
(1 − η1)l1

× e−il1φ(|Ne − l1,0〉1,2+|0,Ne − l1〉1,2)|l1,0〉a,b

+ 1

2

Ne∑
l2=0

(
Ne

l2

)1/2√
η

Ne−l2
2

√
(1 − η2)l2

× e−il2θ (|Ne − l2,0〉1,2−|0,Ne − l2〉1,2)|0,l2〉a,b.

(4)

Once a particle is lost to the environment, we lose all informa-
tion about that particle. Therefore we trace out environmental
modes a and b to get

ρ(φ)out = Tra,b[|ψ(φ)out〉〈ψ(φ)out|]
= plossρloss + pnolossρnoloss, (5)

where ρnoloss is the density matrix of the system when no
particles are lost, pnoloss is the probability of this occurring, ρloss

is the density matrix of the system when one or more particles
have been lost, and ploss = 1 − pnoloss. Since we know that the
loss of even a single particle completely destroys the NOON
state superposition, ρloss cannot contain any phase information.
Consequently, we need only consider ρnoloss and pnoloss when
determining the precision of NOON states. Experimentally,
this is equivalent to ignoring all measurement results where we
do not detect all Ne particles at the output. This is implicitly
what happens in HBBWP, for example; however, here we fully
account for all the resources used, including those that are
not detected. Of course this means that we need to know if
a particle is lost, which means that the detectors need to be
sufficiently efficient. However, since our scheme uses small
NOON states, this should not pose much of a problem. In
HBBWP, for example, we just need to know whether a photon
makes it to the detectors or not.

It is possible to show that ρnoloss = |ψnl〉〈ψnl|, where

|ψnl〉 = 1

2
√

pnoloss

[(
eiNe(φ−θ)

√
η

Ne

1 +
√

η
Ne

2

)|Ne,0〉

+ (
eiNe(φ−θ)

√
η

Ne

1 −
√

η
Ne

2

)|0,Ne〉
]

(6)

and

pnoloss = (
η

Ne

1 + η
Ne

2

)
/2. (7)

It is reasonable to assume that the rate of loss is the same on
both paths, and so we take η1 = η2 ≡ η. This simplifies |ψnl〉
to

|ψnl〉= 1
2 [(eiNe(φ−θ)+1)|Ne,0〉+(eiNe(φ−θ)−1)|0,Ne〉]. (8)
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FIG. 7. (Color online) The precision achieved using our measurement scheme for different rates of loss (solid line) compared with the
HBBWP scheme [11] (dash-dotted line) and a measurement scheme where all NT = 60 particles are unentangled (dashed line) when (a) φ = 0
and (b) φ = π/3.

We can see from this (as we might expect since no particles
are lost) that the probability of detecting all the particles at D1
is

PD1 = cos2

(
Ne(φ − θ )

2

)
(9)

and at D2 is

PD2 = sin2

(
Ne(φ − θ )

2

)
. (10)

In our measurement system we have γ identical NOON states.
However, not all γ runs will result in a successful measurement
outcome, i.e., a detection of all Ne particles at the output. The
probability of a particular run being successful is pnoloss =
ηNe . This means that our phase distribution is not updated
on every run as in the idealized case. It is clear that larger
NOON states are more rapidly affected by particle losses as
the probability of a run being successful scales as ηNe , meaning
the larger the value of Ne is, the fewer successful runs there
are.

Using this loss model, we have investigated the effects of
particle loss on our measurement scheme and that of HBBWP.
The precision capabilities of each scheme for different rates
of loss are shown in Fig. 7 for NT = 60 and (a) φ = 0 and (b)
φ = π/3. In the HBBWP scheme, we use NOON states with
particle numbers Ne = 1,2,4, and 8, which are each repeated
four times, as discussed above and noted in [11].

In the lossless case (i.e., when η = 1) our scheme and
HBBWP give almost identical results for both phases. This
is consistent with the results presented in Fig. 5(b). However,
the two schemes behave very differently when the rate of
loss is increased. Our scheme retains its precision much
better than HBBWP. Also shown in Fig. 7 is the precision
obtained with unentangled particles (dashed line). This is a
useful benchmark because it represents the shot-noise limit
that we are aiming to beat. Our scheme is always at least
as good as unentangled particles and is better over a wide
range of loss rates. By contrast, the HBBWP scheme is

soon outperformed by unentangled particles as the loss rate
is increased. The difference in performance is even more
pronounced for φ = π/3 than φ = 0.

One issue that we have skirted around thus far is whether
the optimum strategy depends on the phase that we wish to
measure. This would potentially be a problem because we do
not know what this phase is to begin with and so would not
know what strategy to employ. We have checked this over a
range of parameters and found that the strategy does indeed
vary with φ. However, this is not as big a problem as it might
appear. First, the variation is very slow. For example, using
the values NT = 60 and η = 0.8, the optimum strategy always
uses three-particle NOON states and between 21 and 30 single-
particle states over the range φ ∈ [0,π/2]. Second, we gain
information about φ as we implement our measurement and so
can adapt the strategy as we go. Every scheme uses a significant
number of single-particle states, and these can be used first to
get an estimate of φ and inform the later strategy of what size
NOON states to use. For the example considered here with
NT = 60 and η = 0.8, each strategy uses ∼25 single-particle
states. These enable us to estimate φ to within about π/

√
25 =

π/5, which is a better resolution than the range over which
the strategy needs to be varied, i.e., ∼π/2. In other words,
by using the single-particle states first, we can determine φ

with sufficient precision that we can determine the optimum
strategy as we go along without any loss of resources.

As a final comparison we relax the restriction that all the
NOON states in our scheme must contain the same number of
particles. This restriction was chosen to reduce the complexity
of the scheme for possible experimental implementation.
However, we should check that it does not significantly
degrade the performance of the scheme. Instead we allow any
combination of NOON states of different sizes subject to the
restriction that the total number of particles is NT . However,
since NOON states are difficult to create experimentally for
more than a few particles (and we want to ensure that we can
determine when a particle is lost), we will restrict the NOON
states to each contain no more than four particles. This makes
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FIG. 8. (Color online) The precision achieved using our measurement scheme for different rates of loss (solid line) is compared with
unentangled particles (dashed line) and the case of using any combination of NOON states where each contains a maximum of four particles
(dash-dotted line) for (a) φ = 0 and (b) φ = π/3. In both cases NT = 60. In (a), the solid and dash-dotted lines are barely distinguishable.

the scheme experimentally plausible since four-photon NOON
states have been realized in the laboratory [12].

The results are shown in Fig. 8. The scheme described here
(dash-dotted line) is compared with our scheme described in
the rest of the paper (solid line) where we restrict all NOON
states to be the same size and the benchmark of unentangled
particles (dashed line) for both φ = 0 [Fig. 8(a)] and φ = π/3
[Fig. 8(b)]. We see that the dash-dotted line gives only a
marginal improvement over the solid line. This is particularly
true for φ = 0, where these two lines in Fig. 8(a) are barely
distinguishable. This result justifies the scheme we have used
throughout the paper that uses only unentangled states and
NOON states of a fixed size. This scheme would be easier
to implement than one that needs NOON states of different
sizes, and yet it achieves almost the same measurement
precision.

VI. CONCLUSION

We have considered a practical scheme for measuring a
completely unknown phase with sub-shot-noise precision in
the presence of loss. We have used a bottom-up approach where
we consider what states are experimentally accessible and see
what we can achieve with them. This is in contrast to other
approaches that calculate the theoretically optimal entangled
states and then consider how these could be approximated in
the laboratory.

We have focused, in particular, on unentangled particles
and NOON states containing a small number of particles,
and to simplify things further we have taken all our NOON
states to be the same size. Our scheme is closely related
to the work of PS [10] and HBBWP [11]; however, these
latter schemes only consider the lossless case. In this paper,
we have fully accounted for the resources required when
there is loss and have shown that our scheme significantly
outperforms the others when there is more than a modest rate
of loss. This is important for all practical implementations of
metrology where loss will inevitably be present. Finally, we
have considered how our scheme compares to more general
strategies that allow for NOON states with different sizes and
found that our scheme compares very favorably with them.
This justifies the use of our simpler approach.

All the schemes discussed in this paper make use of NOON
states; however, it is known that different entangled states
can combine Heisenberg-limited precision with enhanced
robustness to particle loss. An interesting future direction will
be to see how general entangled states can be incorporated into
the measurement schemes discussed here and what advantages
they provide in overall measurement precision [26].
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