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Abstract

Quantum states that are symmetric with respect to permutations of their subsystems

appear in a wide range of physical settings, and they have a variety of promising

applications in quantum information science. In this thesis the entanglement of

symmetric multipartite states is categorised, with a particular focus on the pure

multi-qubit case and the geometric measure of entanglement. An essential tool for

this analysis is the Majorana representation, a generalisation of the single-qubit Bloch

sphere representation, which allows for a unique representation of symmetric n qubit

states by n points on the surface of a sphere. Here this representation is employed

to search for the maximally entangled symmetric states of up to 12 qubits in terms

of the geometric measure, and an intuitive understanding of the upper bound on

the maximal symmetric entanglement is given. Furthermore, it will be seen that the

Majorana representation facilitates the characterisation of entanglement equivalence

classes such as Stochastic Local Operations and Classical Communication (SLOCC)

and the Degeneracy Configuration (DC). It is found that SLOCC operations between

symmetric states can be described by the Möbius transformations of complex analysis,

which allows for a clear visualisation of the SLOCC freedoms and facilitates the

understanding of SLOCC invariants and equivalence classes. In particular, explicit

forms of representative states for all symmetric SLOCC classes of up to 5 qubits

are derived. Well-known entanglement classification schemes such as the 4 qubit

entanglement families or polynomial invariants are reviewed in the light of the results

gathered here, which leads to sometimes surprising connections. Some interesting

links and applications of the Majorana representation to related fields of mathematics

and physics are also discussed.
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Chapter1
Introduction

In this preliminary chapter the subject of the present thesis is moti-

vated and its objectives are formulated. This is followed by a brief review

of some basic concepts of quantum information science, with a particular

focus on entanglement theory and permutation-symmetric states, the

two topics that form the main focus of this work. An overview of the

subsequent chapters and the main results presented therein can be found

at the end of this chapter.

1.1 Motivation

Symmetry principles hold a special place in physics, and it is easy to undervalue

their significance for the historical development of many important physical theories.

Newton himself did not consciously formulate his revolutionary equations of motion

for any particular frame of reference, thus implicitly considering all directions and

points in space to be equivalent [1]. Nearly two centuries later the symmetries of

electrodynamics were encapsulated into Maxwell’s equations, taking into account

both Lorentz and gauge invariance [2], but it was not before Einstein that it was

realised that Maxwell’s equations are merely a consequence of the relativistic invari-

ance, and thus symmetry, of space-time itself. In the standard model of modern

particle physics the CPT-symmetry postulates that our universe is indistinguishable

from one with inverted particle charges C : q 7→ −q (C-symmetry), parity inversion

P : r 7→ −r (P-symmetry) as well as time reversal T : t 7→ −t (T-symmetry). And

going beyond the standard model, the theory of supersymmetry postulates a further

physical symmetry between bosons and fermions, thus leading to the postulation of

yet-to-be-observed superpartners of the existing elementary particles.

Noether’s theorem outlines how continuous symmetries of physical systems give

1



Chapter 1. Introduction

rise to conserved quantities. For example, the conservation of energy arises from

translations in time, and the conversation of linear and angular momentum arises

from translations and rotations in space, respectively. In quantum mechanics the

corresponding conservation laws follow directly from the kinematics of the underlying

theory, with physical quantities such as position and momentum being expressed by

operators on vectors of a Hilbert space [1]. Many other important consequences of

symmetry can be observed in quantum mechanics: The selection rules governing

atomic spectra are the consequence of rotational symmetry, the different aggregation

behaviour of bosons and fermions is due to the invariance or sign-change of the wave

function under exchange of identical particles, and in relativistic quantum mechanics

the representations of the full symmetry group – the Poincaré group – allows for a

complete classification of elementary particles [2].1

The ground state of a quantum mechanical system with a finite number of de-

grees of freedom is always symmetric [2], i.e. the state remains invariant under

permutations of the system’s parts, and no part is in any way different from any

other. This is a first indication that symmetric quantum states play a particular role

in quantum physics. Recently it has become possible to implement certain symmetric

states [3–5] or even arbitrary symmetric states [6] actively in experiments, so it

is only natural to gauge their possible applications in various areas of physics. In

this thesis the permutation-symmetric quantum states will be investigated from the

perspective of quantum information theory [7], a young, vibrant and highly inter-

disciplinary research field that combines aspects of physics, mathematics, computer

science, chemistry and recently even biology [8, 9]. The realisation that information

is physical has lead to a revision of our understanding of how nature works, and

it has given rise to a multitude of fascinating new applications. The most famous

among these is probably the quantum computer, initially suggested by Feynman for

efficient simulations of quantum systems [10]. Since then theorists have unearthed

several intriguing algorithms where a computer operating with qubits (quantum

mechanical spin-1
2 systems) rather than ordinary bits would provide an exponential

speedup (such as Shor’s algorithm for factorisation [11]), or at least a quadratic

speedup (Grover’s algorithm for database searches [12]). Other exciting applica-

tions of quantum information are the teleportation of quantum states over large

distances via quantum teleportation [13], and in principle unconditionally secure

communication between remote parties via quantum cryptography [14, 15]. While

1Slightly ironically, many phenomena in the world around us are due to symmetry breaking. The more
fundamental kind of symmetry breaking, spontaneous symmetry breaking, gives rise to non-symmetric
states despite the laws of physics being symmetric themselves. Examples of such manifestations are
crystals (broken translational invariance), magnetism (broken rotational invariance) and superconduc-
tivity (broken phase invariance) [2]. Phase transitions between symmetric and non-symmetric states
appear everywhere in physics, from down-to-earth occurrences in condensed matter physics to the
unification of the fundamental forces of nature during the first moments after the big bang.

2



1.1. Motivation

the experimental realisation of quantum computation and teleportation is still in its

infancy, the technically more mature status of quantum cryptography has allowed

the first commercial enterprises (e.g. ID Quantique) to enter the market.

Along with the superposition principle, the non-local property of entanglement is

considered to be one of the most striking consequences of quantum physics. Entangle-

ment describes quantum correlations between separate parts of a system that cannot

be explained in terms of classical physics, and these correlations are of particular

importance in quantum information science. Entanglement is an essential ingredient

for quantum teleportation [13], superdense coding [16], measurement-based quan-

tum computation (MBQC) [17] and some quantum cryptography protocols [15]. It

can therefore be considered as a “standard currency” in many applications, and it

is desirable to know which states of a given Hilbert space are the most entangled

ones. Unfortunately, for systems consisting of more than two parts the quantification

of entanglement is difficult due to the existence of different types of entanglement,

each of which may capture a different desirable quality of a state as a resource [18].

It is therefore unsurprising that many different entanglement measures have been

proposed in order to quantify the amount of entanglement of multipartite quantum

states [19]. Some entanglement measures are not useful for the analysis of larger

systems, due to their bipartite definition, and most measures are notoriously difficult

to compute. For these reasons the present thesis focuses on the geometric measure of

entanglement (GM) [20, 21], an inherently multipartite entanglement measure that

is not too difficult to compute.

Returning to the concept of symmetry in physics, we recall that permutation-

symmetric quantum states appear naturally in some systems [22, 23], that it is

possible to prepare them experimentally [3–6], and that they have found some

applications [24–27]. Many canonical states that appear in quantum information

science are symmetric, e.g. Bell diagonal states, Greenberger-Horne-Zeilinger (GHZ)

states [28], W and Dicke states [29], and the Smolin state [30]. These aspects make it

worthwhile to investigate the theoretical properties as well as the practical usefulness

of symmetric states for specific quantum information tasks. In particular, not much is

known so far about how to categorise the entanglement present in symmetric states,

and which symmetric states exhibit a high degree of entanglement. New operational

implications (in terms of usefulness for certain tasks) or visualisations of symmetric

states and their entanglement would also be highly desirable. With this we formulate

the following goals for the thesis:

• How can the entanglement of symmetric states be classified?

• Which symmetric states are maximally entangled?

• What operational meaning do symmetric states (or their entanglement) have?

3



Chapter 1. Introduction

• How can symmetric states (or their entanglement) be visualised?

• What kind of links exist between symmetric states and other field of physics

and mathematics?

A central tool for our analysis of symmetric entanglement will be the Majorana

representation [31], a generalisation of the Bloch sphere representation of single

qubits. This will not only provide us with a very useful visual representation of

symmetric states, but also allows us to classify the different types of entanglement

present in symmetric states, and to simplify the search for maximal entanglement. The

Majorana representation will be introduced, along with other elementary concepts of

quantum information theory, during the remainder of this introductory chapter.

1.2 Quantum entanglement

In this section we will review some elementary concepts from the theory of quantum

entanglement and quantum information. This is by no means a comprehensive

overview, but rather a selection of those aspects that will be of particular importance

in this thesis. For a comprehensive and recent review of quantum entanglement it is

suggested to consult the review article composed by the Horodecki family [19].

1.2.1 Qubit and Bloch sphere

In analogy to the bit from classical information theory the smallest unit of information

in quantum information theory is called the qubit, an abbreviation of “quantum bit”.

In contrast to the classical bit which either takes the value 0 or 1, a qubit can be in

any superposition of the two basis vectors |0〉 and |1〉, known as the computational

basis. Physically a qubit can be realised by any quantum 2-level system, such as

the spin of an electron or the polarisation of a photon. The state of a pure qubit

system can be written as |φ〉 = a|0〉 + b|1〉, with complex coefficients a and b that

satisfy the normalisation condition |a|2 + |b|2 = 1. By means of an unphysical global

phase the complex phase of the first coefficient can be eliminated without restricting

generality, which allows one to use the notation |φ〉 = cos θ2 |0〉 + eiϕ sin θ
2 |1〉 with

two real parameters θ ∈ [0, π] and ϕ ∈ [0, 2π). Because of the frequent use of this

notation throughout the thesis, the trigonometric expressions will be abbreviated as

cθ := cos θ2 and sθ := sin θ
2 . The famous Bloch sphere representation [7] employs

this parameterisation to uniquely identify any pure qubit state with a unit vector in

R3, as shown in Figure 1.1. In this picture the two basis vectors |0〉 and |1〉, which

correspond to the possible values of a classical bit, are represented by the north pole

and south pole of the Bloch sphere, respectively. Any other point on the surface of

4



1.2. Quantum entanglement

|φ〉
θ

ϕ

Figure 1.1: Every pure state of a single qubit |φ〉 = cθ|0〉 + eiϕsθ|1〉 can be param-
eterised by two angles, the inclination θ ∈ [0, π] and the azimuth ϕ ∈ [0, 2π). They
give rise to the Bloch sphere representation on the surface of a unit sphere, with the
Cartesian coordinates given by (sin θ cosϕ, sin θ sinϕ, cos θ).

the sphere represents a state |φ〉 = cθ|0〉+ eiϕsθ|1〉 that is in a superposition of the

two basis states |0〉 and |1〉. The measurement of such a state in the computational

basis {|0〉, |1〉} yields the outcome |0〉 with probability |cθ|2 and the outcome |1〉 with

probability |sθ|2. The natural metric on the Bloch sphere is given by the Fubini-Study

metric [32], and the distance between two normalised qubits, |φ1〉 and |φ2〉, in this

metric is γ(φ1, φ2) = arccos|〈φ1|φ2〉|, i.e. the geometrical angle between the two

corresponding points on the Bloch sphere.

Pure qubit states are mathematically expressed as vectors of the 2-dimensional

Hilbert space H = C2, but they are unique only up to normalisation and an unphys-

ical global phase, which results in the two real degrees of freedom that manifest

themselves as the surface of the Bloch sphere. If only partial information is known

about a quantum state, it has to be treated as a mixed state2. While pure qubit

states correspond to points on the surface of the Bloch sphere, mixed qubit states

correspond to the interior of the sphere by means of the Pauli matrix representation

of the density matrix

ρ =
1

2
(1 + xσx + yσy + zσz) =

1

2
(1 + rσ) , (1.1)

with |r|2 = |x|2 + |y|2 + |z|2 ≤ 1, and where r = (x, y, z) ∈ R3 is the corresponding

Bloch vector within the unit sphere. The more mixed a state is, the closer it lies to the

centre of the Bloch sphere, with the maximally mixed state ρ = 1 lying at the origin

of the sphere. The Pauli matrices σx, σy and σz give rise to the rotation operators

2Mixed states are mathematically expressed as density matrices acting on the Hilbert space H. Any
mixed state can be cast as a probability distribution of pure states, ρ =

∑n
i=1 pi|ψi〉〈ψi|, and in general

there exists an infinite number of such decompositions. Every mixed state ρ must fulfil the following:
1.) self-adjoint: ρ = ρ†, 2.) semi-positive: ρ ≥ 0 (i.e. non-negative probabilities), and 3.) unit trace:
Tr[ρ] = 1 (i.e. probabilities sum up to one). The set of mixed states is called the state space S(H), and a
state ρ ∈ S(H) is pure if and only if (iff) ρ2 = ρ.
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Chapter 1. Introduction

which rotate Bloch vectors around the X-, Y - or Z-axis by an angle ϑ:

Rx(ϑ) = e−iϑ
2
σx =

(
cos ϑ2 −i sin ϑ

2

−i sin ϑ
2 cos ϑ2

)
, (1.2)

Ry(ϑ) = e−iϑ
2
σy =

(
cos ϑ2 − sin ϑ

2

sin ϑ
2 cos ϑ2

)
, (1.3)

Rz(ϑ) = e−iϑ
2
σz =

(
e−iϑ

2 0

0 eiϑ
2

)
. (1.4)

A rotation around an arbitrary axis n = (nx, ny, nz), with |n| = 1, that runs though

the origin of the Bloch sphere is given by Rn(ϑ) = e−iϑ
2
nσ and can be straightfor-

wardly calculated with the equations above. In mathematical terms the unitary

operations are elements of SU(2), and in general they do not keep the coefficient of

the |0〉 vector of a pure state real and non-negative, so a multiplication with a suitable

global phase may be necessary after rotation in order to return to the standard qubit

notation |φ〉 = cθ|0〉+ eiϕsθ|1〉. For Z-axis rotations Rz(ϑ) this global phase is simply

eiϑ
2 , independent of the Bloch vector |φ〉 that is being rotated.

While measurements destroy the state of an unknown qubit, this is not the case

with the rotation operators described above. Applying such a unitary operation on an

unknown qubit in the laboratory has the effect of a rotation of its Bloch vector around

an axis on the Bloch sphere, without measuring or destroying a state unknown to the

experimenter.

1.2.2 Bipartite and multipartite systems

Quantum systems that consist of two subsystems (e.g. two qubits) are commonly

known as bipartite systems, while systems with three or more subsystems are re-

ferred to as multipartite systems3. This seemingly arbitrary distinction will become

more meaningful later when considering the qualitatively different manifestations of

entanglement in bipartite and multipartite systems. Coined by Einstein as spukhafte
Fernwirkung (“spooky action at a distance”), entanglement describes an inherently

nonlocal correlation between detached quantum systems that is predicted by quan-

tum theory, and which cannot be adequately described or explained in the language

of classical physics, at least without making assumptions about hidden variables
[35]. The nonexistence of such hidden variables in nature has been sufficiently

3Note that bipartite and multipartite quantum systems do not need to manifest themselves as an
accumulation of distinct physical objects such as electrons, photons, etc., each of which gives rise to the
Hilbert space of one subsystem. Instead, entanglement can exist between different degrees of freedom
of a single physical particle, or even between different particle numbers, although the latter may lead
to a violation of superselection rules [33, 34].
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1.2. Quantum entanglement

validated experimentally over the last few decades [36], thanks to the ingenious Bell

inequalities [37].

In the language of quantum mechanics, an entangled quantum system is one

whose state vector cannot be expressed as the tensor product of vectors of its sub-

systems. In the simplest case of a bipartite quantum system this is the case if

|ψ〉 6= |φ1〉⊗|φ2〉, i.e. no description of one part is complete without information about

the other. One example for two qubits is the Bell state |ψ+〉 = 1√
2

(
|0〉1|0〉2 + |1〉1|1〉2

)
where the two subsystems are perfectly correlated with each other in the sense that

the measurement of one part of the system in a suitably chosen measurement basis

(for |ψ+〉 the computational basis {|0〉, |1〉}) mediates a “collapse” of the other part

into the same state. For example, if a measurement of part 1 in the computational

basis yields |0〉1, then part 2 collapses to |0〉2, so any subsequent measurement of part

2 yields |0〉2. In other words, the measurement turns the initially entangled state into

one of the two product states |ψ1〉 = |0〉1|0〉2 or |ψ2〉 = |1〉1|1〉2 with equal probability.

The most striking aspect of this is that the measurement of one part instantaneously

affects the other part, regardless of the spatial distance between the subsystems. This

cannot be used for superluminal communication, however, because the randomness

of the measurement outcomes prevents the transmission of information by quantum

measurements alone, thus preserving a central tenet of special relativity.

The Hilbert space of a multipartite system is given by the tensor product of

the subsystems’ Hilbert spaces, i.e. H = H1 ⊗ · · · ⊗ HN , where Hi is the Hilbert

space of the i-th subsystem. Since quantum states are uniquely described only up to

normalisation and a global phase, it makes sense to introduce the projective Hilbert

space PH as the set of all unique pure quantum states. The standard metric on PH is

the Fubini-Study metric [38].

A multipartite pure quantum state |ψ〉 ∈ H is separable if and only if (iff) it can

be written as a tensor product of states from the individual subsystems:

|ψ〉 = |φ1〉 ⊗ · · · ⊗ |φN 〉 , with |φi〉 ∈ Hi ∀ i . (1.5)

States that are not separable are entangled. For mixed quantum states ρ ∈ S(H)

of a multipartite system separability is defined by the existence of a (non-unique)

convex sum of product states

ρ =
∑
j

pj ρ
j
1 ⊗ · · · ⊗ ρjN , with ρji ∈ S(Hi) ∀ i, j . (1.6)

For finite-dimensional subsystems an orthonormalised basis {|0〉, . . . , |di−1〉}i can be

chosen for each subsystem, with di denoting the dimension of Hi. A pure quantum

7



Chapter 1. Introduction

state of the composite system can then be cast as

|ψ〉 =

d1−1∑
i1=0

· · ·
dn−1∑
in=0

ai1,...,in |i1〉1 ⊗ · · · ⊗ |in〉n , (1.7)

where the ai1,...,in are complex coefficients, and j〈iA|iB〉j = δAB for all j ∈ {1, . . . , n}
and all A,B ∈ {0, . . . , dj − 1}. For brevity the basis states |i1〉1 ⊗ · · · ⊗ |in〉n of the

composite system will be abbreviated as |i1〉|i2〉 · · · |in〉, or simply |i1i2 · · · in〉. The

normalisation condition 〈ψ|ψ〉 = 1 will be implied throughout the thesis, except for a

few cases where states are easier to represent in unnormalised form and where the

normalisation does not matter.

Of particular interest in this thesis will be states whose coefficients are all real

or positive. We call a quantum state |ψ〉 of the form (1.7) real if ai1,...,in ∈ R for all

i1, . . . , in, and positive if ai1,...,in ≥ 0 for all i1, . . . , in. It should be noted that these

properties intrinsically depend on the chosen basis, and that states which are real

or positive in one computational basis (a basis made up of tensors of local bases)

generally do not exhibit this property in another basis. In turn, a state that is not

real or positive in one basis may be recast as a real or positive state by choosing

a different basis, although this is in general not possible. Only for bipartite states

it is always possible to find orthonormalised bases for the subsystems so that a

given state can be expressed as a positive state in the form (1.7). This is possible

thanks to the Schmidt decomposition of linear algebra which – applied to quantum

information – states that any pure state of a bipartite system |ψ〉 ∈ HA ⊗HB with

d = min{dim(HA),dim(HB)} can be expressed in the form

|ψ〉 =

d−1∑
i=0

αi|i〉|i〉 , with α0 ≥ . . . ≥ αd−1 ≥ 0 , (1.8)

where the non-negative numbers αi are called the Schmidt coefficients [7]. The

minimum number of non-vanishing coefficients required for the Schmidt decomposi-

tion is known as the Schmidt rank. The Schmidt decomposition and the Schmidt

rank are important tools for the analysis of bipartite states, which will become clear

in the next section.

Unfortunately, the elegant Schmidt decomposition (1.8) does not exist in the

multipartite setting, a first indication that the bipartite case is qualitatively different

from the multipartite case. Several attempts have been made to find a generalised

Schmidt decomposition, a standard form for the multipartite setting which imposes

certain restrictions on the coefficients of a given state by choosing suitable orthonor-

mal bases for all subsystems [39–43]. Here we mention the generalised Schmidt

decomposition of Carteret et al. [40] which is defined for arbitrary finite-dimensional
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1.2. Quantum entanglement

multipartite states. For the sake of simplicity, we consider n equal subsystems, each

of dimension d. In analogy to the 2-level qubit, we refer to such a d-level quantum

system as a qudit. The standard form imposes the following conditions on the

coefficients in Equation (1.7) for the n qudit case:

a i...ik︸︷︷︸
j indices

i...i = 0 ∀ j, i ∀ i < k ≤ d− 1 , (1.9a)

a(d−1)...(d−1)i︸ ︷︷ ︸
j indices

(d−1)...(d−1) ≥ 0 ∀ j, i , (1.9b)

|aii...ii| ≥ |aj1...jn | ∀ i ∀ i ≤ jr (r = 1, . . . , n) . (1.9c)

These conditions clearly do not necessarily result in a real or positive state in general,

and most multipartite states do not allow for a real or positive representation. If

the subsystems do not have equal dimensions, then the conditions are of a more

complicated form. However, Equation (1.9a) straightforwardly generalises to

a i...ik︸︷︷︸
j indices

i...i = 0 ∀ j, i ∀ i < k ≤ dj − 1 , (1.10)

where dj is the dimension of subsystem j.

A multipartite generalisation of the Schmidt rank has also been put forward, and

is commonly referred to as the tensor rank [18, 44]. This quantity has featured

prominently in some recent works, and it has been employed to find further evidence

of a qualitative difference between the bipartite and multipartite setting [45].

Two well-known multipartite states with interesting entanglement features are

the GHZ state [28] and the W state. In the general case of n qubits their form is

|GHZn〉 = 1√
2

(|00 . . . 00〉+ |11 . . . 11〉) , (1.11)

|Wn〉 = 1√
n

(|10 . . . 0〉+ |010 . . . 0〉+ . . .+ |00 . . . 01〉) . (1.12)

These two states have found a broad range of uses in quantum information science

[19]. For example, the 3 qubit GHZ state has been employed to tell Bell’s theorem

without inequalities [28], and the n-qubit GHZ state can be considered the most

non-local with respect to all possible two-output, two-setting Bell inequalities [46].

However, the GHZ state loses all its entanglement if a particle is lost, because its

one-particle reduced density matrix Tri(|GHZn〉〈GHZn|) = 1
2(|00 . . . 00〉〈00 . . . 00| +

|11 . . . 11〉〈11 . . . 11|) is a separable state. On the other hand, W states still retain a

considerable amount of entanglement after the removal of an arbitrary particle, and

it has been shown that the n-qubit W state is the optimal state for leader election

[24]. This shows that the entanglement of GHZ and W states is of a different nature,

9



Chapter 1. Introduction

and such qualitative aspects of entanglement and their characterisation will be

investigated in the next section.

1.2.3 Entanglement classes

In order to categorise different types of entanglement, it makes sense to partition

the given Hilbert space into equivalence classes4, with an operationally motivated

definition of equivalence. The most intuitive classification scheme is that of Local

Unitary (LU) equivalence. In Section 1.2.1 the effect of unitary operations on a

single qubit was outlined. When generalising this concept to an arbitrary number

of quantum particles distributed among spatially separated experimenters, then

the local application of unitary operations on each particle is referred to as an LU

operation. Such operations are both deterministic and reversible, and – from a

mathematical viewpoint – equivalent to selecting a different orthonormalised basis

for the computational representation of a given state. Therefore two LU-equivalent

states ρψ
LU←→ ρφ are expected to have precisely the same physical properties, in

particular the same entanglement. A comprehensive analysis of the equivalence

classes of n qubit pure states under LU operations has recently been achieved by

Kraus [42], and subsequently employed to find the different LU equivalence classes

of up to five qubits [43].

In order to perform quantum information tasks, it is necessary for the experi-

menters to manipulate the states of their quantum particles in more ways than by

LU operations alone. The different types of quantum operations [47] that can be

performed on a given state ρ are the following:

• unitary transformation: ρ 7−→ UρU † ,

where U is a unitary operator.

• selective projective measurement: ρ 7−→ {pi, σi} ,
i.e. the measurement outcome σi is observed with probability pi.

• non-selective projective measurement: ρ 7−→∑
i piσi ,

i.e. discarding the measurement outcome yields a mixture of all possibilities.

• addition of an ancilla system: ρ 7−→ ρ⊗ ω ,

where ω is an auxiliary quantum system (“ancilla”) added to the system.

• removal of a subsystem: ρ 7−→ TrA[ρ] ,

where subsystem A is removed from the quantum system by a partial trace.
4In mathematical terms F = {F1, . . . ,Fk} is a partition of a set G if it satisfies the conditions Fi 6= ∅

for all i, Fi ∩ Fj = ∅ for all i 6= j, and
k⋃
i=1

Fi = G. The Fi are the equivalence classes of F .
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1.2. Quantum entanglement

These different kinds of quantum evolution can all be subsumed under linear com-

pletely positive trace-preserving maps E : S(H) → S(H) with the help of Kraus

operators.

As it is typically not possible in practice to perform joint operations on spatially

separated particles, the quantum operations act locally. The experimenters are

however able to coordinate their actions by communicating with each other over a

classical channel, e.g. by telephone. This leads to the paradigm of Local Operations

and Classical Communication (LOCC) whereby quantum states are modified by

performing local operations (LO) on the subsystems and allowing the transmission of

classical communication (CC) between the parties. As seen from the list of quantum

operations above, such LOCC operations are in general irreversible. For the case of

pure states, however, it has been shown (see Corollary 1 of [48] or Theorem 4 of

[47]) that two states are LOCC-equivalent iff they are LU-equivalent. This defines a

partition of the pure Hilbert space which is equivalent to the partition generated by

LU equivalence. For two pure n qudit states LOCC equivalence is mathematically

expressed as

|ψ〉 LOCC←→ |φ〉 ⇐⇒ ∃A1, . . . ,An ∈ SU(d) : |ψ〉 = A1 ⊗ · · · ⊗ An|φ〉 , (1.13)

and by definition the LOCC equivalence of two general states (denoted as ρψ
LOCC←→ ρφ)

requires that a deterministic conversion is possible in both directions. This is a much

more stringent requirement than deterministic LOCC conversion in only one direction

(denoted as ρψ
LOCC−→ ρφ). For the pure bipartite case the latter conversions are fully

characterised by the theory of majorisation [49], which induces a partial order

with the help of the Schmidt decomposition (1.8). More precisely, the necessary

and sufficient conditions for deterministically converting one n qudit pure state into

another one are

|ψ〉 LOCC−→ |φ〉 ⇐⇒ ∀ 0 ≤ j ≤ d− 1 :

j∑
i=0

α2
i ≤

j∑
i=0

α′
2
i , (1.14)

where the {αi} and {α′i} are the Schmidt coefficients of |ψ〉 and |φ〉, respectively.

From this is can be seen that two states are LOCC-equivalent (or LU-equivalent) iff

they have the same Schmidt coefficients:

|ψ〉 LU←→ |φ〉 ⇐⇒ |ψ〉 LOCC←→ |φ〉 ⇐⇒ αi = α′i ∀ i . (1.15)

The conditions (1.14) give rise to LOCC-incomparable states which cannot be

converted into each other either way. On the other hand, there are maximally

entangled states from which all other states, pure or mixed, can be generated
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Chapter 1. Introduction

with certainty using only LOCC operations. For two d-level systems the maximally

entangled states are those that are LU-equivalent to

|Ψd〉 =
1√
d

d−1∑
i=0

|ii〉 . (1.16)

The non-existence of an analogous result for multipartite systems – due to the absence

of the Schmidt decomposition – is one of the reasons for the qualitative difference

between the bipartite and multipartite case.

As useful as the concept of LOCC equivalence is from an operational point of

view, it is of little help to categorise the wealth of inequivalent entanglement types

found in multipartite Hilbert spaces. Many attempts have been made to find further

operationally motivated classifications, and the most prominent one among these is

the equivalence under Stochastic Local Operations and Classical Communication

(SLOCC), which is identical to LOCC equivalence except that the interconversion of

two states need not be deterministic. Instead the success probability of a conversion

only needs to be non-zero. The concept of stochastic interconvertibility was first

introduced by Bennett et al. [48] and later formalised by Dür et al. [18]. SLOCC

operations are mathematically expressed as Invertible Local Operations (ILOs) [18],

and are also known as local filtering operations. In the case of pure n qudit states

the SLOCC-equivalence reads

|ψ〉 SLOCC←→ |φ〉 ⇐⇒ ∃B1, . . . ,Bn ∈ SL(d,C) : |ψ〉 = B1 ⊗ · · · ⊗ Bn|φ〉 . (1.17)

It is clear that SLOCC-equivalence implies LOCC-equivalence, and therefore the

partition of the Hilbert space into LOCC equivalence classes is a refinement5 of the

partition into SLOCC classes.

SLOCC operations have a clear operational interpretation in the sense that on
average they cannot increase the amount of entanglement, although it is possible to

obtain more entangled states with a certain probability. The latter is of importance

for experimentalists, because joint operations on multiple copies of a state are often

unfeasible, in which case SLOCC operations on a single copy are the best available

entanglement distillation strategy [41]. While SLOCC operations have the power

to dramatically increase or decrease the amount of entanglement shared between

parties, they cannot create entanglement out of nowhere or completely destroy it,

due to their local nature. In particular, it is not possible to generate entangled states

from separable states by SLOCC, even probabilistically, something that is clear from

5In the language of set theory, if A and B are two partitions of a set M , then the partition A is a
refinement of B (A ≤ B) if every element of A is a subset of some element of B. For the entanglement
classification schemes introduced here this means that LOCC ≤ SLOCC.

12



1.2. Quantum entanglement

the definition of separability.

Multiqubit entanglement has been well studied in terms of SLOCC equivalence,

in particular for a single copy of a pure n qubit state. In the 2 qubit case there exist

only two SLOCC equivalence classes, the class of separable states, and the generic

class of entangled states to which almost all states belong. In particular, any pure

entangled state can be converted into any other pure entangled state with non-zero

probability.

For 3 qubits there exist six SLOCC classes [18], namely the separable class, the

three biseparable classes AB-C, AC-B, BC-A, the class with W-type entanglement and

the generic class with GHZ-type entanglement. The canonical example of SLOCC-

inequivalent entangled states are the three qubit |GHZ3〉 and |W3〉 state. Their tensor

rank is 2 and 3, respectively [18], and the tensor rank has been shown to be an

SLOCC invariant [18, 44]. Another way to distinguish between GHZ-type and W-type

states is the 3-tangle, an entanglement measure for three qubits [18, 50]. The

3-tangle is zero not only for all states that are separable under any bipartite cut, but

even for states where this is not the case, e.g. the |W3〉 state. The only SLOCC class

with nonzero 3-tangle is that with GHZ-type entanglement, and in this sense |GHZ3〉
is said to contain genuine6 tripartite entanglement [41].

For 4 qubits the number of SLOCC classes becomes infinite, and there is no generic

class to which almost all states belong. Because of this, various attempts have been

made to find alternative and physically meaningful classification schemes tailored

for the 4 qubit case. Techniques employed for this include Lie group theory [51],

the hyperdeterminant [52], an inductive approach [53], polynomial invariants [54]

and string theory [55]. For example, Verstraete et al. [51] introduced the concept

of Entanglement Families (EFs) with the help of normal forms, and found nine

different EFs. Since every SLOCC equivalence class belongs to exactly one EF, the

SLOCC classes are a refinement of the EFs.

An important tool for the study of entanglement equivalence classes are quantities

that do not change under a set of local operations such as LU or SLOCC operations.

Such quantities are known as invariants, and they can provide information about

the type of entanglement present in a system. Examples are the Schmidt rank and

the tensor rank, which are known to be invariant under SLOCC operations.

One popular approach to find SLOCC invariants is to study polynomial invari-

ants. These are polynomials in the coefficients of pure states that remain invariant

under SLOCC operations. Such polynomial invariants are entanglement monotones

with respect to SLOCC operations [41], and they allow one to construct entanglement

6There is no universally accepted definition for the concept of “genuine” (or “true”) entanglement,
but a common theme is that most or all of the local density matrices should be maximally mixed. The
GHZ states exhibit this property, but the W states do not. Although W states are entangled over all
parties, their multipartite entanglement is of a pairwise nature, i.e. within parts of the system.
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measures [50, 56–59]. In the two and three qubit case the well-known concurrence

(also known as 2-tangle) [56] and 3-tangle [50] are special cases of polynomial invari-

ants [52]. For four and five qubits polynomial invariants have also been constructed

[57–62]. In [57, 60] the polynomial invariants were constructed from classical in-

variant theory, and the values of these invariants for the EFs [51] were derived. An

alternative approach is to employ the expectation values of antilinear operators, with

an emphasis on the permutational invariance of the global entanglement measure

[58, 59].

1.2.4 Entanglement measures

In the previous section entanglement was characterised qualitatively in the form

of equivalence classes. Now entanglement will be analysed from a quantitative

viewpoint by means of entanglement measures. These help to assess the usefulness

of given states as resources for certain quantum informational tasks, and different

entanglement measures may capture different desirable qualities of a state. For

bipartite, pure quantum states it is known that all entanglement measures are

essentially equivalent [7, 19, 63], and one can find a unique total order in the

asymptotic regime of many copies. For mixed states of bipartite systems, as well

as in the multipartite case, however, no total ordering and therefore no unique

entanglement measure exists [7, 64, 65].

An entanglement measure E : S(H) → R+ is a functional which maps the

set of density matrices acting on a Hilbert space H to non-negative numbers, and

which satisfies certain axioms. Some of the most common axioms are the following

[47, 63, 66]:

1. Separable states: E(ρ) = 0 , if ρ is separable

2. Invariance under LU: E(ρ) = E(σ) , if ρ LU←→ σ

3. Monotonicity under LOCC: E(ρ) ≥∑
i
piE(σi) , if ρ LOCC7−→

{
{pi, σi}∑

i piσi

4. Convexity: E(ρ) ≤∑
i
piE(ρi) , where ρ =

∑
i
piρi

5. Additivity: E(ρ⊗n) = nE(ρ) , for all n ∈ N

6. Strong Additivity: E(ρ⊗ σ) = E(ρ) + E(σ) , for all σ ∈ S(H)

It is natural to require that an entanglement measure be zero for non-entangled

states, and from the previous section it is clear that the measure should remain

invariant under LU. Axiom 3 is the most fundamental one, as the non-increase of

entanglement under local transformations (i.e. LOCC) [47, 63] lies at the heart of
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1.3. Symmetric states

our understanding of entanglement as a non-local resource shared between parties.

The natural extension of this axiom to SLOCC operations is that the entanglement

shall not increase on average. The fourth axiom guarantees that entanglement cannot

be increased by mixing, something that can be understood as the information loss

encountered when going from a selection of identifiable states to a mixture of those

states. Since mixing is a local operation, Axiom 4 is automatically fulfilled if Axiom 3

holds7.

Axioms 1 to 4 are regarded as the most important criteria for any entanglement

measure, and they coincide with the necessary properties of entanglement mono-

tones, as defined by Vidal [47]. Indeed, entanglement monotones derive their name

from the crucial requirement of monotonicity under LOCC.

Axioms 5 and 6 are only two of many further properties that could be required

from any well-behaved entanglement measure. Even though additivity looks like

a natural requirement for entanglement measures and is closely related to various

operational meanings [67–69], many measures lack this property. The strong ad-

ditivity, also known as full additivity, is an even more elusive property which is

featured only by very few measures, e.g. the squashed entanglement [67]. From the

definition it is clear that strong additivity implies regular additivity. The property of

(strong) additivity can not only be defined for entanglement measures, but also for

individual states: A state ρ is additive with respect to an entanglement measure E if

E(ρ⊗n) = nE(ρ) holds for all n ∈ N, and strongly additive if E(ρ⊗σ) = E(ρ) +E(σ)

for any state σ.

Many different entanglement measures have been defined, with either opera-

tional or abstract advantages in mind. We will refrain from providing an overview

here, and instead refer to the review articles [19, 70]. The single most important

entanglement measure for this thesis, the geometric measure of entanglement, will

be comprehensively reviewed in Chapter 2.

1.3 Symmetric states

Permutation-symmetric quantum states are states that are invariant under any per-

mutation of their subsystems. For an n-partite state |ψ〉 this is the case iff P |ψ〉 = |ψ〉
for all P ∈ Sn, where Sn is the symmetric group of n elements. In the n qubit case

the symmetric sector Hs ⊂ H of the Hilbert space is spanned by the n+ 1 Dicke states

7At first glance the mathematical forms of Axiom 3 and Axiom 4 seem to contradict each other,
so we stress the difference between their physical motivations: Axiom 3 describes a (non-)selective
projective measurement of a given state ρ (l.h.s.), resulting in a random measurement outcome σi or
a superposition thereof (r.h.s.). Axiom 4 starts with a selection of identifiable states ρi (r.h.s.) which
are transformed into a mixture ρ (l.h.s.), something that can be physically realised if an ancilla system
(with orthonormal basis {|i〉}) attached to the initial state is lost:

∑
i pi|i〉〈i| ⊗ ρi 7−→

∑
i piρi.
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|Sn,k〉, 0 ≤ k ≤ n, the equally weighted sums of all permutations of computational

basis states with n− k qubits being |0〉 and k being |1〉 [29, 71]:

|Sn,k〉 =

(
n

k

)−1/2 ∑
perm

|0〉|0〉 · · · |0〉︸ ︷︷ ︸
n−k

|1〉|1〉 · · · |1〉︸ ︷︷ ︸
k

. (1.18)

From a physical point of view the Dicke states are the simultaneous eigenstates of

the total angular momentum J and its z-component Jz [29, 71, 72]. Dicke states

were recently produced in several experiments [3–5, 73, 74], they can be detected

experimentally [71, 74–76], and they have been proposed for certain tasks [27].

We will abbreviate the above notation of the Dicke states to |Sk〉 whenever the total

number of qubits is clear.

A general pure symmetric state of n qubits |ψs〉 is a linear combination of the

n+ 1 orthonormalised Dicke states,

|ψs〉 =
n∑
k=0

ak|Sn,k〉 , (1.19)

with ak ∈ C. A generalisation to the qudit case is straightforward [21], with a general

symmetric state of an n qudit system being a linear combination of the Dicke states,

|Sn,k〉 =

√
k0!k1! · · · kd−1!

n!

∑
perm

|0〉 · · · |0〉︸ ︷︷ ︸
k0

|1〉 · · · |1〉︸ ︷︷ ︸
k1

· · · |d− 1〉 · · · |d− 1〉︸ ︷︷ ︸
kd−1

, (1.20)

with k = (k0, k1, · · · , kd−1), and
d−1∑
i=0

ki = n. The main focus of this thesis will however

be symmetric states of n qubits, as defined in Equation (1.19).

The theoretical and experimental analysis of symmetric states, e.g. as entangle-

ment witnesses or in experimental setups [3–6, 25, 26, 77], is valuable for a variety

of reasons. Symmetric states have found use in quantum information tasks such as

leader election [24] or as the initial state in Grover’s algorithm [27], and they could

possibly be useful for measurement-based quantum computation (MBQC) [78] be-

cause they are not too entangled for being computationally universal [79]. Symmetric

states are known to appear in the Dicke model [80], as eigenstates in various models

of solid states physics such as the Lipkin-Meshkov-Glick (LMG) model [22, 23], and

in the study of macroscopic entanglement of η-paired high Tc superconductivity [81].

Furthermore, symmetric states have been actively implemented experimentally [3–6],

and their symmetric properties facilitate the analysis of their entanglement properties

[82–87]. In experiments with many qubits, it is often not possible to access single

qubits individually, necessitating a fully symmetrical treatment of the initial state and
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1.3. Symmetric states

(a) (b) (c)

Figure 1.2: The Majorana representations of the three eigenstates (a) |1,−1〉, (b)
|1, 0〉 and (c) |1, 1〉 of a spin-1 particle are shown. By means of the isomorphism
between spin-j states and the symmetric states of 2j qubits, these are also the
Majorana representations of the three symmetric basis states of two qubits, the Dicke
states (a) |S0〉 = |00〉, (b) |S1〉 = 1√

2
(|01〉+ |10〉), and (c) |S2〉 = |11〉.

the system dynamics [71].

For these reasons symmetric states have featured prominently in recent studies

of entanglement theory, such as the characterisation of their entanglement classes

under SLOCC [82, 85, 86, 88], or the determination of their maximal entanglement

in terms of the geometric measure of entanglement [89–91].

1.3.1 Majorana representation

In classical physics, the angular momentum J of a system can be represented by a

point on the surface of the 3D unit sphere S2, which corresponds to the direction of J.

No such simple representation is possible in quantum mechanics, but Ettore Majorana

[31] pointed out that a pure state of spin-j (in units of ~) can be uniquely represented

by 2j not necessarily distinct points on S2. Given that S2 can be associated with

the Bloch sphere, it is clear that this is a generalisation of the spin-1
2 (qubit) case,

where the 2D Hilbert space is isomorphic to the unit vectors on the Bloch sphere. As

seen in Figure 1.2, the three eigenstates |1,−1〉, |1, 0〉 and |1, 1〉 of a spin-1 particle

correspond to two points being at the north pole, one at the north pole and the other

at the south pole and both of them at the south pole, respectively.

An equivalent representation can be shown to exist for permutation-symmetric

states of n spin-1
2 particles [31, 92], with an isomorphism mediating between all

states of a spin-j particle and the symmetric states of 2j qubits. For a system of n

spin-1
2 particles the eigenbasis of the square of the total spin operator S2 and its z

component Sz can be represented in the form |S,m〉, where S(S + 1)~2 and m~ are

the corresponding eigenvalues. It is the n+ 1 states from the maximum spin sector

S = n
2 that are fully permutation-symmetric, and it is those states that are identified

as the symmetric basis states, the Dicke states |Sn,k〉 ≡ |n2 , k − n
2 〉, with k = 0, . . . , n.

A general state belonging to the maximum spin sector
n/2∑

m=−n/2
am|n2 ,m〉 is therefore

equivalent to the previous definition (1.19) of symmetric states.

By means of the Majorana representation any symmetric state of n qubits |ψs〉
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can be uniquely composed, up to an unphysical global phase, from a sum over all

permutations P ∈ Sn of n undistinguishable single qubit states {|φ1〉, . . . , |φn〉}, with

Sn being the symmetric group of n elements.

|ψs〉 =
eiδ
√
K

∑
perm

|φP (1)〉 ⊗ |φP (2)〉 ⊗ · · · ⊗ |φP (n)〉 , (1.21)

with |φi〉 = cos θi2 |0〉+ eiϕi sin θi
2 |1〉 , and K = n!

∑
perm

n∏
i=1

〈φi|φP (i)〉 .

Here eiδ is a global phase, and the normalisation factor K is in general different for

different |ψs〉. The qubits |φi〉 are uniquely determined by the choice of |ψs〉 and they

determine the normalisation factor K. By means of Equation (1.21), any n qubit

state |ψs〉 can be unambiguously visualised by a multiset of n points (each of which

has a Bloch vector pointing in its direction) on the surface of S2. We call these points

the Majorana points (MPs), and the sphere on which they lie the Majorana sphere.

One nice property of the Majorana representation is that the MP distribution

rotates rigidly on the Majorana sphere under the effect of LU operations on the

subsystems. We have already seen in Section 1.2.1 that unitary operations U ∈ SU(2)

acting on a single qubit, U |φ〉 = |φ′〉, correspond to rotations of the Bloch vector

around an axis on the Bloch sphere. Applying the same single-qubit unitary operation

U on each of the n subsystems of a symmetric state |ψs〉 yields another symmetric

state |ϕs〉 by means of the map

|ψs〉 7−→ |ϕs〉 = U ⊗ · · · ⊗ U |ψs〉 , (1.22)

and from Equation (1.21) it follows that

|ϕs〉 =
eiδ
√
K

∑
perm

|ϑP (1)〉|ϑP (2)〉 · · · |ϑP (n)〉 , with |ϑi〉 = U |φi〉 ∀i . (1.23)

In other words, the MP distribution of |ϕs〉 is obtained by a joint rotation of the MP

distribution of |ψs〉 along a common axis on the Majorana sphere. Therefore the

two LOCC-equivalent states |ψs〉 and |ϕs〉 have different MPs, but the same relative
distribution (i.e., unchanged distances and angles) of the MPs [85].

To present some examples of MP distributions, we consider the three symmetric

basis states of two qubits, the Dicke states |S0〉 = |00〉, |S1〉 = 1√
2
(|01〉 + |10〉), and

|S2〉 = |11〉. Their Majorana representations, shown in Figure 1.2, are two points on

the north pole (|φ1〉 = |φ2〉 = |0〉), one on the north pole and the other on the south

pole (|φ1〉 = |0〉, |φ2〉 = |1〉), and two points on the south pole (|φ1〉 = |φ2〉 = |1〉),
respectively. While |S0〉 and |S2〉 are separable states with zero entanglement, |S1〉
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1.3. Symmetric states

is the Bell state |ψ+〉 = 1√
2
(|01〉+ |10〉), a maximally entangled state of two qubits.

This state is represented by an antipodal pair of MPs, and it is easy to verify that the

amount of bipartite entanglement directly increases with the distance between the

two MPs. For symmetric states of three and more qubits this picture is not as clear,

but one would expect that symmetric states with a high degree of entanglement are

represented by MP distributions that are well spread out over the sphere. We will

use this idea along with other symmetry arguments to look for the most entangled

symmetric states in Chapter 4.

It is important to realise that the MP states |φi〉 that make up the Majorana

representation (1.21) do not belong to a particular subsystem of the underlying

physical system. Instead, the MPs should be viewed as abstract qubit states from

which the symmetric state of a physical system can be reconstructed. In the next

section we will see that the relationship between a symmetric state and its MPs is

equivalent to the relationship between the coefficients and the zeroes of a complex

polynomial.

If the MPs of a symmetric state are known, then the explicit form of the state can

be directly calculated from Equation (1.21). On the other hand, if the MPs of a given

symmetric state |ψs〉 =
∑n

k=0 ak|Sk〉 are unknown, they can be determined by solving

a system of n+ 1 equations equivalent to Vieta’s formulas [93]:

ak =

(
n

k

) 1
2 ∑

perm

SP (1) · · · SP (k)CP (k+1) · · ·CP (n) , (1.24)

with Ci = cos θi2 , Si = eiϕi sin θi
2 .

The Majorana representation has been rediscovered several times [94, 95], and

has been put to many different uses across physics. In relation to the foundations

of quantum mechanics, it has been used to find efficient proofs of the Kochen-

Specker theorem [95, 96] and to study the “quantumness” of pure quantum states

in several respects [97, 98], as well as the approach to classicality in terms of the

discriminability of states [99]. It has also been used to study Berry phases in high

spin systems [100] and quantum chaos [94, 101], and it has been put into relation

to geometrically motivated SLOCC invariants [61]. Within many-body physics it has

been used for finding solutions to the Lipkin-Meshkov-Glick (LMG) model [22], and

for studying and identifying phases in spinor Bose-Einstein-condensates [102–105]. It

has also been used to look for optimal resources for reference frame alignment [106],

for phase estimation, and in quantum optics for the multi-photon states generated

by spontaneous parametric down-conversion [107]. Furthermore, the Majorana

representation has been employed for finding a new proof of Sylvester’s theorem

on Maxwell multiples [108], and for analysing the relationship between spherical
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designs [109] and anticoherent spin states [97]. The Majorana representation has

recently become a useful tool in studying and characterising the entanglement of

permutation-symmetric states [82, 85, 86, 88], which has interesting mirrors in

the classification of phases in spinor condensates [85, 103]. Very recently further

operational interpretations of the MP distribution have been discovered with respect

to additivity [110] and the equivalence of different entanglement measures [85].

1.3.2 Stereographic projection

The stereographic projection, a well-known concept from complex analysis [111],

describes an isomorphism between the points on the surface of the S2 sphere and

the points of the extended complex plane C = C ∪ {∞}. As seen in Figure 1.3, the

projection is mediated by rays originating from the north pole of the Riemann sphere,

thus projecting points from the surface of the sphere along rays onto the complex

plane. By definition, the north pole is projected onto the “point at infinity”. The

inverse projection from the plane onto the sphere is also possible, and if the centre

of the Riemann sphere coincides with the origin of the complex plane, as shown in

Figure 1.3(a), the inverse stereographic projection v : C→ R3 has the form

v(z) =


1

|z|2+1
(2 Re(z), 2 Im(z), |z|2 − 1) for z ∈ C

(0, 0, 1) for z =∞
(1.25)

(a)

Re
Im

z1 z2

z3

(b)
Re

Im

z1
z2

z3

Figure 1.3: An example of a stereographic projection of points on the Riemann
sphere onto the complex plane is shown for two different positions of the sphere.

The stereographic projection is well-defined as long as the sphere’s north pole lies

above the complex plane, and a frequently used alternative position for the Riemann

sphere is shown in Figure 1.3(b). Here the sphere rests on the plane, and the inverse

stereographic projection reads

ṽ(z) =


1

1
2
|z|2+2

(2 Re(z), 2 Im(z), |z|2) for z ∈ C

(0, 0, 2) for z =∞
(1.26)
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1.4. Overview of the thesis

The stereographic projection is of interest to us, because it is closely linked to the

Majorana representation of symmetric states. For a given symmetric state |ψs〉 =
n∑
k=0

ak|Sn,k〉 the coefficients ak uniquely define a function ψ(z) : C→ C known as the

the Majorana polynomial, or alternatively the characteristic polynomial, amplitude

function [112], or coherent state decomposition [94]:

ψ(z) =

n∑
k=0

(−1)k
(
n

k

) 1
2

ak z
k = A

n∏
k=1

(z − zk) . (1.27)

The Majorana polynomial represents symmetric states in terms of spin coherent

states [106], which can be seen from its definition as ψ(z) = 〈σ(z)|⊗n|ψs〉, where

z := eiϕ tan θ
2 uniquely parameterises the single qubit states |σ(z)〉 = |0〉 − z∗|1〉. The

right-hand side of the equation follows from the fundamental theorem of algebra

which states that every polynomial of degree n has n not necessarily distinct complex

roots, and can be uniquely factorised up to a prefactor A. We will call the {zk}k
the Majorana roots, and from the preceding discussion it is clear that there exist

one-to-one correspondences between the unordered set of MPs of a symmetric state,

its coefficients and the Majorana roots

MPs {|φk〉}k ⇐⇒ coefficients {ak}k ⇐⇒ Majorana roots {zk}k . (1.28)

Intriguingly, the isomorphism between the MPs and the Majorana roots is precisely

described by the (inverse) stereographic projection (1.26) if the Riemann sphere is

considered to be the Majorana sphere. The MPs |φk〉, represented on the sphere by

the end points of their Bloch vectors, are then projected onto the Majorana roots

zk ∈ C lying in the complex plane. If any MPs lie at the north pole, they are associated

with the “point at infinity”, and in this case the sum and product in Equation (1.27)

only run up to n− r, where r is the number of MPs being |0〉.

1.4 Overview of the thesis

With the recapitulation of some basic concepts of quantum information theory behind

us, we can now shift our focus towards new results. Chapter 2 through Chapter 6 are

all research chapters with original results. Nevertheless, most of these chapters are

interspersed with introductory notes on non-elementary topics in quantum informa-

tion and related fields. Among these are the introduction of the geometric measure

of entanglement (Section 2.1), measurement-based quantum computation (MBQC)

(Section 2.4.3), an overview of spherical optimisation problems (Section 3.2), the

review of symmetric entanglement classification schemes (Section 5.1), the Möbius
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transformations of complex analysis (Section 5.2.1), symmetric SLOCC invariants

(Section 5.6) and global entanglement measures (Section 5.7). In Chapter 6 several

topics in mathematics and physics that are viewed in light of results obtained in this

thesis are introduced.

An overview of the contents presented in this thesis is given in the following,

sorted by chapters. At the end of each summary of a chapter reference is made

wherever work has already been published or is the result of a collaboration.

Chapter 2: Geometric Measure of Entanglement

The geometric measure of entanglement, an entanglement measure particularly

suited for the analysis of multipartite states, is discussed in Chapter 2. After a

comprehensive review of this measure in Section 2.1, it is applied to the general

case of arbitrary quantum systems in Section 2.2, where a surprisingly high lower

bound on the number of distinct closest product states is found for maximally

entangled states in Theorem 1. In Section 2.2.2 a standard form is derived for

arbitrary n qubit states with the help of the geometric measure. This is followed by

an examination of states with positive coefficients in Section 2.3, with the conclusion

that in general the addition of complex phases to the coefficients of a positive state

leads to an increase of the entanglement. The case of symmetric n qubit states is

considered in Section 2.4, where a new proof for the upper bound on the maximal

symmetric entanglement is presented in connection with Theorem 6. This proof

has the advantage of an intuitive visualisation by means of a constant integration

volume of a spherical function, something that will be valuable for later chapters. In

Section 2.4.3 arguments are presented that due to the logarithmic scaling of their

maximum possible entanglement, symmetric n qubit states are not useful as resources

for MBQC, even in the context of stochastic approximate MBQC.

Section 2.2.2 is based on unpublished work with Seiji Miyashita, Mio Murao and

Damian Markham. The results of Section 2.4.2 and 2.4.3 were published in [89, 91].

Chapter 3: Majorana Representation and Geometric Entanglement

In Chapter 3 the Majorana representation is applied to analyse the geometric en-

tanglement of n qubit symmetric states. The first section combines the review of

some known aspects with the presentation of new results or methods. After a discus-

sion in Section 3.1.1 about the visualisation of all the information about symmetric

states and their entanglement, the well-understood properties of two and three

qubit symmetric states are reviewed from the perspective of our methodology in

Section 3.1.2. This is followed by an introduction of the concept of totally invariant

states in Section 3.1.3, where it is shown that totally invariant positive symmetric
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states are additive with respect to three distance-like entanglement measures. By

means of the Majorana representation the search for the maximally entangled sym-

metric states can be understood as a spherical optimisation problem, and because of

this, Section 3.2 reviews two classical point distribution problems, Tóth’s problem

and Thomson’s problem, and puts them in contrast to the “Majorana problem”. This

is followed in Section 3.3 by the derivation of several analytical results which connect

the coefficients of symmetric states to their Majorana representation. In particular, it

will be seen that the Majorana representation of states with real coefficients exhibits

a reflective symmetry, and that particularly strong restrictions are imposed on the

Majorana representation of positive states. Theorem 12 presents a generalisation

of the Majorana representation which is useful to simplify the analysis of many

symmetric states.

The contents of Section 3.1.2 were published in [89], and most of the results

presented in Section 3.2 and 3.3 were published in [89, 91].

Chapter 4: Maximally Entangled Symmetric States

In Chapter 4 the conjectured maximally entangled symmetric quantum states of up

to 12 qubits in terms of the geometric measure of entanglement are derived by a

combination of numerical and analytical methods. First, the methodology employed

for the search is outlined in Section 4.1, and then a comprehensive discussion of all

the solutions, accompanied with visualisations, is given in Section 4.2. Along the

way the obtained solutions are compared to those of the classical point distributions

of Tóth and Thomson. In Section 4.3 the results obtained are summarised and

interpreted from various points of view, such as entanglement scaling, positive versus

general states, operational implications and distribution patterns in the Majorana

representation.

Parts of Section 4.1 and 4.3 were published in [89], and the majority of the

results presented in Section 4.2 were published in [89, 91].

Chapter 5: Classification of Symmetric Entanglement

While the preceding chapter focused on the quantitative characterisation of the entan-

glement of symmetric states, Chapter 5 shifts the focus towards qualitative aspects.

Three different entanglement classification schemes, namely LOCC, SLOCC and the

Degeneracy Configuration, are reviewed for symmetric states in Section 5.1. It is

found that the Möbius transformations of complex analysis, reviewed in Section 5.2,

accurately describe SLOCC transformations between symmetric states, and that they

provide a straightforward visualisation of the innate SLOCC freedoms. The insights

gained from this relationship motivate the subsequent sections. In Section 5.3 repre-
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sentative states with simple Majorana representations are derived for all symmetric

SLOCC classes of up to 5 qubits, and in Section 5.4 the results gathered for the 4

qubit case are put into relation to the concept of Entanglement Families introduced

in [51]. In Section 5.5 examples are given how known properties of the Möbius

transformations can be of practical value to determine whether two symmetric states

are SLOCC-equivalent or not, and in Section 5.6 the SLOCC invariants of 4 qubit

symmetric states on the Majorana sphere are discussed. Finally, Section 5.7 compares

the maximally entangled symmetric states in terms of the geometric measure with

the extremal states of “global entanglement measures”, such as those that detect

genuine n-party entanglement.

The results presented in this chapter have not been published yet, but most of the

contents of Section 5.1 through Section 5.5 can be found in the preprint [88].

Chapter 6: Links and Connections

In Chapter 6 several smaller findings are outlined. First, in Section 6.1 our results

about maximally entangled symmetric n qubit states are compared to two different

concepts of “maximally non-classical” spin-n2 states, namely the “anticoherent” spin

states [97] and the “queens of quantum” [98]. In Section 6.2 a quantum analogue

to the concept of the Platonic duals from classical geometry is unearthed, and in

Section 6.3 the ground states of the LMG model [113–115], a spin model, are

discussed and investigated in light of the Majorana representation.

The topic of Section 6.1 was briefly touched on in [89] and presented in detail in

[91]. The results of Section 6.2 were published in [91].

Chapter 7: Conclusions

The thesis concludes with Chapter 7. First a summary of the main results obtained in

the previous chapters is given in Section 7.1. This is followed in Section 7.2 by an

outlook on some open questions, as well as new ideas or research directions that are

worthy of being tracked further.
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Chapter2
Geometric Measure of Entanglement

The first research chapter starts with an introduction to the geometric

measure of entanglement, an entanglement measure particularly suited

for multipartite states. The properties of this measure are analysed for a

variety of systems, starting with arbitrary finite-dimensional multipartite

systems, and then becoming more specific by considering n qubit systems,

positive states, and symmetric states.

Among the results found is the observation that in general the maxi-

mally entangled states have a large number of closest product states, and

that positive states tend to have have less entanglement than non-positive

states. A new proof with the advantage of a straightforward geometric

interpretation is found for the upper bound on maximal symmetric n

qubit entanglement, and an exemplary demonstration is given that sym-

metric quantum states are not expected to be MBQC resources, even in

the setting of approximate MBQC.

2.1 Introduction and motivation

The geometric measure of entanglement (GM) is an entanglement measure which

satisfies all the desired properties of an entanglement monotone [116]. It was initially

proposed for pure bipartite states by Shimony [20], and was subsequently generalised

by Barnum et al. [117] as well as Wei et al. [116]. Unlike many other entanglement

measures, the GM explicitly accommodates multipartite systems. Such a holistic

characterisation of many-body entanglement instead of considering bipartite splits of

the system (e.g. by means of the concurrence of reduced density matrices) will be

particularly valuable for the analysis of symmetric states where no part of the system

is distinguished from any other.
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Furthermore, many other entanglement measures, such as the relative entropy of

entanglement [66, 118, 119], are notoriously difficult to compute in the multipartite

setting even for pure states, in part because of the absence of the Schmidt decom-

position. In contrast to this, the GM allows for a comparatively easy calculation,

and it will be seen that for symmetric states the computational complexity is further

reduced.

The GM has found applications in several fields, including signal processing, par-

ticularly in the fields of multi-way data analysis, high order statistics and independent

component analysis (ICA), where it is known under the name rank one approxima-
tion to high order tensors [120–125]. In the area of quantum phase transitions the

GM has been used to analyse the LMG model [23] as well as other spin models

[126–128]. The survival of entanglement in thermal states was studied with the

GM [129], and in quantum information theory the measure has been employed to

derive the generalised Schmidt decomposition of Carteret et al. [40] and for the

study of entanglement witnesses [83, 116]. On top of this, the measure has a variety

of operational interpretations, including the usability of initial states for Grover’s

algorithm [130, 131], additivity of channel capacities [132] and classification of

states as resources for MBQC [17, 79, 133]. In state discrimination under LOCC the

role of entanglement in blocking the ability to access information locally is strictly

monotonic – the higher the geometric entanglement, the harder it is to access in-

formation locally [134]. The reverse does not hold, i.e. less entanglement does not

necessarily make discrimination easier.

The GM is a distance-like entanglement measure, which means that it assesses the

entanglement in terms of the “remoteness” of the given state from the set of separable

states. In the case of the GM this remoteness is expressed by the maximal overlap of

a given pure multipartite state |ψ〉 with all pure product states [20, 116, 117], which

can also be defined as the geodesic distance with respect to the Fubini-Study metric

[38]. Here we present the GM in the inverse logarithmic form1, because this allows

for an easier comparison with related entanglement measures and because it has

stronger operational implications e.g. for channel capacity additivity [132] or the

(strong) additivity [110, 116, 135].

Eg(|ψ〉) = min
|λ〉∈HSEP

− log2|〈ψ|λ〉|2 = − log2|〈ψ|Λ〉|2 . (2.1)

This entanglement measure satisfies Axioms 1 to 4 introduced in Section 1.2.4, and

additionally the values of Eg are strictly positive for all entangled states. Although

1There are different definitions of the geometric measure in the scientific literature, with the two
most common ones being EG(|ψ〉) = 1− |〈ψ|Λ〉|2, as defined in [116], and Eg(|ψ〉) = − log2|〈ψ|Λ〉|2,
introduced in [21]. With the exception of Section 2.4.3, where EG is more useful for comparison with
the literature, we will use Eg throughout this thesis.
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not additive in general, it is known that for some classes of states this measure is

additive or even strongly additive. The definition of the GM can be viewed as an

optimisation problem in the sense that one looks for the best approximation of an

entangled state |ψ〉 by a product state |λ〉, i.e. a state with zero entanglement. The

product state which has maximal overlap with |ψ〉 is denoted by |Λ〉 ∈ HSEP, and will

be referred to as the closest product state (CPS). It should be noted that a given

|ψ〉 can have more than one CPS. Indeed, it will be seen in Theorem 1 that some

states can have a large number of distinct CPSs.

For bipartite systems the optimisation problem (2.1) is trivial if the given state |ψ〉
is provided in its Schmidt decomposition (1.8), because |00〉 is a CPS [40, 136], yield-

ing the geometric entanglement Eg(|ψ〉) = − log2 α
2
0. For the maximally entangled

two qudit states (1.16) this gives Eg(|Ψ〉) = log2 d.

Although defined for pure states, the GM can be extended to mixed states by

means of a convex roof construction [70],

Eg(ρ) = min
{pi,|ψi〉}

∑
i

piEg(|ψi〉) , (2.2)

over all decompositions of ρ into pure states ρ =
∑

i pi|ψi〉〈ψi|. This minor deficiency

of the GM – the absence of a generic definition for mixed states – does not need to

concern us, because we will focus on the entanglement of pure states2.

Due to its compactness, the pure Hilbert space of a finite-dimensional system (e.g.

n qudits) always contains at least one maximally entangled state |Ψ〉 with respect

to the GM, and to each such state relates at least one CPS. The task of determining

maximal entanglement can therefore be formulated as a max-min problem, with the

two extrema not necessarily being unambiguous:

Emax
g = max

|ψ〉∈H
min
|λ〉∈HSEP

− log2|〈ψ|λ〉|2

= max
|ψ〉∈H

− log2|〈ψ|Λ(ψ)〉|2 = − log2|〈Ψ|Λ(Ψ)〉|2 .
(2.3)

Werner et al. [132] have defined the function G(|ψ〉) = max
|λ〉∈HSEP

|〈ψ|λ〉| = |〈ψ|Λ〉| as

the injective tensor norm, a quantity that is known as the maximal probability of

success in Grover’s search algorithm [12], and which has been used to define an

operational entanglement measure, the Groverian entanglement3 [130, 131]. Note

that G2 is simply the fidelity between the states |ψ〉 and |Λ〉, so Eg can be viewed

as the negative logarithm of a fidelity [7, 137, 138]. Because of the relationship
2Pure states usually carry more entanglement than mixed states, and it is believed that the maximally

entangled states can be found among pure states. At least for the subset of symmetric states the search
for the maximally entangled state in terms of the GM can be restricted to pure states, because the
maximally entangled symmetric state is pure [90].

3The Groverian measure is in fact identical to EG = 1− |〈ψ|Λ〉|2, up to a square operation.
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Eg = − log2G
2, and because f(x) = − log x2 is a strictly monotonic function, the

task of finding the maximally entangled state is equivalent to solving the min-max

problem

min
|ψ〉∈H

G(|ψ〉) = min
|ψ〉∈H

max
|λ〉∈HSEP

|〈ψ|λ〉| . (2.4)

The geometric measure Eg has close links to other distance-like entanglement

measures, namely the relative entropy of entanglement ER [66, 119] and the loga-

rithmic robustness of entanglement ERob = log2(1 +R), where R is the usual global

robustness of entanglement [139, 140]. Between these measures the inequalities

Eg(|ψ〉) ≤ ER(|ψ〉) ≤ ERob(|ψ〉) (2.5)

hold for all pure states [21, 83, 134, 139]. These inequalities do not hold for mixed

states4, but a generalisation is possible by defining Ẽg(ρ) := Eg(ρ) − S(ρ), where

S(ρ) = −Tr(ρ log ρ) is the von Neumann entropy, which is zero for all pure states:

Ẽg(ρ) ≤ ER(ρ) ≤ ERob(ρ) . (2.6)

For pure states the relationship (2.5) implies that the GM is a lower bound for both

the relative entropy of entanglement and the logarithmic robustness of entanglement.

For stabiliser states (e.g. GHZ state), Dicke states (e.g. W state), permutation-

antisymmetric basis states [83, 134, 143] and symmetric states with totally invariant
MP distributions [85] the three distance-like entanglement measures coincide:

Eg = ER = ERob . (2.7)

This equivalence is intriguing because the three measures have different interpreta-

tions. As an entropic quantity, ER has information theoretic implications, while ERob

measures the resistance of entanglement against arbitrary noise.

Next we consider the geometric entanglement of the two paradigmatic n qubit

states of Equation (1.11), the GHZ state and W state. The set of their CPSs are

|ΛGHZ〉 = {|00 . . . 00〉, |11 . . . 11〉} , (2.8)

|ΛW〉 =
{(√

n−1√
n
|0〉+ eiϕ 1√

n
|1〉
)⊗n | ϕ ∈ [0, 2π)

}
, (2.9)

From this it can be seen that the GHZ state has two different CPSs, while the W state

has a one-parametric continuum of CPSs. The amount of geometric entanglement

4A counterexample is the Smolin state [30], a bound entangled mixed positive symmetric state,
which has Eg = 3 [135, 141], but ER = ERob = 1 [135, 142]. Its von Neumann entropy is S = 2,
yielding Ẽg = Eg − S = 1 [135].
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follows as

Eg(|GHZn〉) = 1 , (2.10)

Eg(|Wn〉) = log2

(
n
n−1

)n−1
. (2.11)

For the GHZ state the amount of geometric entanglement is 1, regardless of the num-

ber of qubits. On the other hand, the entanglement of the W state goes asymptotically

towards log2(e) as n→∞. For n ≥ 3 the GHZ state has less geometric entanglement

than the W state, a property not exhibited by other entanglement measures.

Next we will briefly review the known upper and lower bounds on the maximal

possible amount of geometric entanglement for n qubit states. It should be kept in

mind, however, that the maximally entangled state and its amount of entanglement

depends on the chosen entanglement measure [70], and therefore different entangle-

ment measures may not only yield different values for the maximal entanglement,

but also different maximally entangled states.

For the general case of pure n qubit states the upper bound Eg(|ψ〉) ≤ n − 1

on the geometric entanglement has been derived in [144]. Although no states of

more than two qubits reach this bound [144], most n qubit states come close. For

n > 10 qubits the inequality Eg > n− 2 log2(n)− 3 holds for almost all states [79],

something that makes the overwhelming majority of states too entangled to be useful

for MBQC. Additionally, Zhu et al. recently showed that almost all multipartite pure

states are nearly maximally entangled with respect to the GM [135], and this implies

that MBQC resources must be considerably less entangled than most states. For

example, the entanglement of 2D cluster states (a well-known resource for MBQC)

consisting of n qubits was found to be Eg = n
2 [143].

2.1.1 Symmetric states

Here we will briefly review some known results about permutation-symmetric states

with respect to the GM. Firstly, the definition of the GM (2.1) suggests that the overlap

of a symmetric state |ψs〉 with a product state will be maximal if the product state

is also symmetric. This straightforward conjecture has been actively investigated

[21, 83], but a proof is far from trivial. After some special cases were proven

[145, 146], Hübener et al. [84] were able to give a proof for the general case of pure

symmetric states5. They showed that for n ≥ 3 qudits the CPSs of a pure symmetric

state are necessarily symmetric, thus greatly reducing the complexity of finding the

5One could ask whether this result also holds for translationally invariant states (which appear in
spin models), but this is not the case. A trivial counterexample is the state |ψ〉 = 1√

2
(|0101〉+ |1010〉),

which is LU-equivalent to the GHZ state and which has the two non-symmetric closest product states
|0101〉 and |1010〉 [84].
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CPSs and the entanglement of symmetric states. A generalisation of this result to

mixed symmetric states was recently achieved by Zhu et al. [135]. Pure symmetric

product states of n qubits can be written as |Λs〉 = |σ〉⊗n with only one single-qubit

state |σ〉. Therefore every CPS |Λs〉 = |σ〉⊗n of a multi-qubit symmetric state |ψs〉 can

be visualised on the Majorana sphere by the Bloch vector of |σ〉, and in analogy to

the MPs we refer to |σ〉 as a closest product point (CPP) of |ψs〉.

For positive symmetric states, i.e. states that are symmetric as well as positive, it

is known that they have at least one CPS that is positive symmetric itself [145, 146].

However, while each CPS of a positive symmetric state is necessarily symmetric for

n ≥ 3 qudits [84], it need not be positive, and counterexamples for this will appear

in Chapter 4.

Upper and lower bounds on the maximal geometric entanglement of n qubit

states were already reviewed, with the observation that Eg scales linearly with n.

We will now look at the same question for symmetric states, i.e. how does the

entanglement of the maximally entangled symmetric n qubit state scale?

In order to derive a simple lower bound, consider the Dicke states introduced in

Equation (1.18). For a given Dicke state |Sn,k〉 with 0 ≤ k ≤ n it is known [21, 116]

that any of the states

|Λ〉 =
(√

n−k
n |0〉+ eiϕ

√
k
n |1〉

)⊗n
, (2.12)

with ϕ ∈ [0, 2π), is a CPS. With this the geometric entanglement of |Sn,k〉 can be

calculated to be

Eg(|Sn,k〉) = log2

((
n
k

)k( n
n−k

)n−k(
n
k

) )
. (2.13)

From this formula it can be seen that the maximally entangled Dicke state is |Sn,n
2
〉

for even n and the two equivalent states |Sn,bn
2
c〉 and |Sn,dn

2
e〉 for odd n. Using the

Stirling approximation n! ∼
√

2πn(ne )n, the asymptotic amount of entanglement of

the maximally entangled n qubit Dicke state for large n is found to be

EDicke
g ≈ log2

√
nπ
2 . (2.14)

In general the maximally entangled symmetric state of n qubits is a superposition

of Dicke states, so Equation (2.14) is a lower bound on the maximal symmetric

entanglement.

An upper bound on the GM for symmetric n qubit states has been derived from

the separable decomposition of the identity on the symmetric subspace (denoted
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1Symm), see e.g. [147], ∫
S2

(|θ〉〈θ|)⊗nω(θ) =
1

n+ 1
1Symm , (2.15)

where ω denotes the uniform probability measure over the unit sphere S2 of nor-

malised single qubit vectors. It is easy to see that G(|ψ〉)2 = max
ω∈SHSEP

Tr(ω|ψ〉〈ψ|) ≥
1

n+1 . Hence, the entanglement of a symmetric n qubit state |ψs〉 is bounded from

above by

Eg(|ψs〉) ≤ log2(n+ 1) . (2.16)

From Equation (2.14) and (2.16) one can see that the maximal symmetric entangle-

ment scales logarithmically with the number of qubits. This is a qualitative departure

from the linear scaling behaviour observed in general n qubit states.

2.2 Results for general states

2.2.1 Closest product states of the maximally entangled state

We will now show that for systems with arbitrary dimensions and an arbitrary

number of parties the maximally entangled states exhibit a large number of CPSs.

For the more specific case of n qudits (d-level systems) it will follow that there

are at least nd pairwise linearly independent CPSs |Λ1〉, |Λ2〉, . . . , |Λk〉 whose span

yields the full Hilbert space H. The set of CPSs itself does not form a vector space

in general, because linear combinations of product states are usually not product

states themselves. The idea of the proof is that for any state with less than nd

distinct CPSs it is possible to find an explicit variation of the state which increases its

geometric entanglement. The main ingredient of the proof is the multipartite Schmidt

decomposition of Carteret et al. [40] which was already introduced in Section 1.2.2.

Theorem 1. Let |Ψ〉 ∈ H = H1 ⊗ · · · ⊗ Hn be a normalised pure state of an n-partite
system with finite-dimensional subspaces dim(Hi) = di ≥ 2, and let Λ ⊂ H be the set of
CPSs of |Ψ〉. If |Ψ〉 is maximally entangled with respect to the GM, then span(Λ) = H.

In particular, there exist at least dim(H) =
n∏
i=1

di pairwise linearly independent CPSs

|Λ1〉, . . . , |Λk〉.

Proof. Let us assume that |Ψ〉 is maximally entangled, but U := span(Λ) 6= H. One

can then use the orthogonal complement V := U⊥ = {|v〉 ∈ H : 〈v|u〉 = 0 ∀u ∈ U} of

U , with 0 < dim(V ) < dim(H), to write H as an internal direct sum of two complex

vector spaces: H = U ⊕ V . Taking an arbitrary nonzero vector |ζ〉 ∈ V , we define
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the variation

|ψ(ε)〉 := (1− ε)|Ψ〉+ ε|ξ〉 , with ε > 0 and |ξ〉 := 2
〈Ψ|ζ〉+〈ζ|Ψ〉 |ζ〉 . (2.17)

Obviously lim
ε→0
|ψ(ε)〉 = |Ψ〉, and 〈ψ(ε)|ψ(ε)〉 = 1 + O(ε2). In the following |ψ(ε)〉

can be considered to be normalised, because second order variations play no role

in subsequent calculations and can thus be ignored. Since |ξ〉 ∝ |ζ〉 it follows that

|ξ〉 ∈ V and thus 〈ξ|Λi〉 = 0 for all i. Writing f(ε) := max
|λ〉∈SEP

|〈ψ(ε)|λ〉|, we will show

that f(ε) < f(0) for sufficiently small, but nonzero ε and therefore |Ψ〉 cannot be

maximally entangled. Because we consider infinitesimal variations, it suffices to

investigate gε(λ) := |〈ψ(ε)|λ〉| near the global maxima |λ〉 = |Λi〉 of g0(λ). It will turn

out that the value of gε consistently decreases in the neighbourhood of each |Λi〉 as ε

is turned on. Note that the value of gε(λ) may increase near its non-global maxima,

but this is not of concern to us, because the variation can be chosen sufficiently small,

as seen in Figure 2.1.

|λ〉
|Λ1〉 |Λ2〉

gε(λ)

max
|λ〉∈SEP

gε(λ)

ε = 0
ε 6= 0

Figure 2.1: Schematic representation of the change in gε(λ) as ε is turned on. For
sufficiently small ε only the areas near the CPSs of |Ψ〉 need to be considered in order
to determine the largest value of gε(λ). The blue curve representing ε 6= 0 attains
only one global maximum, which lies in the vicinity of |Λ1〉.

In the following we will choose an arbitrary |Λi〉 – denoted as |Λ〉 – and show

that gε(λ) = |〈ψ(ε)|λ〉| decreases near |λ〉 = |Λ〉. This procedure can be performed

for each |Λi〉, thus proving that |ψ(ε)〉 is more entangled than |Ψ〉. Note that even

though the following calculations rely on a basis that depends on the chosen |Λi〉,
the variation |ψ(ε)〉 of Equation (2.17) is independent of any basis, and thus |ψ(ε)〉 is

the same for each |Λi〉.
In the proof of Theorem 2 of [40] the factorisable orthonormal basis was chosen

in a way so that the state |λ〉 = |00 · · · 00〉 is a maximum of the overlap function

g(λ) = |〈ψ|λ〉|. Since the choice of this maximum is arbitrary, this means that there

exists a basis so that |Λ〉 = |00 · · · 00〉 is a CPS, and that the coefficients ai1,...,in of the

state |Ψ〉 (cf. Equation (1.7)) satisfy the conditions outlined in Theorem 2 of [40]. In
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particular, 〈Ψ|Λ〉 = a00···00, and the following special case of Equation (1.10) holds:

a00...0k︸ ︷︷ ︸
j indices

0...00 = 0 ∀ 1 ≤ j ≤ n ∀ 1 ≤ k ≤ dj − 1 . (2.18)

Arbitrary variations of |Λ〉 = |00 · · · 00〉 can be defined as follows:

|λ(δ)〉 = |δ1〉 ⊗ |δ2〉 ⊗ . . .⊗ |δn〉 , with (2.19)

|δj〉 = (1− δj0)|0〉+ δj1|1〉+ . . .+ δjdj−1|dj − 1〉 ∀j .

Here the δji are small complex-valued variations that are independent from each

other with the only restriction being the n normalisation conditions 〈δj |δj〉 = 1. The

variation |λ(δ)〉 remains a product state, and it satisfies lim
δ→0
|λ(δ)〉 = |Λ〉 as well as

〈λ(δ)|λ(δ)〉 = 1.

We will proceed to show that |〈ψ(ε)|λ(δ)〉| < |〈Ψ|Λ〉| in the entire neighbourhood

of δ = 0 for small but nonzero values of ε. For this purpose we can ignore any terms

of order O(ε2), O(δ2), O(εδ), and higher. From Equation (2.17), (2.18), (2.19) and

〈ξ|Λ〉 = 〈ξ|00 · · · 00〉 = 0 it follows that

〈ψ(ε)|λ(δ)〉 =(1− ε)〈Ψ|λ(δ)〉+ ε〈ξ|λ(δ)〉 (2.20a)

=(1− ε)

a00...00 −

 n∑
j=1

dj−1∑
i=1

δji a00...0i︸ ︷︷ ︸
j indices

0...00

+O(δ2)


+ ε〈ξ|

[
(1− δ1

0)|0〉 ⊗ . . .⊗ (1− δn0 )|0〉
]

+O(εδ) (2.20b)

≈(1− ε)a00...00 + ε〈ξ|00 · · · 00〉 = (1− ε)〈Ψ|Λ〉 , (2.20c)

and therefore |〈ψ(ε)|λ(δ)〉| ≈ (1− ε)|〈Ψ|Λ〉| < |〈Ψ|Λ〉|.

For the special case of qubit systems (d1 = . . . = dn = 2) Equation (2.18) directly

follows from Theorem 2 (which will be introduced in the following section) without

the need to invoke the generalised Schmidt decomposition of Carteret et al. [40]

in the proof. Furthermore, it is straightforward to adapt Theorem 1 to the case of

symmetric states. This will be done in Corollary 5 in Section 2.4.

Given a maximally entangled state, is the set of distinct CPSs finite or infinite?

And if it is infinite, can it be parameterised in some way? Theorem 1 only postulates

a finite number of distinct CPSs, but Tamaryan et al. [148, 149] noticed that some

highly entangled n qubit W-type states have a continuous one-parametric range of

closest separable states. For the W-state itself this can be easily seen from its Majorana

representation because the set of CPPs forms a horizontal circle on the Majorana

sphere. It remains interesting to see whether such a continuous range of CPSs also

exists for a larger number of particles. This question will be reviewed in Section 4.3.3
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in light of results gained in later chapters.

Theorem 1 and its proof could potentially be employed for numerical algorithms

to determine the maximally entangled states of arbitrary finite-dimensional mul-

tipartite systems. In particular, Equation (2.17) provides an explicit variation for

deterministically increasing the entanglement. Furthermore, it is seen from Equa-

tion (2.20c) that in first order the value of gε(λ) decreases near each |λ〉 = |Λi〉 by

the same factor, namely (1− ε). This is important to ensure that during successive

variations the amount of CPSs does not decrease (cf. Figure 2.1). One possible

shortcoming of an algorithm based on Theorem 1 is that span(Λ) = H is a necessary,

but not sufficient condition for maximal entanglement. In other words, the algo-

rithm may terminate at a state |Ψ〉 that is not maximally entangled, and because of

span(Λ) = H there is no possibility to make further variations (2.17) to increase the

amount of entanglement. Even if the algorithm terminates at a state with a high (but

non-maximal) amount of entanglement, the result would be of little use, because it is

known [135] that almost all multipartite pure states are nearly maximally entangled

with respect to the GM as well as relative entropy of entanglement. To find a highly

entangled state it would thus be easier to simply pick a random state. On the other

hand, it is conceivable that the algorithm described above could be suitably adapted

so that it terminates at maximally entangled states.

2.2.2 Standard form of coefficients

The generalised Schmidt decomposition of Carteret et al. [40] for multipartite states

was already mentioned in the introductory Section 1.2.2. Here I present a similar

standard form for the coefficients of n qubit states that I derived in collaboration

with Seiji Miyashita and Mio Murao. I was unaware of the former work in [40]

while doing so, and there are similarities between the two forms. The following

Theorem 2 can be understood as a special case of the standard form in [40] with

weaker implications on the coefficients. It is nevertheless interesting, because our

proof is different, and because we make the connection to the GM more explicit.

Consider an n qubit state |ψ〉 written in the notation of (1.7). The state has

at least one CPS, and by choosing the computational basis accordingly, we can set

|Λ〉 = |00 . . . 0〉 to be a CPS. The injective tensor norm (which determines the amount

of geometric entanglement) is then G(|ψ〉) = |〈ψ|00 . . . 0〉| = |a00...0|, i.e. the amount

of entanglement of |ψ〉 is given by the first coefficient a00...0. By means of the global

phase this coefficient can be taken to be positive.

Theorem 2. For every pure n qubit state |ψ〉 one can choose a computational basis with
the notation of (1.7) in which |Λ〉 = |0〉⊗n is a CPS, the coefficient a00...0 is positive,
and the following conditions hold:
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• For 2 qubits

a10 = a01 = 0 (2.21a)

a2
00 ≥ |a11|2 . (2.21b)

• For 3 qubits

a100 = a010 = a001 = 0 (2.22a)

a2
000 ≥ |a110|2 (2.22b)

a2
000 ≥ |a101|2 (2.22c)

a2
000 ≥ |a011|2 (2.22d)

a3
000 − 2|a110a101a011|−
a000(|a110|2 + |a101|2 + |a011|2) ≥ 0 , (2.22e)

• For n qubits

a{1} = 0 (2.23a)

a2
00...0 ≥ |a{11}|2 (2.23b)

a3
00...0 − 2 |a{110}a{101}a{011}|−

a00...0(a{110} + a{101} + a{011}) ≥ 0 , (2.23c)

where a{1} stands for any of the n coefficients a10...0 , a01...0 , . . . , a0...01

a{11} stands for any of the
(
n
2

)
coefficients a110...0 , a101...0 , . . . , a0...011 ,

and {a{110} , a{101} , a{011}} can be any of the
(
n
3

)
different tuples

{a1100...0 , a1010...0 , a0110...0} ,
{a11000...0 , a10010...0 , a01010...0} ,

...

{a0...0110 , a0...0101 , a0...0011} .

Proof. The possibility of finding a computational basis in which |Λ〉 = |0〉⊗n is a CPS

and a00...0 is positive was already explained, so we only need to verify the conditions

on the other coefficients. For this we consider the first and second partial derivatives

of the overlap function g(λ) = |〈ψ|λ〉| around the point of the maximum |Λ〉 = |0〉⊗n.

We start with the 2 qubit case. Let |ψ〉 = (a00 a01 a10 a11)T be the given state in
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an appropriate basis. A general product state (up to a global phase) can be written as

|λ〉 =

(√
1− b21
b1 eiβ1

)
⊗
(√

1− b22
b2 eiβ2

)
=


√

1− b21
√

1− b22
b1
√

1− b22 eiβ1√
1− b21 b2 eiβ2

b1b2 ei(β1+β2)

 , (2.24)

with b1, b2 ∈ [0, 1] and β1, β2 ∈ [0, 2π). Expanding b1, b2 by a Taylor series around

|Λ〉 = |00〉 gives

|00〉+ δ|00〉 =


1− 1

2(δb21 + δb22)

δb1eiβ1

δb2eiβ2

δb1δb2ei(β1+β2)

 , and (2.25)

|〈ψ|
(
|00〉+ δ|00〉

)
| =|a00 − 1

2a00(δb21 + δb22) + a∗01δb1eiβ1

+ a∗10δb2eiβ2 + a∗11δb1δb2ei(β1+β2)| . (2.26)

|〈ψ|λ〉| must have a maximum at |Λ〉 = |00〉, so the first partial derivatives of Equa-

tion (2.26) with respect to b1 and b2 must be zero. This yields a01 = a10 = 0. With

the freely variable β1, β2 chosen s.t. a11ei(β1+β2) ∈ R, Equation (2.26) becomes

a00 − 1
2a00(δb21 + δb22) + |a11|δb1δb2 . (2.27)

The Hessian Matrix of the second partial derivatives with respect to b1 and b2 is then

H =

(
−a00 |a11|
|a11| −a00

)
. (2.28)

At the maximum |Λ〉 = |00〉 the Hessian Matrix must be negative semidefinite [150].

This is equivalent to the conditions

a00 > 0 and a2
00 ≥ |a11|2 . (2.29)

Calculations for higher (n ≥ 3) qubit numbers run analogously. For the general n

qubit case the Equations (2.23a) are obtained by setting the first partial derivatives
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to zero. The second partial derivatives give rise to an n× n Hessian Matrix

H =



−a00...0 ã110...0 ã101...0 · · · ã100...1

ã110...0 −a00...0 ã011...0 · · · ã010...1

ã101...0 ã011...0 −a00...0 · · · ã001...1

...
...

...
. . .

...

ã100...1 ã010...1 ã001...1 · · · −a00...0


, (2.30)

with ã110...0 = Re
[
a110...0eiβ1+β2

]
, ã101...0 = Re

[
a101...0eiβ1+β3

]
, and so on. Consider-

ing only the 3 × 3 leading principal minor (the top left 3 × 3 submatrix) of H, we

find that by suitably choosing the three variables β1, β2, β3 as

β1 = 1
2(−α110...0 − α101...0 + α011...0) , (2.31a)

β2 = 1
2(−α110...0 + α101...0 − α011...0) , (2.31b)

β3 = 1
2(+α110...0 − α101...0 − α011...0) , (2.31c)

where αijk... is the phase of aijk... (i.e. aijk... = |aijk...|eiαijk...), we obtain

H3×3 =

−a00...0 |a110...0| |a101...0|
|a110...0| −a00...0 |a011...0|
|a101...0| |a011...0| −a00...0

 . (2.32)

The negative semidefinity of H results in necessary conditions for all leading principal

minors. The 2 × 2 and 3 × 3 leading principal minors can be taken from H3×3 of

Equation (2.32), and they yield the first inequality in (2.23b) and (2.23c), respec-

tively. Since |Λ〉 = |0〉⊗n is symmetric, the indices of the qubits are interchangeable,

thus giving rise to all the permutations incorporated in (2.23b) and (2.23c).

For two qubits the conditions (2.21) directly lead to a set of maximally entangled

states |φ〉 = 1√
2

(
|00〉+ eiϕ|11〉

)
with a00 = 1√

2
, and hence Eg = 1. For three and

more qubits, however, it is not easy to locate the maximally entangled states. This is

because the function g(λ) = |〈ψ|λ〉| has in general several maxima, and because the

conditions of Equation (2.23) were derived only from the property that |Λ〉 = |0〉⊗n
is a local maximum. Therefore, given a state |ψ〉 that satisfies the conditions (2.23),

we cannot be sure that |Λ〉 = |0〉⊗n is a CPS (i.e. global maximum). For example,

the arbitrarily weakly entangled state
√
ε|000〉 +

√
1− ε|111〉, ε → 0 satisfies the

conditions (2.22), because |λ〉 = |000〉 is a local maximum of g(λ), even though the

global maximum is |Λ〉 = |111〉. This simple example shows that already the pure 3

qubit case exhibits a much more diverse structure of the overlap function g(λ) than

the bipartite one.
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Theorem 2 provides necessary conditions for |Λ〉 = |0〉⊗n being a CPS, and can

therefore be considered as a special case of the generalised Schmidt decomposition

of Carteret et al. [40]. This can be most easily seen by comparing Equation (2.23a)

and (2.23b) to Theorem 1 of [40]. One difference between the theorems is that we

make the connection to the CPS and thus the GM explicitly clear. In [40] the fact

that |Λ〉 = |0〉⊗n is a maximum of g(λ) is touched upon only in the proof, and this

maximum is not required to be global.

2.3 Results for positive states

Positive states are particularly easy to treat with respect to the GM due to their

absence of complex phases in their coefficients. Perhaps the most intriguing result in

this respect is that all positive states are strongly additive with respect to the GM6,

whereas almost all other states lack this property, shown by Zhu et al. [135].

Here we prove two results, namely that positive states have positive CPSs, and

that positive states generally have less entanglement than non-positive states. The

proofs of these two findings are similar to each other.

Lemma 3. Every pure state |ψ〉 of a finite-dimensional system that is positive with
respect to some computational basis has at least one positive CPS in that basis.

Proof. Picking any computational basis in which the coefficients of |ψ〉 are all positive,

we denote the orthonormal basis of subsystem j with {|ij〉}, ij = 0, . . . , dj − 1, and

can write the state as |ψ〉 =
∑
i ai|i1〉 · · · |in〉, with i = (i1, . . . , in) and ai ≥ 0 for all i.

We pick one CPS of |ψ〉 and write it as |Λ〉 =
⊗

j |σj〉, where |σj〉 =
∑

ij
bjij |ij〉 (with

bjij ∈ C) is the state of subsystem j. Now define a new normalised product state as

|Λ+〉 =
⊗

j |σ+
j 〉, where |σ+

j 〉 =
∑

ij

∣∣∣bjij ∣∣∣ |ij〉. Because of |〈ψ|Λ+〉| = ∑i ai
∏
j

∣∣∣bjij ∣∣∣ ≥∣∣∣∑i ai
∏
j b
j
ij

∣∣∣ = |〈ψ|Λ〉|, the positive state |Λ+〉 is also a CPS of |ψ〉.

This result, which I published together with Damian Markham and Mio Murao in

[89], was independently found by Zhu et al. [135]. Lemma 3 asserts that positive

states have at least one positive CPS, but the existence of non-positive CPSs is not

ruled out. Most positive states have only one CPS (which is necessarily positive),

but it is not difficult to find examples of positive states with non-positive CPSs.

For example, one of the CPSs of the positive Bell state |ψ〉 = 1√
2

(|01〉+ |10〉) is

|Λ〉 = 1
2 (|0〉+ i|1〉)⊗ (|0〉+ i|1〉), and many more examples will appear in Chapter 4.

A statement analogous to Lemma 3 does not hold for real states, i.e. there exist

real states that have no real CPS.
6The geometric measure can be additive only in the logarithmic form Eg defined in Equation (2.1).

The alternative definition EG used in [116] does not exhibit additivity properties.
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The next theorem asserts that the amount of geometric entanglement of multipar-

tite states of any dimension is in general higher for phased states, i.e. states whose

coefficients are not restricted to positive values in a given computational basis. For

this purpose we define the corresponding positive state |ψ+〉 =
∑

i |ai| |i〉 of a given

state |ψ〉 =
∑

i ai|i〉 to be the state that is obtained from |ψ〉 by removing the complex

phases from all coefficients, and we call |ψ+〉 the corresponding non-phased7 state.

Note that |ψ+〉 automatically inherits the normalisation of |ψ〉, and that |ψ+〉 subtly

depends on the basis in which |ψ〉 is represented.

Theorem 4. Every pure state |ψ〉 of a finite-dimensional system contains at least the
same amount of geometric entanglement as the corresponding non-phased state |ψ+〉,
i.e. Eg(|ψ〉) ≥ Eg(|ψ+〉).

Proof. Using the same notation as in the proof of Lemma 3, we write the given

state as |ψ〉 =
∑
i ai|i1〉 · · · |in〉, with i = (i1, . . . , in), and the corresponding non-

phased state as |ψ+〉 =
∑
i |ai| |i1〉 · · · |in〉. We take one of the CPSs of |ψ〉 and

denote it as |Λ〉 =
⊗

j |σj〉, where |σj〉 =
∑

ij
bjij |ij〉 is the state of subsystem j. The

corresponding non-phased state of |Λ〉 is a normalised product state with positive

coefficients |Λ+〉 =
⊗

j |σ+
j 〉, with |σ+

j 〉 =
∑

ij

∣∣∣bjij ∣∣∣ |ij〉. Using the following inequality

∣∣〈ψ+|Λ+〉
∣∣ =

∑
i

|ai|
∏
j

∣∣∣bjij ∣∣∣ ≥
∣∣∣∣∣∣
∑
i

ai
∏
j

bjij

∣∣∣∣∣∣ = |〈ψ|Λ〉| ,

it follows that Eg(|ψ〉) = − log2|〈ψ|Λ〉|2 ≥ − log2|〈ψ+|Λ+〉|2 ≥ Eg(|ψ+〉).

Theorem 4 has not been published yet, but it has been cited in the form of a

private communication with Dagmar Bruß in the letter [73]. There they propose

the experimental creation and detection of “phased Dicke states” [75] by means of

hyperentangled photons [151], and from Theorem 4 it is clear that these states carry

at least the same amount of geometric entanglement as regular Dicke states. It is

reasonable to expect that for sufficiently large systems the phased states are much

higher entangled than their non-phased counterparts, and one clear indication for

this is that Zhu et al. [135] showed that, while all positive states are strongly additive,

states with too much entanglement can never be strongly additive. Furthermore, it is

known that antisymmetric basis states are much higher entangled than symmetric

basis states, even though the two differ only by the phase factors that induce a sign

change under odd permutations of the parties [83].

It should be noted that (unlike Lemma 3) Theorem 4 is valid for arbitrary choices

of the computational basis, and to each such basis relates a non-phased state |ψ+〉.
7The term “non-phased” has been chosen over “dephased” to avoid confusion with the physical

process of phase coherence loss.
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These non-phased states are in general all different from each other and thus carry

different amounts of entanglement, but their unifying feature is that they do not

carry more entanglement than |ψ〉.

2.4 Results for symmetric states

2.4.1 Closest product states of the maximally entangled state

As mentioned in Section 2.2.1, it is possible to derive a symmetrised version of

Theorem 1, where the maximally entangled state among all symmetric multi-qudit

states is considered.

Corollary 5. Let |Ψs〉 ∈ Hs be a normalised pure symmetric state of an n-partite
(n ≥ 3) qudit system with finite-dimensional subspaces dim(H) = d, and let Σ ⊂ H
be the set of CPPs of |Ψs〉. If |Ψs〉 is maximally entangled with respect to the GM,
then span(Σ) = H. In particular, there exist at least dim(H) = d pairwise linearly
independent CPPs |σ1〉, . . . , |σk〉, or equivalently CPSs |Λs

1〉, . . . , |Λs
k〉 via the relation

|Λs
i〉 = |σi〉⊗n.

Proof. One can restrict to fully symmetric CPSs, because symmetric states of three or

more qudits have no nonsymmetric CPSs [84]. The proof is performed analogously

to the one of Theorem 1, so we focus only on aspects that are not immediately clear

from comparison. Firstly, the restriction to symmetric states |Ψs〉 ∈ Hs does not

prevent one from using the generalised Schmidt decomposition [40], because the

symmetric basis states |Sn,k〉 can be trivially expanded with the computational basis

states |i1i2 · · · in〉, and the same is done with the symmetric CPSs |Λs
i〉 = |σi〉⊗n.

Secondly, the variation |ψs(ε)〉 of |Ψs〉 according to Equation (2.17) is performed

with a symmetric product state |ζs〉 = |κ〉⊗n ∈ Hs with |κ〉 ∈ V ⊂ H, where V

is the orthogonal complement of U := span(Σ) 6= H. Equivalently, the variation

|λs(δ)〉 of |Λs〉 = |0〉⊗n should be fully symmetric: |λs(δ)〉 = |δ〉⊗n, with |δ〉 =

(1− δ0)|0〉+ δ1|1〉+ . . .+ δd−1|d− 1〉.

Corollary 5 implies that the maximally entangled symmetric state of n qudits has

at least d distinct CPPs, a result that is considerably weaker than that for the general

case, because the number of CPPs does not depend on the number of qudits. This is

particularly apparent in the qubit case where Corollary 5 does not predict more than

two distinct CPPs for the maximally entangled symmetric n qubit state, regardless of

the number of qubits. For Lemma 4 of [89] I already provided an explicit proof of the

symmetric n qubit case. This proof will not be reiterated here, because the symmetric

qubit case is only a special case of Corollary 5 which in turn is a straightforward

adaption of Theorem 1.

40



2.4. Results for symmetric states

2.4.2 Upper bound on symmetric entanglement

An upper bound on the maximal symmetric entanglement was already introduced

with Equation (2.16). Here I present an alternative proof for this bound with the

advantage of having an intuitive geometric meaning. The same proof as mine which

I published in [89] was independently found by Martin et al. [90].

Theorem 6. For every symmetric n qubit state |ψs〉 the following equality holds:

2π∫
0

π∫
0

|〈ψs|λ(θ, ϕ)〉|2 sin θ dθdϕ =
4π

n+ 1
, (2.33)

where |λ(θ, ϕ)〉 =
(
cθ|0〉+ eiϕsθ|1〉

)⊗n.

Proof. A symmetric n qubit state can be written as |ψs〉 =
∑n

k=0 ake
iαk |Sk〉, with

ak ∈ R, αk ∈ [0, 2π) and the normalisation condition
∑

k a
2
k = 1. Writing the CPS as

|λ〉 = |σ〉⊗n with |σ〉 = cθ|0〉+ eiϕsθ|1〉, we obtain

〈ψs|λ〉 =
n∑
k=0

ei(kϕ−αk)akcn−kθ skθ

√(
n

k

)
. (2.34)

Using the set of qubit unit vectors S2 and the uniform measure over the unit sphere

dB, the squared norm of Equation (2.34) can be integrated over the unit sphere:

∫
|σ〉∈S2

|〈ψs|λ〉|2dB =

2π∫
0

π∫
0

|〈ψs|λ(θ, ϕ)〉|2 sin θ dθdϕ . (2.35)

Taking into account that
2π∫
0

eimϕdϕ = 0 for any integer m 6= 0, one obtains

2π∫
0

π∫
0

[
n∑
k=0

a2
kc

2(n−k)
θ s2k

θ

(
n

k

)]
sin θ dθdϕ (2.36a)

= 2π

n∑
k=0

a2
k

(
n

k

) π∫
0

c2(n−k)
θ s2k

θ sin θ dθ (2.36b)

= 4π

n∑
k=0

a2
k

(
n

k

)
Γ(k + 1)Γ(n− k + 1)

Γ(n+ 2)
= 4π

n∑
k=0

a2
k

1

n+ 1
=

4π

n+ 1
. (2.36c)

The equivalence of Equation (2.36b) and (2.36c) follows from the different defini-

tions of the Beta function [152].

According to Theorem 6 the mean value of |〈ψs|λ(θ, ϕ)〉|2 over the Bloch sphere
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is 4π
n+1 . From this it follows that G2(|ψs〉) = |〈ψs|Λs〉|2 = max

|λ〉∈HSEP

|〈ψs|λ〉|2 must be at

least 1
n+1 , leading to Eg(|ψs〉) ≤ log2(n+ 1) for any symmetric n qubit state.

Remarkably, the integral of Equation (2.33) is the same for all symmetric n qubit

states. In Section 3.1 it will be seen that this allows for an intuitive visualisation of

the geometric entanglement of symmetric states by means of spherical distributions

with constant volume in R3.

2.4.3 Measurement-based quantum computation

One of the leading schemes for the physical implementation of quantum computing

is measurement-based quantum computation (MBQC), also known as one-way

quantum computation. Before the start of the computation an entangled resource

state, for example a two-dimensional cluster state [153], is prepared. A proper

choice of subsequent single qubit measurements then allows one to deterministically

create any desired state on the unmeasured qubits, as long as the initially prepared

state is sufficiently large and a universal resource state. A family of n qubit states

Ψ = {|ψn〉}n is said to be a universal resource if any given state can be prepared

deterministically and exactly by MBQC from a state |ψn〉 with sufficiently large

n [17]. The resource character of the initial state is evident from the fact that

only local operations are performed, and the consequently irreversible reduction of

entanglement explains the term “one-way quantum computation”.

In order for states to be useful for MBQC their entanglement must come in the

“right dose”. On the one hand, universal resources for MBQC must be maximally

entangled in a certain sense [17, 133], and if the entanglement of a set of MBQC

resource states scales anything below logarithmically with the number of parties, it

cannot be an efficient resource for deterministic universal MBQC [17]. On the other

hand, somewhat surprisingly, if the entanglement is too large, it is also not a good

resource for MBQC: If the geometric entanglement of an n qubit system scales larger

than n− δ for some constant δ, then a computation performed with such a resource

can be simulated efficiently on a classical computer [79]. Indeed, most quantum

states are too entangled for being computationally universal [79], although the right

amount of geometric entanglement is by no means a sufficient condition [154].

It was seen that the maximal geometric entanglement of symmetric states scales

much slower than that of general states, namely logarithmically rather than linearly.

One could therefore ask whether symmetric states are useful for MBQC, because

they are not too entangled. Unfortunately, Equation (2.16) implies that symmetric

states scale at most logarithmically, whereas the entanglement of exact, deterministic

MBQC resources must scale faster-than-logarithmically [17]. Somewhat weaker

requirements are imposed upon approximate, stochastic MBQC resources [133],
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although this generally leads only to a small extension of the class of suitable

resources in the vicinity of exact, deterministic resources (e.g. 2D cluster states

with holes). It is therefore believed that symmetric states cannot be used even for

approximate, stochastic MBQC.

To underline this conjecture, we will show that Dicke states with a fixed number

of excitations cannot be useful for ε-approximate, deterministic MBQC [133]. To be

consistent with the notation used in [133], we temporarily switch to the alternative

definition of the geometric measure EG(|ψ〉) = 1− |〈Λψ|ψ〉|2 for the duration of this

section. Roughly speaking, ε-approximate universal resource states can be converted

into any other state by LOCC with an inaccuracy of at most ε. The ε-version of the

GM is defined as [133]

EεG(ρ) = min{EG(σ) |D(ρ, σ) ≤ ε} , (2.37)

where D is a distance that is “strictly related to the fidelity”, meaning that for any

two states ρ and σ, D(ρ, σ) ≤ ε ⇒ F (ρ, σ) ≥ 1 − η(ε), where 0 ≤ η(ε) ≤ 1 is a

strictly monotonically increasing function with η(0) = 0. EεG(ρ) can be understood

as the guaranteed entanglement obtained from a preparation of ρ with inaccuracy

ε. One possible choice of D is the trace distance, which for pure states reads

Dt(|ψ〉, |φ〉) =
√

1− |〈ψ|φ〉|2 =
√

1− F , where F is the fidelity. In this case one can

choose η(ε) = ε2.

As shown in Example 1 of [133], the family of W states ΨW = {|W〉n}n, with

|Wn〉 ≡ |Sn,1〉, is not an ε-approximate universal resource for η(ε) . 0.001. In the

following we generalise this result to families of Dicke states ΨSk = {|Sn,k〉}n with

an arbitrary, but fixed number of excitations k ∈ N.

Theorem 7. For any fixed k ∈ N the family of Dicke states ΨSk = {|Sn,k〉}n cannot be
an ε-approximate universal MBQC resource for η(ε) . 0.001 k−3/2.

Proof. Using Equation (2.13) and the Stirling approximation for high n, the asymp-

totic geometric entanglement of the family ΨSk is found to be

EG(ΨSk) = 1− kk

ekk!
. (2.38)

Specifically, the amount of geometric entanglement remains finite for arbitrary values

of n, allowing us to apply Proposition 3 and Theorem 1 of [133] to show that the

necessary condition for ε-approximate deterministic universality,

EG(ΨSk) > 1− 4η
1
3 + 3.4η

2
3 , (2.39)

is violated for η(ε) . 0.001 k−
3
2 .
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Of course, it should be noted that many other quantum information tasks are

not restricted by the requirements of MBQC-universality, and that highly entangled

symmetric states can be valuable resources for tasks such as the leader election

problem [24] and LOCC discrimination [134].
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Chapter3
Majorana Representation and
Geometric Entanglement

In this chapter the Majorana representation of symmetric states will

be employed to investigate symmetric n qubit states with respect to

the geometric measure of entanglement. Starting with a discussion of

different visualisation techniques and a review of two and three qubit

symmetric states, we move on to the concepts of totally invariant states

and spherical optimisation problems. This is followed by the derivation of

a variety of analytical results about the Majorana representation. These

result will be helpful for the study of the geometric entanglement of

symmetric states in later chapters.

3.1 Preliminaries

3.1.1 Visualisation of symmetric states

The Majorana representation of symmetric n qubit states was introduced in Sec-

tion 1.3.1, and a visualisation by means of the MPs on the Majorana sphere was

shown in Figure 1.2. This approach is now extended to encompass information about

the geometric entanglement of the states.

By means of its definition (2.1) the geometric entanglement of a state is deter-

mined by its closest product states (CPSs). As mentioned in Section 2.1, for symmetric

states there exists at least one symmetric CPS |Λs〉 = |σ〉⊗n, and for n ≥ 3 qudits all

CPSs are symmetric [84]. Here we consider the case of n qubit symmetric states. The

single-qubit states |σ〉 are then called closest product points (CPPs), because they

can be represented on the Majorana sphere by their Bloch vectors. In this way the

set of CPPs can be visually represented alongside the MPs. Figure 3.1 shows such
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(a)

|φ1〉

|φ2〉

|φ3〉
|σ1〉

|σ2〉
(b) (c)

|φ1〉 |φ2〉

|φ3〉

|σ1〉
θ

(d)

Figure 3.1: Different visualisations of the three qubit GHZ state and W state are
shown. The MPs (white circles) and CPPs (crosses) of |GHZ3〉 are shown in (a), and
those of |W3〉 in (c). Plots of the corresponding spherical amplitude functions g2(θ, ϕ)
are shown in (b) and (d). The global maxima and zeros of g2 coincide with the CPPs
and the antipodes of the MPs, respectively. The maximal values of g2 are indicated
by circles with radii G2(|GHZ3〉) = 1

2 and G2(|W3〉) = 4
9 , respectively.

Majorana representations for the three qubit GHZ and W state, two states that are

symmetric as well as positive, and whose entanglement may be considered extremal

[155]. The state |GHZ3〉 = 1√
2
(|000〉+ |111〉) has the MPs

|φ1〉 = 1√
2

(
|0〉+ |1〉

)
, |φ2〉 = 1√

2

(
|0〉+ei 2π3 |1〉

)
, |φ3〉 = 1√

2

(
|0〉+ei 4π3 |1〉

)
, (3.1)

and its two CPPs are

|σ1〉 = |0〉 , |σ2〉 = |1〉 . (3.2)

From this it follows that G2 = |〈GHZ3|σ〉⊗3|2 = 1
2 and hence the geometric entangle-

ment is Eg(|GHZ3〉) = 1. Figure 3.1(a) shows the distribution of MPs and CPPs on

the Majorana sphere. The three MPs form an equilateral triangle on the equator, and

the two CPPs lie at the north and south pole, respectively. The general n qubit GHZ

state (1.11) is represented by n equidistant MPs on the equator, and the CPPs are the

same as in (3.2) [85].

The W state |W3〉 = |S3,1〉 = 1√
3
(|001〉+|010〉+|100〉) is a Dicke state with the MPs

|φ1〉 = |φ2〉 = |0〉 and |φ3〉 = |1〉, and due to the azimuthal symmetry the set of CPPs

is formed by the continuum |σ〉 =
√

2
3 |0〉+ eiϕ

√
1
3 |1〉, with ϕ ∈ [0, 2π). Figure 3.1(c)

shows the MPs and the circle of CPPs, with the positive CPP denoted by a cross. The

entanglement is Eg(|W3〉) = log2

(
9
4

)
≈ 1.17, which is higher than that of the GHZ

state. It was recently shown that in terms of the GM, the W state is the maximally

entangled three qubit state [156], and therefore it is also the maximally entangled

symmetric one.

Mediated by the stereographic projection, the amplitude function ψ(z) : C →
C defined on the complex plane in Equation (1.27) corresponds to the function

f(θ, ϕ) = 〈ψs|σ(θ, ϕ)〉⊗n with |σ(θ, ϕ)〉 = cθ|0〉 + eiϕsθ|1〉 defined on the Majorana

sphere. Taking the absolute value of this function, we define a real-valued function

46



3.1. Preliminaries

g : S2 → [0, 1] as follows

g(θ, ϕ) = |〈ψs|σ(θ, ϕ)〉⊗n| , (3.3)

and call it the spherical amplitude function. This function has already played an

important role in Theorem 6 for the derivation of the upper bound on the maximal

symmetric entanglement. Comparing Equation (3.3) to the definition of the GM

(2.1), it is seen that the global maxima of g are the CPPs of |ψs〉. Furthermore, from

the definition of the Majorana representation (1.21) it is clear that the zeros of g

are the antipodes1, i.e. the diametrically opposite points of the MPs. The plots of

g2 shown for the GHZ and W state in Figure 3.1 demonstrate that the spherical

amplitude function allows for an intuitive and powerful visualisation of the entire

information about a symmetric state and its geometric entanglement. For a given

|ψs〉 it is often not easy to calculate the MPs and CPPs analytically, but g makes it very

easy to do so numerically. This makes the spherical amplitude function a powerful

tool for the numerical search for high and maximal geometric entanglement. The

amount of entanglement present in a symmetric state decreases with increasing

values of the injective tensor norm, which is simply the maximum value of the

spherical amplitude function: G = max|σ〉 g(θ, ϕ) . Circles indicating the value of G2

are shown in Figure 3.1, and they provide a visual representation of the difference in

entanglement between the GHZ and W state.

As another example we present the “tetrahedron state”, the symmetric state

of four qubits whose MPs are uniquely defined (up to LU) by the vertices of a

regular tetrahedron inscribed in the Majorana sphere. In the orientation shown in

Figure 3.2(a) the MPs are

|φ1〉 = |0〉 , |φ2,3,4〉 =
√

1
3 |0〉+ eiκ

√
2
3 |1〉 , (3.4)

with κ = 0, 2π
3 ,

4π
3 . From this the tetrahedron state follows as

|Ψ4〉 =
√

1
3 |S0〉+

√
2
3 |S3〉 , (3.5)

and its entanglement is Eg(|Ψ4〉) = log2 3 ≈ 1.585. Figure 3.2(b) shows the spherical

amplitude function g2(θ, ϕ) from which it is clear that there exist four CPPs, which

coincide with the locations of the MPs.

Considering the form of the integral appearing in Theorem 6, one could suspect

that the three-dimensional volume described by the values of the function g2(θ, ϕ) is

the same for all n qubit states. This is however not the case, because Equation (2.33)

1In mathematical terms, the antipode of a Bloch vector |φ〉 = cθ|0〉+ eiϕsθ|1〉 is the unique Bloch
vector |φ〉⊥ = sθ|0〉 − eiϕcθ|1〉 which is orthogonal to the first one: 〈φ|φ〉⊥ = 0.
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(a)

|φ1〉

|φ2〉 |φ3〉

|φ4〉

(b) (c) (d)

Figure 3.2: Different visualisations of the “tetrahedron state” of 4 qubits. The MPs
and CPPs are shown in (a), with each vertex of the regular tetrahedron occupied by
one MP and one CPP. The spherical amplitude function g2(θ, ϕ) is shown in (b), and
the spherical volume function g

2
3 (θ, ϕ) in (c) and (d). The volume described by g

2
3 is

V = 4π
15 , and a red sphere with the same volume is inscribed in (c). The area where

the values of g
2
3 are smaller than the radius r = 3

√
1/5 of the sphere is coloured red

in (d). The largest value of g
2
3 is G

2
3 = 3

√
1/3.

does not describe a volume integration. Fortunately, as stated by the following

corollary, this can be easily remedied by considering g
2
3 (θ, ϕ) instead.

Corollary 8. For every n qubit symmetric state the three-dimensional volume bordered
by the values of the function g

2
3 (θ, ϕ) is V = 4π

3(n+1) .

Proof. The volume of an object can be determined mathematically by integrating the

constant function 1 over the interior:

V =

2π∫
0

π∫
0

R(θ,ϕ)∫
0

r2 sin θ drdθdϕ =

2π∫
0

π∫
0

R3(θ, ϕ)

3
sin θ dθdϕ (3.6a)

=
1

3

2π∫
0

π∫
0

g2(θ, ϕ) sin θ dθdϕ (2.33)
=

4π

3(n+ 1)
, (3.6b)

where R(θ, ϕ) ≡ g 2
3 (θ, ϕ) are the radial values in spherical coordinates.

This corollary implies that the object described by the contour of g
2
3 (θ, ϕ) has the

same volume as a sphere with radius r = 1
3√n+1

. We will call g
2
3 (θ, ϕ) the spherical

volume function, and it is depicted in Figure 3.2 for the tetrahedron state.

Let us make the difference between the integrals of Equation (2.33) and (3.6)

more explicit. The integral appearing in Equation (2.33) is a two-dimensional

spherical integral over the unit sphere with g2(θ, ϕ) as its integrand. This integral has

the value 4π
n+1 , and because the surface area of the unit sphere is 4π, this means that

the average value of g2 is 1
n+1 , implying G2 ≥ 1

n+1 and thus Eg(|ψs〉) ≤ log2(n+ 1).

In contrast to this, Equation (3.6) describes a three-dimensional volume integral over

a shape bordered by the values of the function g
2
3 (θ, ϕ). This integral has the value

48



3.1. Preliminaries

4π
3(n+1) , which is equal to the volume of a sphere with radius r = 1

3√n+1
. Because of

this, the largest value of g
2
3 satisfies G

2
3 ≥ 1

3√n+1
, which results in the same upper

bound on Eg as derived from the spherical integral.

Because an exponent on g(θ, ϕ) does not change the qualitative properties of this

function, it is mostly a matter of taste with which power to work with. The merit

of the spherical volume function g
2
3 is that (for fixed n) its volume is the same for

all n qubit symmetric states. This allows for a clear operational interpretation as

a constant volume which has to be moulded as uniformly as possible to obtain the

highest symmetric entanglement. Nevertheless, most of the plots of the spherical

amplitude function displayed in this thesis for n qubit symmetric states rely on g2,

because the shape of the volume is then more pronounced for lower n, and thus

easier to interpret (see e.g. Figure 3.2(b) and (d)).

3.1.2 Two and three qubit symmetric states

As a first application of the Majorana representation we review the well-studied cases

of two and three qubits. Remarkably, for two qubits the Schmidt decomposition

(1.8) allows one to cast every pure state as a positive symmetric state of the form

|ψs〉 = α0|00〉+ α1|11〉, with α0 ≥ α1 and with |Λ〉 = |00〉 being a CPP. The MPs are

then, up to normalisation, |φ1〉 =
√
α0|0〉 + i

√
α1|1〉 and |φ2〉 =

√
α0|0〉 − i

√
α1|1〉,

and the geometric entanglement is Eg = − log2 α
2
0. The spherical distance between

the two MPs is the only degree of freedom present in this Majorana representation2.

Coinciding MPs correspond to separable states (here |ψs〉 = |00〉), and antipodal MPs

correspond to maximally entangled states (here the Bell state |ψs〉 = 1√
2
(|00〉+ |11〉))

with Eg = 1. Since the CPP is fixed at |Λ〉 = |00〉, the geometric entanglement

increases monotonically with the spherical distance between the MPs. This un-

ambiguous characterisation by means of a two-point-distance is a signature of the

existence of a total order for the entanglement of pure two qubit states.

In contrast to this, there is no unique way in geometry to measure the “distance”

between three points on a sphere. Similarly, no unique entanglement measure and

no total order exists for three qubit states. Furthermore, unlike the two qubit case, a

generic state of three qubits cannot be cast positive or symmetric [18]. We therefore

focus on a subset of three qubit symmetric states that include highly entangled states.

For this consider the following three MPs

|φ1〉 = |0〉 , |φ2,3〉 = cθ|0〉 ± i sθ|1〉 , (3.7)

with the parametrisation θ ∈ [0, π]. Starting out with all MPs on the north pole

2The definition EG = 1− |〈ψ|Λ〉|2 makes the relationship between the spherical distance and the
entanglement explicitly clear: With an angle 2θ between the two MPs, it follows that EG = sin2 θ [116].
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Figure 3.3: The diagram shows how the values of Eg and the location of the positive
CPP change as the MP distribution of (3.7) is modified. The CPP remains on the
north pole until the moving MPs have reached a latitude slightly below the equator,
as seen in the Majorana representation (c). From that point onwards the CPP rapidly
moves southwards and reaches the equator at the GHZ state (d). After this, the CPP
and Eg undergo only small changes until the W state (e) is reached. Plots of the
spherical amplitude function g2 for the five marked states are shown on top of their
Majorana representations. The values of G2 are G2

a = 1, G2
b = 3

4 , G2
c = 4

7 , G2
d = 1

2
and G2

e = 4
9 , and they give the radii of the dashed concentric circles.
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(θ = 0), two of the MPs are moved southwards as a complex conjugate pair until

they reach the south pole (θ = π). The change of the CPPs and the entanglement is

studied as a function of θ. From Equation (1.21) it is found that the MPs give rise to

the state

|ψs(θ)〉 =

√
3c2
θ|S0〉+ s2

θ|S2〉√
3c4
θ + s4

θ

. (3.8)

This state is positive, so it suffices to find a positive CPP. Determining the absolute

maximum of the spherical amplitude function with the ansatz |σ〉 = cϕ|0〉+ sϕ|1〉 is

straightforward, yielding the relationship between ϕ and θ:

c2
ϕ =

s2
θ

6s2
θ − 3

. (3.9)

The codomain of the left-hand side is [0, 1], but the right-hand side lies outside this

range for θ < π − arccos 1
5 . For these values |σ〉 = |0〉 is the only CPP. Figure 3.3

shows the change of ϕ with θ. It is seen that from θ = arccos(−1
5) onwards the

CPP abruptly leaves the north pole and moves towards the south pole along the

positive half-circle. This behaviour can be explained with the shape of the spherical

amplitude function. As seen in Figure 3.3(c), the function g2 is very flat around

the north pole which facilitates fast changes in the position of the global maximum.

From Equation (3.8) and (3.9) the GM can be calculated and its graph is displayed

in Figure 3.3. It is found that Eg is monotonously increasing, which is in accordance

with the results of [155]. Interestingly, the entanglement reaches a saddle point at

the GHZ state (θ = 2π
3 ) before it peaks at the W state (θ = π).

3.1.3 Totally invariant states and additivity

Quantum states that are the stationary points of an energy functional regardless

of the parameter values of the underlying system are called inert states. The inert

states of spin-j systems have been fully characterised by their MPs: A state is inert

iff its MP distribution is invariant under a subgroup of the rotation group SO(3)

acting on the Majorana sphere, but any small variation of the MPs (excluding the

joint rotations (1.22)) results in a change of the symmetry group [105]. Because

of the isomorphism between the states of a spin-j particle and the symmetric states

of 2j qubits, this definition can be extended to symmetric n qubit states. To avoid

confusion, the physically motivated term “inert” is replaced with “totally invariant”

[85]. Regardless of the underlying physical system, an MP distribution is thus called

totally invariant if it is invariant under a subgroup of SO(3), but any small variation

of the MPs changes the subgroup.

Examples of totally invariant states are the Platonic states, which are defined as
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the quantum states whose MPs lie at the vertices of the Platonic solids, the five highly

symmetric convex polyhedra whose edges, vertices and angles are all congruent.

The tetrahedron state was already introduced as a four qubit symmetric state in

Section 3.1.1. Treated as a state of a spin-2 system, the tetrahedron state represents

an inert state.

Taking LU equivalence into account, the subgroups of SO(3) and their symmetry

implications can be listed as follows:

• special orthogonal group SO(2): Z-axis rotational symmetry

• orthogonal group O(2): Z-axis rotational symmetry & X-Y-plane symmetry

• cyclic group Cm: discrete Z-axis rotational symmetry

• dihedral groupDm: discrete Z-axis rotational symmetry &X-Y-plane symmetry

• tetrahedral group T : symmetry group of tetrahedron

• octahedral group O: symmetry group of octahedron and cube

• icosahedral group Y : symmetry group of icosahedron and dodecahedron

The continuous symmetries O(2) and SO(2) can be fulfilled only by Dicke states.

The Dicke state |Sn,k〉 is a totally invariant state of SO(2) for all n and k, with the

exception of k = n
2 for even n. This is because the equally balanced states |Sn,n

2
〉 are

the totally invariant states of O(2). There are no totally invariant states for the cyclic

group Cm, but the remaining groups Dm, T , O and Y all give rise to a multitude of

totally invariant states [85, 105].

Markham [85] recently found that all totally invariant symmetric n qubit states

satisfy Equation (2.7), i.e. their amount of entanglement is the same for the three

distance-like entanglement measures:

Lemma 9. Let ρ = |ψs〉〈ψs| be a totally invariant symmetric n qubit pure state. Then

Eg(ρ) = ER(ρ) = ERob(ρ) . (3.10)

Zhu et al. [135] showed that positive states are strongly additive under the GM:

Lemma 10. Let ρ be a positive state. Then ρ is strongly additive under Eg, i.e. the
following holds for all states σ:

Eg(ρ⊗ σ) = Eg(ρ) + Eg(σ) . (3.11)

In general the three measures Eg, ER and ERob are not additive in the multipartite

scenario (cf. [132, 157]), and for the GM it was shown that beyond a certain amount
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of entanglement (which is present in almost all states) states can never be strongly

additive [135]. Lemma 10 is not in conflict with this, since we already argued at

the end of Section 2.3 that positive states are in general considerably less entangled

than generic states. Chen et al. [110] found that symmetric states whose MPs are all

distributed within some half sphere are additive with respect to the GM. In particular,

this implies the additivity of all two and three qubit symmetric states. For larger n,

however, it is clear from the Majorana representation and the spherical amplitude

function that states with such an imbalance in their MP distribution cannot have

much geometric entanglement. We can therefore conclude that additivity of states
under the GM is a signature of low entanglement.

What can be said about the additivity of symmetric states under the relative

entropy of entanglement ER and the logarithmic robustness of entanglement ERob?

We will combine Lemma 9 and Lemma 10 to show that many symmetric states of

interest are additive under ER and ERob in a sense of additivity that is stronger than

regular additivity, but weaker than strong additivity.

Theorem 11. Let ρ = |ψs〉〈ψs| be a pure symmetric n qubit state that is positive and
totally invariant. Then ρ is strongly additive under Eg, and additive under ER and ERob.
Furthermore, for arbitrary states σ the following holds

Ẽg(σ) = ER(σ) =⇒ ER(ρ⊗ σ) = ER(ρ) + ER(σ) , (3.12a)

Ẽg(σ) = ERob(σ) =⇒ ERob(ρ⊗ σ) = ERob(ρ) + ERob(σ) . (3.12b)

Proof. It is known [66] or obvious that the three measures Eg, ER and ERob are

subadditive, i.e. E(ρ ⊗ σ) ≤ E(ρ) + E(σ) for arbitrary ρ and σ, and that the von

Neumann entropy is strongly additive, i.e. S(ρ⊗σ) = S(ρ) +S(σ) for arbitrary ρ and

σ. Now let ρ be a pure symmetric n qubit state that is positive and totally invariant,

and let σ be an arbitrary state for which Ẽg(σ) = Ex(σ) holds, where Ex can be either

ER or ERob. Then

Eg(ρ) + Ẽg(σ)
(3.11)

= Ẽg(ρ⊗ σ)
(2.6)
≤ Ex(ρ⊗ σ) ≤ Ex(ρ) + Ex(σ)

(3.10)
= Eg(ρ) + Ẽg(σ) ,

which implies that Ex(ρ⊗ σ) = Ex(ρ) +Ex(σ). The strong additivity of ρ under Eg is

clear from Lemma 10, and the additivity of ρ under ER or ERob follows as a special

case from the previous equation by setting σ := ρ.

The main result of this theorem is that a considerable amount of symmetric states

is additive under ER and ERob. Trivial examples are the Dicke states |Sn,k〉 and the

GHZ states 1√
2
(|Sn,0〉+ |Sn,n〉), which are positive and totally invariant, thus satisfying

the conditions of Theorem 11. In Chapter 4 it will be seen that for systems with a low

number of qubits many highly or maximally entangled symmetric states are positive
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as well as totally invariant. This automatically results in the interesting property that

these states are additive and equivalent under the three distance-like entanglement

measures.

The strong additivity under ER and ERob could not be proven, but the statements

(3.12a) and (3.12b) represent a considerable extension of the regular additivity.

The necessary condition for this is automatically fulfilled by states that fulfil Equa-

tion (2.7), in particular stabiliser states, Dicke states, permutation-antisymmetric

basis states [83, 134, 143] and totally invariant symmetric states [85].

Finally, we remark that Theorem 11 could also have been formulated by omitting

the requirement of positivity, and instead to require that the MPs of ρ are all confined

to some half-sphere on the Majorana sphere, including the bordering great circle.

This property would then guarantee the additivity of ρ under GM [110] required

to prove all implications of the theorem (except the strong additivity under GM).

However, it is clear that the only totally invariant symmetric states whose MPs occupy

at most half of the Majorana sphere are the Dicke states and the GHZ states. Since

these states are positive, they are already accounted for in the given formulation of

Theorem 11, thus making the alternative formulation redundant.

3.2 Extremal point distributions

For symmetric states the injective tensor norm appearing in the definition (2.1) of

the GM can be concisely expressed in terms of the MPs and one CPP:

|〈ψs|Λ〉| = n!√
K

n∏
i=1

|〈φi|σ〉| . (3.13)

Therefore, to determine the CPP of a given symmetric state, the absolute value of

a product of scalar products has to be maximised. From a geometrical point of

view, the factors 〈φi|σ〉 are the angles between the corresponding Bloch vectors on

the Majorana sphere, and thus the determination of the CPP can be viewed as an

optimisation problem for a product of geometrical angles.

From a comparison with the min-max problem (2.4) of the general case it is clear

that the task of finding the maximally entangled symmetric states can be concisely

formulated as the geometrical optimisation problem

min
{|φi〉}

1√
K

(
max
|σ〉

n∏
i=1

|〈φi|σ〉|
)

. (3.14)

In other words, the maximum value of the spherical amplitude function must be as

small as possible. This Majorana problem bears all the properties of an optimisation
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problem on the surface of a sphere in R3. These kinds of problems deal with

arrangements of a finite number of points on a sphere so that an extremal property is

fulfilled [158]. There are infinite possibilities to define such optimisation problems,

but two particularly well-known problems that have been extensively studied in the

past are the following:

Tóth’s problem, also known as Fejes’ problem and Tammes’ problem, asks how

n points have to be distributed on the unit sphere so that the minimum distance

of all pairs of points becomes maximal [158]. This problem was first raised by the

biologist Tammes in 1930 when trying to explain the observed distribution of pores

on pollen grains [159]. Recasting the n points as unit vectors ri ∈ R3, the following

cost function needs to be maximised:

fTóth(r1, r2, . . . , rn) = min
i<j
|ri − rj | . (3.15)

The point configuration that solves this problem is called a spherical code or sphere

packing [160]. The latter term refers to the equivalent problem of placing n identical

spheres of maximal possible radius around a central unit sphere, touching the unit

sphere at the points that solve Tóth’s problem.

Thomson’s problem, also known as the Coulomb problem, asks how n point

charges which are confined to the surface of a sphere can be distributed so that the

potential energy is minimised. The charges interact with each other only through

Coulomb’s inverse square law. Devised by J. J. Thomson in 1904, this problem raises

the question about the stable patterns of up to 100 electrons on a spherical surface

[161]. Its cost function is given by the Coulomb energy and needs to be minimised.

fThomson(r1, r2, . . . , rn) =
∑
i<j

1

|ri − rj |
. (3.16)

The original motivation for Thomson’s problem was to determine the stable electron

distribution of atoms in the plum pudding model. While this model has been

superseded by modern quantum theory, there is a wide array of novel applications

for Thomson’s problem or its generalisation to similar interaction potentials. Among

these are multi-electron bubbles in liquid 4He [162, 163], surface ordering of liquid

metal drops confined in Paul traps [164], the shell structure of spherical viruses

[165], “colloidosomes” for encapsulating biochemically active substances [166],

fullerene patterns of carbon atoms [167] and the Abrikosov lattice of vortices in

superconducting metal shells [168].

It should be noted that, to some extent, the definition of Thomson’s problem

runs contrary to classical electrical theory, because Earnshaw’s theorem rules out

the existence of stable equilibrium configurations of a collection of discrete charges
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under the influence of the electric force alone [169]. For example, if one were

to place n negative charges −q around a central positive charge +nq, then this

configuration would quickly collapse instead of assuming a solution of Thomson’s

problem. This explains why the definition of Thomson’s problem requires the rather

mathematical assumption of the point charges being confined to the surface of a

sphere. The existence of physical appearances of stable electron patters in liquid

Helium [162, 163] can be readily explained by the surface tension of the macroscopic

drops which exhibit a positive mirror charge on their surface, in conjunction with

the quantum-mechanical Pauli principle [162]. The latter prevents the electrons

from falling back into the liquid Helium, thereby turning them into a 2D electron

gas described by a 1D hydrogenic spectrum [170]. In this sense, the macroscopic

system provides the electrons with a restriction to a spherical surface, akin to the

mathematical definition of Thomson’s problem.

The definitions of Tóth’s problem and Thomson’s problem are clearly different

from each other, but they share the same solutions for n = 2 − 6, 12. Leech [171]

showed that for these numbers the equilibrium distributions of Thomson’s problem

are invariant under replacing Coulomb’s r−2 law by the limiting form r−l, l → ∞,

and this “infinitely repulsive interaction” gives rise to the solutions of Tóth’s problem.

Exact solutions to Tóth’s problem are known for nTo = 2− 12, 24, and therefore the

exact solutions to Thomson’s problem for nTh = 2− 6, 12 are automatically derived

this way [172]. Exact solutions to Thomson’s problem are furthermore known for

nTh = 7, 8, but even for numbers as small as 9 and 11, exact solutions remain elusive

[158]. With the help of numerics, however, putative and approximate solutions have

been found for a wide range of n in both problems [173–176].

The solutions to n = 2, 3 are trivial and given by the dipole and equilateral

triangle, respectively. For n = 4, 6, 8, 12, 20 the vertices of the highly symmetric

Platonic solids – the five regular convex polyhedra whose edges, vertices and angles

are all congruent – are natural candidates, but, as seen in Figure 3.4, they are the

actual solutions only for n = 4, 6, 12 [177]. For n = 8, 20 the solutions are not

Platonic solids and are different for the two problems. The solutions for n = 4− 12

will be covered in more detail alongside the Majorana problem in Section 4.

The restriction of the points to the surface of the unit sphere, as opposed to the

interior of the sphere, is decisive for the solutions of both problems. In Tóth’s problem

it is clear that for larger n the nearest-neighbour distances would be decreased by

placing some points inside the sphere. For Thomson’s problem this is not as obvious,

and several decades passed before it was realised that only for n < 12 the electrons

will all remain on the surface if given the opportunity to occupy the interior of the

sphere [178, 179].

Both the classical problems and the Majorana problem are isotropic in the sense
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(a) (b) (c) (d) (e)

(f) (g)

Figure 3.4: The five Platonic solids are the (a) tetrahedron, (b) octahedron, (c) cube,
(d) icosahedron and (e) dodecahedron. Their number of vertices is, from left to right,
n = 4, 6, 8, 12 and 20. The solutions to Tóth’s and Thomson’s problem are given by
the Platonic solids only for n = 4, 6 and 12. The solutions of Tóth’s problem for n = 8
and n = 20 are shown in (f) and (g), respectively. The polyhedron in (f) is the cubic
antiprism, which is obtained from the cube by rotating one face by 45◦, followed
by a slight compression along the direction perpendicular to the rotated face. The
latter transformation ensures that all the sides are returned to equal length. The
polyhedron in (g) consists of 30 triangles and 3 rhombuses.

that all directions in space are equal, and this makes it reasonable to expect that

the solutions exhibit certain symmetric features. For example, one could expect that

the centre of mass of the n points always coincides with the sphere’s middle point.

This is, however, not the case, as the solution to Tóth’s problem for n = 7 [172]

or the solution to Thomson’s problem for n = 11 shows [172, 173]. Furthermore,

the solutions need not be unique. For Tóth’s problem, the first incident of this is

n = 5 [180], and for Thomson’s problem at n = 15 [172] and n = 16 [173]. These

aspects show that it is, in general, hard to make statements about the form of the

“most spread out” point distributions on the sphere. The Majorana problem (3.14)

is considered to be equally tricky, especially because the normalisation factor K

depends on the MPs.

The Majorana problem shares a similarity with Tóth’s problem in that it is for-

mulated as a min-max-problem, but a crucial difference is that the positions of

all n points jointly influence the value of the cost function. In Tóth’s problem the

cost function only depends on the smallest two-point distance, ignoring all other

distances. The prefactor K = K({|φi〉}i=1...n) depends on the relative positions of

the MPs, and from Equation (1.21) it is seen that K increases with decreasing angles

between the individual Majorana points. Therefore, while the factor in brackets in

Equation (3.14) assumes small values for highly spread out MP distributions, the

outer factor 1√
K

will be large. Conversely, when MPs move together, the factor in
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brackets increases while the outer factor decreases. This makes the solutions of the

Majorana problem highly nontrivial, and the solutions need not be maximally spread

out over the sphere in a conventional sense, as the two coinciding MPs of the three

qubit |W〉 state demonstrate.

3.3 Analytic results about MPs and CPPs

This section is mainly concerned with the interdependence between the form of

n qubit symmetric states and their Majorana representation. For example, it is

examined how the MPs and CPPs are distributed for states whose coefficients are real,

positive or vanishing. In some of these cases the MPs and CPPs form distinct patterns

on the Majorana sphere that can be described by symmetries. In this context, care has

to be taken as to the meaning of the word “symmetric”: Permutation-symmetric states

were introduced in Section 1.3, and such states can be visualised on the Majorana

sphere. Their MP distributions may or may not exhibit certain geometric symmetries

in R3, such as rotational and reflective symmetries. For example, the GHZ, W and

tetrahedron state of Figure 3.1 and Figure 3.2 all have a discrete or continuous

rotational symmetry around the Z-axis, as well as several reflective symmetries along

planes running through the origin of the sphere, e.g. the X-Z-plane.

3.3.1 Generalised Majorana representation

In the following a generalised version of the Majorana representation (1.21) will be

derived which will prove helpful e.g. for the analysis of real and positive states. The

property of a symmetric state to be real or positive can often be inferred from its MP

distribution. As an example, the tetrahedron state |Ψ4〉 =
√

1
3 |S0〉+

√
2
3 |S3〉 is positive,

even though its MPs are not all positive. The first MP |α〉 := |φ1〉 = |0〉 is a positive

qubit state, and a permutation of the remaining MPs according to Equation (1.21)

yields a positive GHZ-type three qubit symmetric state |β〉 :=
∑

perm
|φ2〉|φ3〉|φ4〉 =

2√
3
|000〉+ 4

√
2√
3
|111〉. The tetrahedron state can be reconstructed, up to normalisation,

from all the permutations of |α〉 and |β〉 over the bipartitions of the physical qubits

into two subsets with one and three qubits, respectively:

|Ψ4〉 ∝ |α〉1|β〉234 + |α〉2|β〉134 + |α〉3|β〉124 + |α〉4|β〉123 . (3.17)

In the following this idea is formalised to arbitrary states and arbitrary partitions.

It should be remembered that the MPs representing a symmetric n qubit state are

abstract entities rather than physical parts of the underlying system, and there-

fore partitions of the set of MPs are fundamentally different from partitions of the
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system’s qubits. Partitions of the MPs will be denoted by S = {S1, . . . ,Sk} with

Si = {|φi1〉, . . . , |φimi 〉} for i = 1, . . . , k, and
∑k

i=1mi = n. Partitions of the physical

qubits of the system will be denoted by P = {P1, . . . ,Pl} with Pi = {i1, . . . , iri} for

i = 1, . . . , l, and
∑l

i=1 ri = n. The notation |φ〉ix is used to describe a single qubit

state of particle ix, and |ψ〉Pi is used to describe an ri-qubit state over the particles

i1, i2, . . . , iri .

Theorem 12. Let |ψs〉 be a symmetric state of n qubits with the MPs |φ1〉, . . . , |φn〉,
and let S = {S1, . . . ,Sk} be a partition of the MPs. |ψs〉 can then be written, up to a
prefactor, as

|ψs〉 ∝
{Pj1 ,...,P

j
k}∑

partitions

|ψS1〉Pj1 ⊗ · · · ⊗ |ψSk〉Pjk , (3.18)

where the mi-qubit symmetric states |ψSi〉 :=
∑

perm
|φi1〉 · · · |φimi 〉 are composed from

Si = {|φi1〉, . . . , |φimi 〉} via the Majorana representation (1.21), and where the sum
runs over all the partitions Pj = {Pj1 , . . . ,Pjk} that satisfy |Pji | = |Si| for all i.

Proof. For simplicity, we only consider a bipartition S = {S1,S2} of the MPs, with

S1 = {|φ1〉, . . . , |φm〉} and S2 = {|φm+1〉, . . . , |φn〉}. The general case directly follows

from this by mathematical induction. The bipartitions of the system’s qubits are

denoted by Pj = {Pj1 ,Pj2}, j = 1, . . . ,
(
n
m

)
, with Pj1 = {j1, . . . , jm} and Pj2 =

{jm+1, . . . , jn}. Note that the subsystems in a product state can be shuffled, e.g.

|α〉1|β〉2|γ〉3 ≡ |β〉2|γ〉3|α〉1.

|ψs〉 ∝
{1,...,n}∑

perm

|φP (1)〉1 · · · |φP (n)〉n =

{1,...,n}∑
perm

|φ1〉P (1) · · · |φn〉P (n)

=

{1,...,n}∑
perm

(
|φ1〉P (1) · · · |φm〉P (m)

)(
|φm+1〉P (m+1) · · · |φn〉P (n)

)

=

{Pj1 ,P
j
2}∑

bipartitions

( {j1,...,jm}∑
perm

|φ1〉P (j1) · · · |φm〉P (jm)

)( {jm+1,...,jn}∑
perm

|φm+1〉P (jm+1) · · · |φn〉P (jn)

)

=

{Pj1 ,P
j
2}∑

bipartitions

|ψS1〉Pj1 |ψS2〉Pj2 .

From the identity n! =
(
n
m

)
m!(n −m)! it can be verified that the second and third

line contain the same number of summands.

Equation (3.18) can be understood as a generalised Majorana representation

for arbitrary partitions, which contains the regular Majorana representation as the

special case S = {S1, . . . ,Sn}, with Si = {|φi〉} for all i.
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The following corollary asserts that the number of MPs lying on either pole of

the Majorana sphere is immediately given by the smallest and largest nonvanishing

coefficient of a symmetric state.

Corollary 13. Let |ψs〉 =
n∑

m=0
am|Sm〉 be a symmetric state of n qubits.

• l = min{m| am 6= 0} ⇐⇒ l MPs lie on the south pole |1〉.

• k = max{m| am 6= 0} ⇐⇒ n− k MPs lie on the north pole |0〉.

Proof. Assume that l MPs of |ψs〉 lie on the south pole. From Theorem 12 it follows

that one can write |ψs〉 ∝ ∑
partitions

|1〉⊗ l|ϕ〉, where |ϕ〉 =
n−l∑
i=0

bi|Si〉 is an (n− l)-qubit

symmetric state. Since the MPs of |ϕ〉 all have non-vanishing |0〉-components, it

follows that b0 6= 0, and therefore min{m| am 6= 0} = l. The converse statement3

follows by assuming that the number of MPs lying on the south pole is r 6= l, leading

to l 6= r = min{m| am 6= 0}.
The statement about MPs on the north pole follows by the same arguments.

This corollary is easily verified by examples such as |GHZ3〉 = 1√
2
(|S0〉 + |S3〉)

which has no MPs on the poles, or |W3〉 = |S1〉 which has two MPs on the north pole

and one MP on the south pole.

Rotational symmetries appear frequently in the Majorana representations of

symmetric states, and by means of the LU-equivalence mediated by the symmetric

unitary operations U s = U ⊗ · · · ⊗ U in Equation (1.22) and (1.23), it suffices to

investigate only rotations around the Z-axis of the Majorana sphere. These are of

a particularly simple mathematical form, with the single-qubit rotation Rz of (1.4)

generalising to Z-axis rotations of a symmetric n qubit state as Rs
z := R⊗nz . The effect

of Rs
z on |ψs〉 =

∑n
k=0 ak|Sk〉 is then

Rs
z(ϕ)|ψs〉 =

n∑
k=0

akeikϕ|Sk〉 . (3.19)

|ψs〉 is rotationally symmetric around the Z-axis iff Rs
z(ϕ)|ψs〉 ∝ |ψs〉 for some ϕ < 2π.

In the case of a discrete rotational symmetry the possible rotational angles are (up to

multiples) restricted to ϕ = 2π
m , with m ∈ N, 1 < m ≤ n. From Equation (3.19) it is

then easy to determine the necessary and sufficient conditions for a rotational Z-axis

symmetry of the MPs.

3In terms of logic the statement “l = min{m|am 6= 0} =⇒ l MPs are |1〉” is equivalent to the
statement “r 6= l MPs are |1〉 =⇒ l 6= min{m|am 6= 0}”.
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Lemma 14. The MPs of a symmetric n qubit state |ψs〉 have a rotational Z-axis
symmetry with rotational angle ϕ = 2π

m (1 < m ≤ n) iff

∃ 0 ≤ l < m : |ψs〉 =

bn−l
m
c∑

j=0

al+jm|Sl+jm〉 . (3.20)

Proof. Assume that |ψs〉 can be written in the above form. Then Rs
z(

2π
m )|ψs〉 =∑

j al+jm exp( i2π
m (l + jm))|Sl+jm〉 =

∑
j al+jm exp( i2πl

m )|Sl+jm〉 = eiδ|ψs〉, with δ =
2πl
m , and therefore |ψs〉 is rotationally symmetric around the Z-axis.

Conversely, if |ψs〉 =
∑n

k=0 ak|Sk〉 is rotationally symmetric, then Rs
z(

2π
m )|ψs〉 =∑n

k=0 ak exp( i2πk
m )|Sk〉 = eiδ|ψs〉 for some δ ∈ R. For this to hold, the value of

exp( i2πk
m ) must be the same for all k with ak 6= 0, and because of this, the k can be

cast as kj = l + jm with integers 0 ≤ l < m and 0 < j < bn−lm c.

In other words, a sufficient number of coefficients need to vanish, and the spacings

between non-vanishing coefficients must be multiples of m. For example, a symmetric

state of the form |ψs〉 = a3|S3〉 + a7|S7〉 + a15|S15〉 is rotationally symmetric with

ϕ = π
2 , because the spacings between non-vanishing coefficients are multiples of 4.

We remark that Lemma 14 could also have been proved with the generalised

Majorana representation of Theorem 12. The idea for this is that the discrete

rotational symmetry around the Z-axis necessitates that the MPs that do not lie on

the poles must be equidistantly spaced along horizontal circles. Each such circle of

MPs then represents a GHZ-type state |ψSi〉 = αi|00 . . . 0〉+ βi|11 . . . 1〉. Combining

all these |ψSi〉 via Equation (3.18) then gives rise to a state of the form (3.20).

3.3.2 Real symmetric states

For symmetric states with real coefficients the following result is immediately clear

from Equation (3.18).

Corollary 15. If the |ψSi〉, i = 1, . . . , k of the generalised Majorana representation
(3.18) are all real, then |ψs〉 is also real.

Next it is shown that the MPs and CPPs of real states exhibit a reflection sym-

metry with respect to the X-Z-plane which cuts the Majorana sphere in half. In

mathematical terms, the reflection of a Bloch vector |φ〉 = cθ|0〉+ eiϕsθ|1〉 along the

X-Z-plane is the complex conjugate vector |φ〉∗ = cθ|0〉+ e−iϕsθ|1〉.

Lemma 16. Let |ψs〉 be a symmetric state of n qubits. |ψs〉 is real iff all its MPs are
reflective symmetric with respect to the X-Z-plane of the Majorana sphere.
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Proof. (⇒) Let |ψs〉 be a real state. Then |ψs〉 = |ψs〉∗, and since Majorana represen-

tations are unique up to a global phase, |ψs〉 has the same MPs as |ψs〉∗. Therefore

the complex conjugate |φi〉∗ of each MP |φi〉 is also an MP.

(⇐) Let the MPs of |ψs〉 be symmetric with respect to the X-Z-plane. Then for

every non-real MP |φi〉 = cθi |0〉+ eiϕisθi |1〉 its complex conjugate |φi〉∗ is also an MP.

Define a partition S = {S1, . . . ,Sk} of the MPs where S1 contains all the real MPs and

the remaining Si each contain a complex conjugate pair of MPs: Si = {|φi〉, |φi〉∗}.
The two qubit states |ψSi〉 = |φi〉|φi〉∗+|φi〉∗|φi〉 ∝ c2

θi
|S0〉+

√
2cθisθi cosϕi|S1〉+s2

θi
|S2〉

are all real, and from Corollary 15 it follows that |ψs〉 is real.

Corollary 17. Let |ψs〉 be a symmetric state of n qubits. If |ψs〉 is real, then all its CPPs
are reflective symmetric with respect to the X-Z-plane of the Majorana sphere.

Proof. Consider the complex conjugate of the optimisation problem (3.14). From

Lemma 16 it follows that for any CPP |σ〉 the complex conjugate |σ〉∗ is also a CPP.

3.3.3 Positive symmetric states

Particularly strong results can be obtained for the Majorana representations of

symmetric states with positive coefficients. First, we restate Corollary 15 for the

positive case:

Corollary 18. If the |ψSi〉, i = 1, . . . , k of the generalised Majorana representation
(3.18) are all positive, then |ψs〉 is also positive.

In the remainder of this section it will be shown that the Majorana represen-

tations of positive symmetric states are of two basic types. The first type exhibits

a rotational Z-axis symmetry which forces the MPs and CPPs into predictable and

easily analysable patterns on the Majorana sphere. In particular, an upper bound

for the number of CPPs of such states can be derived. The other type of Majorana

representation does not exhibit a Z-axis symmetry, and its CPPs are all restricted to

the half-circle of positive Bloch vectors.

The only states with a continuous rotational Z-axis symmetry are the Dicke states,

i.e. the states whose MPs all lie on the poles. This trivial case will not be considered

in the following, and instead it is assumed that at least one MP does not lie on a

pole. Rotational Z-axis symmetries must then be discrete, with a minimal rotational

angle ϕ = 2π
m , m ∈ N and 1 < m ≤ n. From this symmetry and from Lemma 16

the allowed distribution patterns of the MPs can be fully characterised: All MPs that

do not lie on the poles must be equidistantly spread along horizontal circles with

neighbouring spherical distances of ϕ = 2π
m . The m MPs of such a circle represent

an m qubit GHZ-type state |ψS〉 = α|S0〉 + β|Sm〉 via the Majorana representation

(1.21).
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|ψ+
S 〉

|ψ+ϑ
S 〉

|ψ−ϑS 〉
ϑ ϑ

Figure 3.5: An exemplary MP distribution of a positive symmetric 18 qubit state with
a Z-axis rotational symmetry is shown. The minimal rotational angle is ϕ = 2π

5 . Two
MPs lie on the north pole, one on the south pole, five on a single basic circle and 10
on two intertwined circles. The circles of MPs giving rise to the five qubit GHZ-type
states |ψ+

S 〉, |ψ+ϑ
S 〉, and |ψ−ϑS 〉 are coloured gray, black and white, respectively.

If |ψS〉 is real (denoted as |ψ±S 〉), then Lemma 16 implies that the complex

conjugate of each MP is also an MP of that circle. A horizontal circle of MPs with this

property is shown in Figure 3.5.

If |ψS〉 is not real, then Lemma 16 implies that for some MPs the complex

conjugate is not part of this circle. For the composite state |ψs〉 to be real, this

necessitates that the MPs of the “complex conjugate circle” |ψS〉∗ are also part of

|ψs〉. As shown in Figure 3.5, this gives rise to two intertwined horizontal circles

|ψ+ϑ
S 〉 = α|S0〉 + eimϑβ|Sm〉 and |ψ−ϑS 〉 = α|S0〉 + e−imϑβ|Sm〉 where the azimuthal

angle of each MP is shifted by an angle ±ϑ from the position it would occupy for the

corresponding non-phased state |ψ+
S 〉 = α|S0〉+ β|Sm〉 with α, β ≥ 0.

All horizontal circles of MPs present in a real symmetric state with Z-axis ro-

tational symmetry can be decomposed into these two principal types, and from

Equation (3.18) it is clear that the resulting state |ψs〉 is real, rotationally symmetric

and that the degrees of freedom present in the horizontal circles of MPs manifest

themselves in the freedoms of the non-vanishing coefficients of |ψs〉. The additional

requirement of positivity for |ψs〉 merely restricts the basic type of MP circle to

positive states |ψ+
S 〉, and the intertwined type to those with an angle ϑ ≤ π

2m .

The following lemma asserts strong restrictions on the possible locations of the

CPPs of positive symmetric states with or without Z-axis rotational symmetries.

Lemma 19. Let |ψs〉 be a positive symmetric n qubit state, excluding the Dicke states.

(a) If |ψs〉 has a Z-axis rotational symmetry with minimal rotational angle ϕ = 2π
m ,

then all its CPPs |σ(θ, ϕ)〉 = cθ|0〉 + eiϕsθ|1〉 are restricted to the m azimuthal
angles ϕr = 2πr

m with r ∈ Z. Furthermore, if |σ(θ, ϕr)〉 is a CPP for some r, then
it is also a CPP for all other values of r.
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(b) If |ψs〉 has no Z-axis rotational symmetry, then all its CPPs are positive.

Proof. The proof runs similar to the one of Lemma 3, where the existence of at least

one positive CPP was established. We use the notation |ψs〉 =
∑

k ak|Sk〉 with ak ≥ 0,

and |λ〉 = |σ〉⊗n.

Case (a): Consider a non-positive CPP |σ〉 = cθ|0〉+ eiκsθ|1〉 with κ = 2πs
m , s ∈ R,

and define |λ+〉 := |σ+〉⊗n = (cθ|0〉+ sθ|1〉)⊗n. Then

|〈ψs|λ〉| =
∣∣∣∣∑
k

eikκakcn−kθ skθ
√(

n
k

)∣∣∣∣ ≤∑
k

akcn−kθ skθ
√(

n
k

)
= |〈ψs|λ+〉| .

If this inequality is strict, then |σ〉 is not a CPP. Since this would contradict the

initial assumption, we must have an equality. Then for any two indices ki and kj of

non-vanishing coefficients aki and akj the following must hold: eikiκ = eikjκ. This

can be reformulated as ki s mod m = kj s, or equivalently

(ki − kj) s mod m = 0 . (3.21)

Because ϕ = 2π
m is the minimal rotational angle, m is the largest integer that satisfies

Equation (3.20), and thus there exist ki and kj with aki , akj 6= 0 s.t. ki − kj = m.

From this and from Equation (3.21), it follows that s ∈ Z. Therefore all CPPs are of

the form |σ(θ, ϕr)〉 with r ∈ Z, and if |σ(θ, ϕr)〉 is a CPP for some r, then it is also a

CPP for all other r ∈ Z.

Case (b): Considering a CPP |σ〉 = cθ|0〉 + eiρsθ|1〉 with ρ = 2πr and r ∈ R,

we need to show that r ∈ Z. Defining |σ+〉 = cθ|0〉 + sθ|1〉, and using the same

line of argumentation as above, the equation eikiρ = eikjρ must hold for any pair of

non-vanishing aki and akj . This is equivalent to

(ki − kj) r mod 1 = 0 , (3.22)

or (ki−kj) r ∈ Z, in particular r ∈ Q. If there exist indices ki and kj of non-vanishing

coefficients s.t. ki − kj = 1, then r ∈ Z, as desired. Otherwise consider r = x
y with

coprime x, y ∈ N, x < y. Because |ψs〉 is not rotationally symmetric, the negation

of Lemma 14 yields that, for any two ki and kj (aki , akj 6= 0) with ki − kj = α > 1,

there must exist a different pair kp and kq (akp , akq 6= 0) with kp − kq = β > 1 s.t. α

is not a multiple of β and vice versa. From r = x
y and Equation (3.22), it follows that

y = α as well as y = β. This is a contradiction, so r ∈ Z.

A trivial consequence of the previous theorem is the following statement that

considerably simplifies the determination of the geometric entanglement.

Corollary 20. Every positive symmetric state has at least one positive symmetric CPP.
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With the confinement of the CPPs to certain azimuthal angles described by

Lemma 19, it is possible to make the following statements about the number and

locations of the CPPs.

Theorem 21. The Majorana representation of every positive symmetric state |ψs〉 of
n qubits, excluding the Dicke states, belongs to one of the following three mutually
exclusive classes.

(a) |ψs〉 has a Z-axis rotational symmetry, with only the two poles as possible CPPs.

(b) |ψs〉 has a Z-axis rotational symmetry, and at least one CPP is non-positive.

(c) |ψs〉 has no Z-axis rotational symmetry, and all CPPs are positive.

Regarding the states from class (b) and (c), the following assertions can be made about
the number of CPPs for n ≥ 3:

(b) If both poles are occupied by at least one MP each, then there are at most 2n− 4

CPPs, else there are at most n CPPs.

(c) There are at most dn+2
2 e CPPs.

Proof. We start with the first part of the theorem. Case (c) has already been shown in

Lemma 19, so we only need to consider states |ψs〉 with a Z-axis rotational symmetry.

If all CPPs are either |0〉 or |1〉, then we have case (a), otherwise there is at least one

CPP |σ〉 which does not lie on a pole. If this |σ〉 is non-positive, we have case (b), and

if |σ〉 is positive, Lemma 19 states the existence of another, non-positive CPP, thus

again resulting in case (b). This concludes the first part of the proof.

Now consider the second part of the theorem. We start with case (b), i.e. positive

states that have a Z-axis rotational symmetry with minimal rotational angle ϕ = 2π
m ,

and 1 < m ≤ n. According to Equation (3.13), any CPP |σ〉 maximises the function∏n
i=1|〈σ|φi〉|, and from Corollary 20 it follows that there must be at least one positive

CPP |σ〉 = cθ|0〉 + sθ|1〉. First we derive the maximum possible number of positive

CPPs, from which an upper bound for the total number of CPPs follows directly from

Lemma 19.

For an MP distribution with k MPs on the north pole, l MPs on the south pole and

the remaining n− k − l MPs on horizontal circles, the function to maximise is

f(θ) = 〈σ|0〉k〈σ|1〉l
∏
r

h1(θr)
∏
s

h2(ϑs, θs) ,

where h1(θr) =
∏m
i=1〈σ|φi(θr)〉 contains the factors contributed by a single circle

with m MPs at inclination θr, and h2(ϑs, θs) =
∏m
i=1〈σ|φi(+ϑs, θs)〉〈σ|φi(−ϑs, θs)〉
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represents the factors contributed by two circles intertwined at azimuthal angles ±ϑs
with 2m MPs, and inclination θs. A simple calculation yields

h1(θr) = cmθ cmθr + smθ smθr , h2(ϑs, θs) = c2m
θ c2m

θs + 2 cos(mϑs)cmθ smθ cmθss
m
θs + s2m

θ s2m
θs .

Thus f can be written in the form

f(θ) = ckθs
l
θ

p∑
i=0

aic
(p−i)m
θ simθ =

p∑
i=0

aic
k+(p−i)m
θ sl+imθ ,

where the ai are positive-valued coefficients, and p is the number of basic circles

(k + l + pm = n). The number of zeros of f ′(θ) in θ ∈ (0, π) gives a bound on the

number of positive CPPs. The form of f ′(θ) is qualitatively different for m = 2 and

m > 2. With the substitution x = tan θ
2 the equation f ′(θ) = 0 for m = 2 becomes

a0l +

(
p∑
i=1

bix
2i

)
− apkx2p+2 = 0 ,

with bi = ai(l + 2i)− ai−1(k + 2(p− i) + 2) ∈ R .

This is a real polynomial in x, with the first and last coefficient vanishing if no MPs

lie on the south pole (l = 0) and north pole (k = 0), respectively. Descartes’ rule

of signs states that the number of positive roots of a real polynomial is at most the

number of sign differences between consecutive nonzero coefficients, ordered by

descending variable exponent. From this and the fact that the codomain of x is R+, a

calculation yields that for m = 2 there are at most p− 1, p or p+ 1 extrema of f(θ)

lying in θ ∈ (0, π), depending on whether k and l are zero or not.

For m > 2, we obtain the analogous result

a0l +

(
p∑
i=1

−cixim−(m−2) + dix
im

)
− apkxpm+2 = 0 ,

with ci = ai−1(k + (p− i)m+m) ∈ R+ , and di = ai(l + im) ∈ R+ .

From Descartes’ rule of signs it is found that there exist 2p− 1, 2p or 2p+ 1 extrema

of f(θ) in θ ∈ (0, π), depending on whether k and l are zero or not.

With these results the maximum number of global maxima of f(θ) can be deter-

mined. Case differentiations have to be performed with regard to m = 2 or m > 2,

whether k and l are zero or not and whether p is even or odd. The non-positive CPPs

are obtained by considering the rotational Z-axis symmetry. For any positive CPP not

lying on a pole, there are m− 1 other, non-positive CPPs lying at the same inclination

(cf. Lemma 19). For m = 2, the maximum possible number of CPPs is n
2 + 1 (n even)
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or n+1
2 (n odd). This is significantly less than in the general case m > 2 where a

lengthy calculation yields 2n− 4 as the maximum number of CPPs. Interestingly, this

bound decreases to n if at least one of the two poles is free of MPs.

Now consider case (c), i.e. states with no Z-axis rotational symmetry. All MPs of

a positive state must either lie on the positive half circle or form complex conjugate

pairs (cf. Lemma 16 and Theorem 12). From this the optimisation function follows

as

f(θ) =
n∑
i=0

aicn−iθ siθ ,

with real ai. Calculating f ′(θ) yields the condition for the extrema:

a1 +

(
n−1∑
i=1

bix
i

)
− an−1x

n = 0 , with bi = ai+1(i+ 1)− ai−1(n− i+ 1) .

The maximum number of CPPs again follows from Descartes’ rule. All CPPs are now

restricted to the positive half circle (which includes the poles), yielding at most n+3
2

CPPs for odd n and n+2
2 for even n.
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Chapter4
Maximally Entangled Symmetric
States

In this chapter we present the candidates for maximal symmetric

entanglement of up to 12 qubits with respect to the geometric measure of

entanglement. These solutions of the “Majorana problem” were found by

a combination of analytical and numerical methods, which are explained

in the first part of this chapter. With the help of the Majorana representa-

tion the point distributions of the solutions can be compared to those of

Tóth’s and Thomson’s classical optimisation problems on the sphere. The

chapter concludes with a summary and discussion of the obtained results.

4.1 Methodology

Exact solutions for Tóth’s and Thomson’s problem of distributing n points over the

surface of a sphere are known only for a few values of n, with the highest one being

n = 24. Still, this compares favourably to the Majorana problem (3.14) for which

no analytical solution beyond n = 3 is known [156]. Due to the complexity of an

analytical treatment of this optimisation problem, it is useful to make use of numerics

too. The combination of analytical and numerical methods employed in our search

for the maximally entangled symmetric states will be outlined in the following.

4.1.1 Positive states

For several reasons a particular emphasis has been placed on the search for the

maximally entangled symmetric state among positive states. Firstly, positive states

are considerably easier to investigate, because the number of parameters in the

general form of the state is reduced by half, and because the existence of at least
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one positive CPP (cf. Corollary 20) simplifies the determination of the geometric

entanglement. In particular, it is sometimes possible to analytically determine the

exact form of the estimated maximally entangled state by requiring that the values of

the spherical amplitude function g(θ, ϕ) coincide at two local maxima on the positive

half-circle of the Majorana sphere, thus fulfilling the necessary condition of at least

two CPPs from Corollary 5. This strategy will be employed for determining the exact

form of some states discussed in this chapter. Additionally, the positive case is easier

to investigate because Lemma 19 and Theorem 21 restrict the number and locations

of CPPs. To determine the locations of all CPPs, it suffices to find the positive CPPs,

because all other CPPs follow from Lemma 19. In the case of “Platonic states” with

positive coefficients it will be seen that the CPPs follow without any calculations from

Lemma 19 and the rotation groups alone.

It is reasonable to expect that the Majorana representations of highly entangled

positive symmetric states are rotationally symmetric around the Z-axis, because

otherwise the CPPs can only lie on the positive half-circle of the Majorana sphere

(cf. Lemma 19), which results in an imbalance of the spherical amplitude function

g(θ, ϕ). Because of Lemma 14, rotationally symmetric states have a large number

of vanishing coefficients, which considerably reduces the complexity of numerical

searches for high and maximal entanglement.

Another argument is that – recast as quantum states by means of the Majorana

representation – many of the solutions to Tóth’s and Thomson’s problem for lower n

are given by positive states1. One could thus expect that in many cases the solutions

to the Majorana problem can be cast as positive states too. On the other hand,

arguments were presented in Section 2.3 that for systems with sufficiently many

parties the entanglement of positive states is considerably lower than that of general

states, and a similar behaviour is expected for the subset of symmetric states.

Symmetric states with no more than two basis states can always be cast positive,

regardless of the number of parties. Some exemplary calculations were performed

with such states, and the results are shown in Table 4.1. Listed are the entanglement

of some n qubit Dicke states and superpositions of two Dicke states, both for fixed

n and in the asymptotic limit n→∞. It can be seen that states tend to have more

geometric entanglement if they contain Dicke states with a relatively balanced number

of excitations. For example, the entanglement of the most balanced Dicke state |Sn
2
〉

scales as Eg = O(log2

√
n), while |GHZn〉 = 1√

2
(|S0〉+ |Sn〉) has an entanglement of

only Eg = 1, regardless of n.

Finally, we outline how the most entangled positive symmetric states were found.

1One reason for this is that these point distributions often exhibit a rotational symmetry, thus leading
to a low number of nonvanishing basis states (cf. Lemma 14), which in turns makes it more likely that
the state can be cast without phases.
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Table 4.1: Geometric entanglement of some n qubit Dicke states and superpositions
of two Dicke states. For the first four states the CPPs and Eg can be determined
exactly, while for the latter four states precise values are known only in the asymptotic
limit n → ∞. The weight of the basis states in superpositions was chosen to yield
maximal entanglement. With the exception of 1√

1+e
(
√
e|S1〉+ |Sn〉) all states are

totally invariant, and therefore they are additive under Eg, ER and ERob, with the
amount of entanglement coinciding for these three measures (cf. Theorem 11).

|ψs
n〉 positive CPPs |σ〉 Eg (|ψs

n〉) lim
n→∞

Eg (|ψs
n〉)

|S0〉 |0〉 0 0

|S1〉
√

n−1
n |0〉+

√
1
n |1〉 log2

(
n
n−1

)n−1
log2(e)

|Sn
2
〉 1√

2
(|0〉+ |1〉) log2

(
2n

( n
n/2)

)
log2

√
nπ
2

1√
2

(|S0〉+ |Sn〉) |0〉 and |1〉 1 1

|ψs
n〉 positive CPPs lim

n→∞
|σ〉 lim

n→∞
Eg (|ψs

n〉)

1√
1+e

(
√
e|S1〉+ |Sn〉)

√
n−1
n |0〉+

√
1
n |1〉 log2(1 + e)

1√
2

(|S1〉+ |Sn−1〉)
√

n−1
n |0〉+

√
1
n |1〉 and

√
1
n |0〉+

√
n−1
n |1〉 log2(2e)

1√
2

(
|Sn

3
〉+ |S 2n

3
〉
) √

2
3 |0〉+

√
1
3 |1〉 and

√
1
3 |0〉+

√
2
3 |1〉 log2

(
4
3

√
nπ
)

1√
2

(
|Sn

4
〉+ |S 3n

4
〉
) √

3
2 |0〉+ 1

2 |1〉 and 1
2 |0〉+

√
3

2 |1〉 log2

√
3nπ

2

Case differentiations were performed for all combinations of vanishing and non-

vanishing basis states, with the approximate value of the maximal entanglement

determined numerically in each case. In this fashion all the cases with signifi-

cantly lower entanglement could be ruled out. For the cases that exhibited high

entanglement the precise amount was calculated analytically (where possible) or

approximated numerically to a high precision. In all cases it was found that the

maximally entangled states can be expressed with a low number of nonvanishing

basis states. This finding justifies the omission of some cases with large numbers

of non-vanishing basis states in the numerical search of n > 5 qubits due to their

complexity. However, all possible states with a rotational symmetry around the

Z-axis were taken into account. For these reasons we can be confident that the

most entangled states found this way are indeed the maximally entangled positive

symmetric ones.

4.1.2 General states

In the case of general symmetric states we do not have as many analytic tools as for

positive states, so the search is over a far bigger set of possible states, and we can be

less confident in our results. In particular, the candidates for maximal entanglement
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in the general case should be treated with a certain amount of caution, because states

with yet more entanglement may exist.

A helpful result from a theoretical viewpoint is Corollary 5 which postulates the

existence of at least two CPPs. From a numerical viewpoint the known solutions to

Tóth’s and Thomson’s problem – converted to symmetric n qubit states via Equa-

tion (1.21) – readily provide nontrivial lower bounds on the maximal symmetric

entanglement. Martin et al. [90] computed the geometric entanglement of these

states for up to n = 110 and found that the solutions of Thomson’s problem generally

yield higher entanglement than those of Tóth’s problem. Furthermore, they found

that the entanglement of Thomson’s solutions scales as ETh
g ≈ log2

(n+1)
1.71 , which

is close to the upper bound Eg ≤ log2(n + 1) derived in Section 2.4.2, and thus

leaves only a narrow corridor for the maximal values of Eg. The classical solutions,

particularly those for Thomson’s problem, are therefore a good starting point for

an explicit search for the maximally entangled symmetric state. In some cases (for

n = 10 in Section 4.2.7 and n = 11 in Section 4.2.8) we found the conjectured

maximally entangled symmetric state by making small modifications to the point

distributions of the classical solutions. Another strategy to find highly entangled

states is to consider states with certain symmetry features in their MP distribution,

such as rotational and reflective symmetries.

4.2 Results

Another study of highly and maximally entangled symmetric states was independently

performed by Martin et al. [90], and their results are similar to ours. In their paper

they focused on using databases [175, 176] with the known numerical solutions

of Tóth’s and Thomson’s problem to derive the geometric entanglement of the

corresponding symmetric states for up to n = 110 in a straightforward manner, and

they found the maximally entangled symmetric states for up to n = 6 qubits. In

our publication [89] we studied the cases of up to n = 12 qubits in much more

detail. In particular, we presented candidates for maximal symmetric entanglement

for each n, discussed the Majorana representations of highly entangled states, and

discovered that the spherical volume function is a very useful tool for understanding

the distribution patterns of MPs and CPPs.

4.2.1 Four qubits

For four points both Tóth’s and Thomson’s problem are solved by the vertices of

the regular tetrahedron [158]. Our numerical search for the maximally entangled

symmetric state returned this Platonic solid too. The MPs, CPPs and the geometric
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(a)

1

2
3

4

(b)

3

1
2

4

(c)

2

3
1

4

Figure 4.1: The four CPPs of the tetrahedron state can be directly obtained from
the tetrahedral symmetry group and from Lemma 19. Rotations from T ⊂ SO(3)
amount to permutations of the MPs and thus provide additional restrictions to the
allowed locations of the CPPs. An R(2π

3 )-rotation along the axis given by the Bloch
vector of MP |φ4〉 is performed twice between (a) and (c). Any CPP must lie at the
intersections of the blue, green and red lines shown in (c), yielding the locations of
the four MPs.

entanglement of the tetrahedron state |Ψ4〉 =
√

1
3 |S0〉 +

√
2
3 |S3〉 were already dis-

cussed in Section 3.1.1, with different visualisations shown in Figure 3.2. Here we

focus on the various interesting properties of this state.

Firstly, we note that the tetrahedron state is totally invariant under the tetrahedral

symmetry group T ⊂ SO(3), and because |Ψ4〉 is a positive state, Theorem 11 gives us

the equivalence and additivity of this state under Eg, ER and ERob. Further results can

be derived from the tetrahedral symmetry group: Even though R⊗4
T |Ψ4〉 = |Ψ4〉 holds

for all RT ∈ T , the individual MPs are not necessarily left invariant: RT |φi〉 = |φj〉,
with i, j ∈ {1, 2, 3, 4}. As seen in Figure 4.1, this can be viewed as a permutation

of the MPs. Naturally, the RT can also be viewed as rotations of the Majorana

sphere along an axis running though the sphere. Because |Ψ4〉 is positive, Lemma 19

restricts the allowed locations for CPPs to the three half-circles shown as blue lines

in Figure 4.1(a). These lines rotate with the Majorana sphere under the action of

RT , which allows us to apply Lemma 19 again in the new orientation. As shown in

Figure 4.1(b) and (c), two successive rotations give rise to further restricting areas,

coloured green and red. Any CPP can only lie at the intersections of the blue, green

and red lines. From Figure 4.1(c) it can be seen that these intersections are precisely

the locations of the four MPs, thus providing us with all the CPPs of |Ψ4〉 without

the need for any calculations. This is remarkable, because the determination of

CPPs is usually a highly nontrivial problem which requires at least some analytical or

numerical effort.

Apart from being the unique state with maximal geometric entanglement among

symmetric states, the special position of the tetrahedron state in H = (C2)⊗4 can

be noticed in other ways. As a Platonic state, it is an optimal state for reference

frame alignment [106], and in terms of symmetric informationally complete positive-
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operator-valued measures (SIC POVM) [181, 182] it was found that the tetrahedron

state is the unique state that can be generated in the setting of a 2-dimensional

Hilbert space [110, 182]. In Section 5.7 it will be outlined that – along with the four

qubit cluster state and GHZ state – the tetrahedron state is one of the three maximally

entangled four qubit states under a monotone that requires all k-tangles with k < 4

to vanish [58, 62]. Under more stringent requirements it is even the only state

to be maximally entangled [183]. Furthermore, through a private communication

with Mio Murao I became aware of the following bipartite decomposition of the

tetrahedron state:

|Ψ4〉 =
1√
3
|00〉|00〉+

1√
6

(|01〉|11〉+ |10〉|11〉+ |11〉|01〉+ |11〉|10〉)

=
1√
3

(|a〉|a〉+ |b〉|c〉+ |c〉|b〉) , (4.1)

with |a〉 = |00〉, |b〉 = 1√
2

(|01〉+ |10〉) and |c〉 = |11〉 as orthonormalised 2-qubit

states. In this sense the tetrahedron state contains maximally entangled bipartite

qutrit (three-level) systems along any split into two 2-qubit subsystems. Viewed as

such a 2-qutrit system, the entanglement of the state (4.1) is Eg = ER = ERob =

log2 d = log2 3, and because it is a pure bipartite state, it is additive under all three

measures. Therefore the tetrahedron state retains its entanglement and additivity

properties when viewed as a 2-qutrit state instead of a 4-qubit state. This bears

resemblance to the situation of n qubit cluster states, which (for even n) have the

same amount of entanglement as n
2 isolated Bell pairs. In both cases Eg = ER =

ERob = n
2 holds, and the states are additive under the three measures [143].

4.2.2 Five qubits

For five points, the solution to Thomson’s problem is given by three of the charges

lying on the vertices of an equatorial triangle and the other two lying at the poles

[173, 184]. Such a trigonal bipyramid is also a solution to Tóth’s problem, but it

is not unique2 [180, 185, 186]. The corresponding quantum state, the “trigonal

bipyramid state” |ψ5〉 = 1√
2
(|S1〉+ |S4〉), has the MPs

|φ1〉 = |0〉 , |φ2,3,4〉 = 1√
2
(|0〉+ eiκ|1〉) , |φ5〉 = |1〉 , (4.2)

with κ = 0, 2π
3 ,

4π
3 . As seen in Figure 4.2(a) and (b), the state has three CPPs which

coincide with the equatorial MPs, yielding Eg(|ψ5〉) = log2

(
16
5

)
≈ 1.678072. The

2An example of another solution is the square pyramid obtained from the regular octahedron by
removing one vertex, and a continuum of solutions is given by two fixed vertices on the poles and the
other three vertices lying on the equatorial circle with spherical distances π

2
≤ smin ≤ 2π

3
between each

pair. In all of these configurations the minimum pairwise distance is smin = π
2

.
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(a)

|φ1〉

|φ2〉
|φ3〉

|φ4〉

|φ5〉
(b) (c)

|φ1〉

|φ2〉 |φ3〉

|φ4〉|φ5〉

(d)

Figure 4.2: For five qubits the Majorana representation and the spherical amplitude
function g2(θ, ϕ) of the “trigonal bipyramid state” |ψ5〉 is shown in (a) and (b),
respectively. The same visualisations are shown for the “square pyramid state” |Ψ5〉
in (c) and (d), respectively. The dashed circles in (b) and (d) mark the maximum
values of g2, with the outer gray circle corresponding to the less entangled state |ψ5〉
and the inner black circle to the more entangled state |Ψ5〉.

trigonal bipyramid state is positive and totally invariant under the dihedral symmetry

group Dm for m = 3, which implies that |ψ5〉 is equivalent and additive under Eg,

ER and ERob.

However, a numerical search among symmetric five qubit states yields states

with higher entanglement. The conjectured maximally entangled state has the MP

distribution of the square pyramid3 shown in Figure 4.2(c), which corresponds to the

analytic form

|Ψ5〉 =
|S0〉+A|S4〉√

1 +A2
, (4.3)

where the MPs are

|φ1〉 = |0〉 , |φ2,3,4,5〉 =
√
α|0〉+ eiκ√1− α|1〉 , (4.4)

with κ = π
4 ,

3π
4 ,

5π
4 ,

7π
4 . The relationship between A and α is

A =
(1− α)2

√
5α2

. (4.5)

The value of A which maximises the entanglement of |Ψ5〉 gives rise to a state with

five CPPs, one on the north pole and the other four lying on a horizontal circle below

the plane with the MPs, i.e.

|σ1〉 = |0〉 , |σ2,3,4,5〉 = xm|0〉+ k ym|1〉 , (4.6)

with x2
m + y2

m = 1 and k = 1, i,−1,−i. Approximate values of these quantities are:

A ≈ 1.531538191 , α ≈ 0.350806560 , xm ≈ 0.466570328 . (4.7)
3This square pyramid cannot be a solution of Tóth’s problem, because the spherical distance between

some MPs (e.g. |φ2〉 and |φ3〉) is smin <
π
2

.
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The exact values can be determined analytically. Since |Ψ5〉 is positive, it suffices to

investigate the maxima of the spherical amplitude function g(θ, ϕ) along the positive

half-circle: g(θ) ≡ g(θ, 0). Using the parameterisation x := cθ, an analysis shows

that the global maximum of g(x) becomes minimal when the value g(1) at the local

maximum x = 1 equals the value g(xm) at the non-trivial maximum xm ∈ (0, 1). With

the ansatz g(1) = g(xm) it follows that A = 1−x5
m√

5xmy4
m

, and the requirement dg
dx(xm) = 0

yields 4x5
m − 5x2

m + 1 = 0. A polynomial division by the trivial root xm = 1 reduces

this quintic equation to a quartic one:

4x4
m + 4x3

m + 4x2
m − xm − 1 = 0 . (4.8)

The real root in the interval [0, 1] can be determined analytically by a reduction to

cubic equations and Cardano’s Formula [187]:

xm =
1

4

(√
8z − 3− 1 +

√
10√
8z−3

− 2− 8z
)
, (4.9)

with z =
1

24

(
3

√
550 + 30

√
345 +

3

√
500− 30

√
345

)
+

1

6
.

This xm establishes the nontrivial positive CPP |σ2〉 = xm|0〉 +
√

1− x2
m|1〉, and by

inserting it into A = 1−x5
m√

5xmy4
m

(4.8)
=

√
5

4xm(1−x2
m)

, it yields the explicit form of |Ψ5〉. The

parameter α of the MPs follows by solving Equation (4.5). From the MP distribution

in Figure 4.2(c) it is clear that |Ψ5〉 remains invariant under the cyclic symmetry

group Cm with m = 4. However, it is not totally invariant, because the latitude of

the horizontal circle of MPs can be varied without changing the rotation group.

The amount of entanglement Eg(|Ψ5〉) = log2(1 +A2) ≈ 1.742269 of the square

pyramid state is considerably higher than that of the trigonal bipyramid state. Martin

et al. [90] independently found a square pyramid state as the maximally entangled

symmetric five qubit state, and we verified that their state is the same as ours.

4.2.3 Six qubits

The regular octahedron, a Platonic solid, is the unique solution to Tóth’s and Thom-

son’s problem. The corresponding “octahedron state” |Ψ6〉 = 1√
2
(|S1〉 + |S5〉) was

numerically found to solve the Majorana problem for six qubits too. In the orientation

shown in Figure 4.3(a) the MPs are

|φ1〉 = |0〉 , |φ2〉 = |1〉 , |φ3,4,5,6〉 = 1√
2

(
|0〉+ eiκ|1〉

)
, (4.10)

with κ = π
4 ,

3π
4 ,

5π
4 ,

7π
4 . The octahedron state has a positive computational form and

is totally invariant under the octahedral symmetry group O ⊂ SO(3), implying that

it is equivalent and additive under Eg, ER and ERob. Furthermore, the rotational

75



Chapter 4. Maximally Entangled Symmetric States

(a)

|φ1〉

|φ2〉

|φ3〉 |φ4〉

|φ5〉|φ6〉

(b) (c)

1

2

3 4

56

(d)

5

3

1 4

26

Figure 4.3: For six qubits the Majorana representation and the spherical amplitude
function of the “octahedron state” |Ψ6〉 are shown in (a) and (b), respectively. Analo-
gous to the tetrahedron state, the CPPs follow directly from the octahedral symmetry
group O ⊂ SO(3). Only one R(π2 )-rotation along the axis spanned by the MPs |φ4〉
and |φ6〉 is necessary to unambiguously determine the eight CPPs at the intersections
of the blue and green lines in (d).

invariance enables us to determine the CPPs with Lemma 19. As seen in Figure 4.3(d),

only one rotation suffices to determine the eight CPPs at the centre of each face of

the octahedron, forming a cube inside the Majorana sphere:

|σ1,2,3,4〉 =

√√
3+1

2
√

3
|0〉+ k

√√
3−1

2
√

3
|1〉 , |σ5,6,7,8〉 =

√√
3−1

2
√

3
|0〉+ k

√√
3+1

2
√

3
|1〉 , (4.11)

with k = 1, i,−1,−i. The geometric entanglement follows as Eg(|Ψ6〉) = log2

(
9
2

)
≈

2.169925. In contrast to the tetrahedron state, where the MPs and CPPs overlap, the

CPPs of the octahedron state lie as far away from the MPs as possible. This is because

the MPs of |Ψ6〉 form antipodal pairs, which leads to the spherical amplitude function

being zero at the location of each MP.

4.2.4 Seven qubits

For seven points, the solutions to the two classical problems become fundamentally

different for the first time. Tóth’s problem is solved by two triangles asymmetrically

positioned about the equator and the remaining point at the north pole [172, 186],

or (1-3-3) in the Föppl notation [158]. Converting Tóth’s solution to Bloch vectors

yields the MPs

|φ1〉 = |0〉 , |φ2,3,4〉 = cθ|0〉+ eiκsθ|1〉 , |φ5,6,7〉 = cϑ|0〉 − eiκsϑ|1〉 , (4.12)

with κ = 0, 2π
3 ,

4π
3 , and their inclinations are given by

cθ =
1

2 sin(2π
9 )

, cosϑ = − 1√
3 tan(2π

9 )
. (4.13)
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(a) (b) (c) (d)

Figure 4.4: For seven qubits the Majorana representation and the spherical amplitude
function g2(θ, ϕ) of the solution of Tóth’s problem |ψTó

7 〉 is shown in (a) and (b), and
for the “pentagonal dipyramid state” |Ψ7〉 in (c) and (d), respectively. The outer and
inner circle correspond to the maximum values of g2 for |ψTó

7 〉 and |Ψ7〉, respectively.

This non-positive state is of the form |ψTó
7 〉 = α|S0〉 − β|S3〉 − γ|S6〉, with the approx-

imate values for the coefficients being

α ≈ 0.295510 , β ≈ 0.602458 , γ ≈ 0.741430 . (4.14)

The state is rotationally symmetric around the Z-axis and has three CPPs |σ1,2,3〉 =

cφ|0〉 + eiκsφ|1〉, with κ = 0, 2π
3 ,

4π
3 and φ ≈ 2.089603, yielding G2 ≈ 0.309326

and Eg(|ψTó
7 〉) ≈ 1.692798. Figure 4.4 shows the Majorana representation and the

highly imbalanced spherical amplitude function of |ψTó
7 〉. The entanglement can

be considerably increased by varying the parameters (4.14), which corresponds to

changing the latitude of the two MP circles shown in Figure 4.4(a). In this way a

state with seven CPPs and Eg ≈ 2.14681 can be obtained.

Thomson’s problem is solved by the vertices of a pentagonal dipyramid [172,

173, 184], where five points lie on an equatorial pentagon and the other two on

the poles. The corresponding “pentagonal dipyramid state”, shown in Figure 4.4,

is numerically found to be the solution to the Majorana problem, too. The state is

|Ψ7〉 = 1√
2
(|S1〉+ |S6〉), and its MPs are

|φ1〉 = |0〉 , |φ2,3,4,5,6〉 = 1√
2

(
|0〉+ eiκ|1〉

)
, |φ7〉 = |1〉 , (4.15)

with κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 . Despite this simple analytical form, the determination of

the CPPs is not trivial. With the parameterisation x := cos2 θ the positions of the ten

CPPs

|σ1,2,3,4,5〉 = cθ|0〉+ eiκsθ|1〉 , |σ6,7,8,9,10〉 = sθ|0〉+ eiκcθ|1〉 , (4.16)

κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 , are given by the real root of the cubic equation

49x3 + 165x2 − 205x+ 55 = 0 (4.17)
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(a) (b) (c)

Figure 4.5: For eight qubits the Majorana representation and the spherical amplitude
function g2(θ, ϕ) of the cube state |ψc

8〉 are shown in (a) and (b), respectively. The
CPPs can be directly determined from Lemma 19 and the octahedral symmetry group
O ∈ SO(3) by performing an Rx(π2 ) and Ry(π2 ) rotation, as shown in (c). The outer
and inner circle in (b) correspond to the cube state |ψc

8〉 and the maximally entangled
symmetric eight qubit state |Ψ8〉, respectively.

in the interval [0, 1
2 ]. Approximate values are cθ ≈ 0.920574 and sθ ≈ 0.390567,

yielding G2 ≈ 0.203247 and Eg(|Ψ7〉) ≈ 2.298691396. Since |Ψ7〉 is positive and

totally invariant under the dihedral symmetry group D5, it satisfies the requirements

of Theorem 11.

4.2.5 Eight qubits

The regular cube is a Platonic solid with eight vertices, and therefore a natural

candidate to study. Its MP locations can be directly obtained from the CPPs (4.11) of

the octahedron state, which were found to form a cube, as seen in Figure 4.3(a). In

the configuration shown in Figure 4.5(a) the MPs are

|φ1,2,3,4〉 = cθ|0〉+ eiκsθ|1〉 , |φ5,6,7,8〉 = sθ|0〉+ eiκcθ|1〉 , (4.18)

with κ = π
4 ,

3π
4 ,

5π
4 ,

7π
4 , and c2

θ =
√

3+1
2
√

3
, s2
θ =

√
3−1

2
√

3
. This gives rise to the cube state

|ψc
8〉 =

1

2
√

6

(√
5|S0〉+

√
14|S4〉+

√
5|S8〉

)
. (4.19)

This state is positive and totally invariant under the octahedral symmetry group

O ∈ SO(3), thus meeting the prerequisites of Theorem 11. Its CPPs can be obtained in

the same manner as for the tetrahedron and octahedron state by applying Lemma 19.

From Figure 4.5(c) it can be seen that two rotations (e.g. Rx(π2 ) and Ry(π2 )) give rise

to three areas, coloured blue, green and red. The intersection of these three areas are

six points that form the vertices of a regular octahedron. Thus the CPPs of the cube

state are identical to the MPs (4.10) of the octahedron state, up to an Rz(
π
4 )-rotation.

The entanglement of the cube state follows as Eg(|ψc
8〉) = log2

(
24
5

)
≈ 2.263034.
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(a) (b) (c) (d)

Figure 4.6: For eight qubits the “asymmetric pentagonal dipyramid state” |Ψ8〉 shown
in (a) and (b) is conjectured to be the maximally entangled state. A similarly highly
entangled state is the optimal antiprism state |Ψa

8〉, shown in (c) and (d). The outer
and inner circles correspond to the cube state |ψc

8〉 and to |Ψ8〉, respectively.

A numerical search yields states that are considerably higher entangled than the

cube state. The “asymmetric pentagonal dipyramid state” shown in Figure 4.6(a) is

numerically found to have the highest amount of entanglement. The exact analytic

form of this positive state is not known, but it can be numerically approximated

to high precision. The form of the state is |Ψ8〉 = α|S1〉 + β|S6〉, with approximate

values α ≈ 0.671588032 and β ≈ 0.740924770, and the MPs are

|φ1,2〉 = |0〉 , |φ3,4,5,6,7〉 = cθ|0〉+ eiκsθ|1〉 , |φ8〉 = |1〉 , (4.20)

with κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 and θ ≈ 1.715218732. In particular, there is a two-fold

MP degeneracy at the north pole, similar to the W state of three qubits. As seen in

Figure 4.6(a), there are two rings with five CPPs each,

|σ1,2,3,4,5〉 = cϑ|0〉+ eiκsϑ|1〉 , |σ6,7,8,9,10〉 = cφ|0〉+ eiκsφ|1〉 , (4.21)

with κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 , cϑ ≈ 0.928479 and cφ ≈ 0.525434. From this it follows

G2 ≈ 0.183619 and Eg(|Ψ8〉) ≈ 2.445210.

As mentioned in Section 3.2, the classical solutions are not solved by the regular

cube. Tóth’s problem for eight points is solved by the cubic antiprism introduced and

discussed in Figure 3.4. This antiprism is regular in the sense that all its sides have

the same length. The solution to Thomson’s problem is a slightly different antiprism

that is not regular and which can be obtained from Tóth’s antiprism by a slight

expansion along the direction perpendicular to the rotated face [172, 173, 184]. Cast

as symmetric states, antiprisms have the form

|ψa
8〉 =

|S0〉+A|S4〉 − |S8〉√
2 +A2

, (4.22)

where the real parameter A depends on the latitude of the two MP rings. The MPs
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can be parameterised as

|φ1,2,3,4〉 =
√
a|0〉+ ei(κ+π

4
)
√

1− a|1〉 , (4.23)

|φ5,6,7,8〉 =
√

1− a|0〉+ eiκ√a|1〉 , (4.24)

with a ∈ [0, 1], κ = 0, π2 , π,
3π
2 , and the CPPs as

|σ1〉 = |0〉 , |σ2〉 = |1〉 , (4.25)

|σ3,4,5,6〉 = x|0〉+ eiκ
√

1− x2|1〉 , (4.26)

|σ7,8,9,10〉 =
√

1− x2|0〉+ ei(κ+π
4

)x|1〉 , (4.27)

with x ∈ [0, 1], κ = 0, π2 , π,
3π
2 . The maximally entangled antiprism state |Ψa

8〉 can then

be found by a calculation similar to the one performed for the maximally entangled

five qubit state. From numerics it is clear that |Ψa
8〉 has ten CPPs, one on each pole

and the others lying on two horizontal planes, see Figure 4.6(c) and (d). It suffices

to determine the latitude of the nontrivial positive CPP, so we use g(θ) ≡ g(θ, 0) and

the parameterisation x := cθ. An analysis shows that the value of g(x) at x = 1 needs

to equal the value at the non-trivial maximum xm ∈ (0, 1). From g(1) = g(xm) it

follows that A = 1−x8
m+y8

m√
70x4

my
4
m

, and from dg
dx(xm) = 0 it follows that

x6
m − x4

m + 2x2
m − 1 = 0 . (4.28)

This amounts to solving a cubic equation, yielding the single real root

xm =

√
1

3

(
1 + z − 5

z

)
, with z =

3

√
11 + 3

√
69

2
. (4.29)

This xm establishes the locations of all nontrivial CPPs and by inserting it into A, it

yields the explicit form of (4.22), as well as the entanglementEg(|Ψa
8〉) = log2(2+A2).

The latitude of the MPs is found by solving a quartic equation that arises when

determining the MPs from the given form of the state: The value of a is given by the

real root of
√

70a2(1−a)2A−a4 + (1−a)4 = 0. Approximate values of the quantities

are:

x ≈ 0.754878 , A ≈ 1.847592 , a ≈ 0.797565 . (4.30)

The latitude of the upper MP circle follows as θ ≈ 0.933368783, and the amount of

entanglement is Eg(|Ψa
8〉) ≈ 2.436587205. The optimal antiprism state |Ψa

8〉 is thus

only slightly less entangled than the numerically determined maximally entangled

symmetric state of eight qubits. This is interesting, because |Ψ8〉 is a positive state,

whereas the antiprism states cannot be cast with positive coefficients.
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Table 4.2: Comparison of all the eight qubit symmetric states studied in this section.
For each state the latitude θ of the topmost circle of MPs as well as the geometric
entanglement Eg is listed. The entanglement of antiprism states decreases with
increasing difference of the MP angle θ from that of the optimal antiprism state |Ψa

8〉.

State MP angle θ [rad] Entanglement Eg

Majorana solution |Ψ8〉 ≈ 1.715218732 ≈ 2.445210159
regular cube |ψc

8〉 arccos 1√
3
≈ 0.955 log2

(
24
5

)
≈ 2.263

optimal antiprism |Ψa
8〉 ≈ 0.933368783 † ≈ 2.436587205 †

Thomson antiprism |ψTh
8 〉 ≈ 0.975883252 ≈ 2.084181528

Tóth antiprism |ψTó
8 〉 arctan

√
2
√

2 ≈ 1.034 ≈ 1.711525327 †

† Closed-form analytic expressions are known, but not displayed due to their complicated form.

The antiprism states that solve Tóth’s and Thomson’s problem each have only

the two CPPs |σ1〉 = |0〉 and |σ2〉 = |1〉. This imbalance of their spherical amplitude

functions is due to the two horizontal MP circles being closer to the equator than

in the configuration seen in Figure 4.6(c). As listed in Table 4.2, this leads to

a reduction of the geometric entanglement. No analytic form is known for the

antiprism state |ψTh
8 〉, which solves Thomson’s problem, but the latitude of its MPs

can be numerically determined by minimising a nonlinear function [184], which

yields θ ≈ 0.975883252 and Eg(|ψTh
8 〉) ≈ 2.084181498. On the other hand, the

solution |ψTó
8 〉 of Tóth’s problem can be determined analytically from the known

spherical distance smin = arccos
(√

8−1
7

)
between neighbouring pairs of points. The

latitude of the MP circle follows as θ = arctan
√

2
√

2 ≈ 1.034, and the analytical form

of the state (4.22) is given by A = 1−τ2
√

70τ
, with τ := tan4( θ2) = 1

8

(√
1 + 2

√
2 − 1

)4.

The entanglement follows as Eg(|ψTó
8 〉) = log2(2 +A2) ≈ 1.712.

4.2.6 Nine qubits

For nine points, the solutions to Tóth’s and Thomson’s problem are slightly different

manifestations of a “triaugmented triangular prism”. As shown in Figure 4.7(a),

three equilateral triangles are positioned parallel but asymmetric to each other, with

a reflective symmetry along the X-Y -plane. The MPs of this configuration are

|φ1,2,3〉 = cθ|0〉 − eiκsθ|1〉 ,
|φ4,5,6〉 = 1√

2

(
|0〉+ eiκ|1〉

)
, (4.31)

|φ7,8,9〉 = sθ|0〉 − eiκcθ|1〉 ,
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(a) (b) (c) (d)

Figure 4.7: For nine qubits the optimal “triaugmented triangular prism state” is
shown in (a) and (b), and the “pentagonal dipyramid state” |Ψ9〉 which is conjectured
to be the maximally entangled symmetric nine qubit state is shown in (c) and (d).
The latter state has a two-fold MP degeneracy on each pole.

with κ = 0, 2π
3 ,

4π
3 . This gives rise to a real state

|ψ9〉 =
|S0〉 −A

(
|S3〉+ |S6〉

)
+ |S9〉√

2 + 2A2
, (4.32)

where the relationship between A and the MPs is Aτ
√

84 = −τ2 + τ − 1 with

τ := tan3( θ2). The single freedom of this configuration is the inclination θ (or π − θ)
of the MPs that lie outside the equator.

For all values of A the spherical amplitude function of |ψ9〉 has local maxima

at the three equatorial MPs and at the poles. From this it can be inferred that the

most entangled state of the form (4.32) is the one where these maxima yield the

same value. The optimal state thus has the five CPPs shown in Figure 4.7(a), and

a simple calculation yields A = 1+8
√

2
2
√

21
and Eg(|ψ9〉) = log2

213+16
√

2
42 ≈ 2.488. In

contrast to this, the configurations that solve the classical problems are not optimal.

In the solution to Thomson’s problem the latitudes of the outer MPs are closer to the

equator than in Figure 4.7(a), and even more so in the solution to Tóth’s problem.

This induces an imbalance in the spherical amplitude function, resulting in the two

poles being the only CPPs. The geometric entanglement is Eg(|ψTh
9 〉) ≈ 2.434192780

and Eg(|ψTó
9 〉) ≈ 2.150714397, respectively.

The maximally entangled symmetric nine qubit state, however, does not assume

the form of a triaugmented triangular prism. A numerical search determines the state

|Ψ9〉 = 1√
2
(|S2〉+ |S7〉), shown in Figure 4.7(c), with the MPs

|φ1,2〉 = |0〉 , |φ3,4,5,6,7〉 = 1√
2

(
|0〉+ eiκ|1〉

)
, |φ8,9〉 = |1〉 , (4.33)

and κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 . This is a positive state with MP degeneracies, and the state

is totally invariant under the dihedral symmetry group D5. The CPPs lie on two
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circles

|σ1,2,3,4,5〉 = cθ|0〉+ eiκsθ|1〉 , |σ6,7,8,9,10〉 = sθ|0〉+ eiκcθ|1〉 , (4.34)

with κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 . Unlike the MPs, the CPPs do not have a simple analytical

form. They can however be determined in the same way as done for the seven qubit

case. With the substitution x := cos2 θ, the inclination follows from the real root

of 81x3 + 385x2 − 245x + 35 = 0 in the interval [0, 0.3]. Approximate values are

cθ ≈ 0.860122 and sθ ≈ 0.510087, from which one obtains Eg(|Ψ9〉) ≈ 2.553960277,

which is a significantly higher amount of entanglement than for the most entangled

triaugmented triangular prism state.

4.2.7 Ten qubits

The solution to Tóth’s problem is an arrangement of the form (2-2-4-2) in the

Föppl notation [158, 180], with only two CPPs, and the numerically determined

entanglement Eg(|ψTó
10 〉) ≈ 1.958874344 is relatively low.

Thomson’s problem is solved by a “gyroelongated square bipyramid”, a polyhe-

dron that arises from a cubic antiprism by placing square pyramids on each of the

two square surfaces4. The MPs, shown in Figure 4.8(a), have the form

|φ1〉 = |0〉 , |φ2,3,4,5〉 = cθ|0〉+ ksθ|1〉 , (4.35)

|φ10〉 = |1〉 , |φ6,7,8,9〉 = sθ|0〉+ keiπ
4 cθ|1〉 , (4.36)

with k = 0, i,−1,−i. This gives rise to a real state

|ψ10〉 =
|S1〉+A|S5〉 − |S9〉√

2 +A2
. (4.37)

The relationship between A and the MPs is described by Aτ
√

252 = 1 − τ2 with

τ := tan4( θ2). The state |ψ10〉 has eight CPPs

|σ1,2,3,4〉 = cϑ|0〉+ ksϑ|1〉 , |σ5,6,7,8〉 = sϑ|0〉+ keiπ
4 cϑ|1〉 , (4.38)

with k = 0, i,−1,−i, and where the latitude ϑ depends on the precise form of

Equation (4.37). An analytical treatment of Equation (4.37) and (4.38) is very

difficult, so we limit ourselves to numerics.

4In a narrower sense, the gyroelongated square bipyramid is the unique polyhedron that arises
from the regular antiprism (sides of same length) by the requirement that all faces are equilateral
triangles, which makes it one of the eight convex deltahedra. This deltahedron does however not have
a circumsphere that touches all its vertices, and therefore it does not directly translate to a spherical
point distribution.

83



Chapter 4. Maximally Entangled Symmetric States

(a) (b) (c) (d)

Figure 4.8: For 10 qubits the conjectured maximally entangled state |Ψ10〉, shown
in (a) in (b), has the form of a gyroelongated square bipyramid. The Majorana
representation of the numerically determined maximally entangled positive state
|Ψpos

10 〉 is shown in (c), and the positive state |ψpos
10 〉 shown in (d) has almost the same

amount of entanglement as |Ψpos
10 〉. The state |Ψpos

10 〉 has three CPPs, with the locations
of further local maxima of g2(θ, ϕ) indicated by dashed crosses. The outer and inner
circle in (b) corresponds to the value of G2 for |Ψpos

10 〉 and |Ψ10〉, respectively.

The entanglement obtained from the point distribution of Thomson’s solution

is Eg(|ψTh
10 〉) ≈ 2.731632770, and a numerical analysis reveals that this state is very

close to the maximally entangled state of the form (4.37). A small modification of

the latitude of the MPs yields the extremal entanglement Eg(|Ψ10〉) ≈ 2.737432003 at

θ ≈ 1.14246, with the latitude of the CPPs given by ϑ ≈ 1.048. The state is shown in

Figure 4.8(a), and it is proposed to be the maximally entangled 10 qubit symmetric

state.

The 10 qubit case is the first one where the conjectured maximally entangled

symmetric state cannot be cast with positive coefficients. Since the search for maximal

entanglement is more reliable within the subset of positive states, we will separately

consider the positive case.

A numerical search returns a state of the form |Ψpos
10 〉 = α|S0〉 + β|S4〉 + γ|S9〉

as the positive state with the highest amount of geometric entanglement, namely

Eg(|Ψpos
10 〉) ≈ 2.679763092. The approximate values of the coefficients are

α ≈ 0.395053091 , β ≈ 0.678420822 , γ ≈ 0.619417665 . (4.39)

The MP distribution is shown in Figure 4.8(c). From Lemma 14 it is clear that this

state is not rotationally symmetric around the Z-axis. The state has only three CPPs,

which are all positive (cf. Theorem 21), but the spherical amplitude function g(θ, ϕ)

has six other local maxima with values close to those at the CPPs. The positions of

these local maxima are shown as dashed crosses in Figure 4.8(c). One would expect

that the MPs on the two “circles”, one with five MPs and another with four MPs,

have the same latitude and are equidistantly spaced apart. However, this is not the

case, as the locations of the MPs deviate by very small amounts from such a regular

distribution. Indeed, since equidistant circles of MPs correspond to GHZ-type states,
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it can be seen from Theorem 12 that for perfect MP rings the state |Ψpos
10 〉 would need

to have four nonvanishing basis states.

We mention that there exists a fully rotationally symmetric and totally invariant

(under the dihedral group D6) positive state that comes very close to |Ψpos
10 〉 in terms

of entanglement. Its form is |ψpos
10 〉 = 1√

2
(|S2〉+ |S8〉), and its Majorana representation

is shown in Figure 4.8(d). The 12 CPPs can be determined as the solutions of a

quadratic equation, yielding

|σ1〉 = 1√
3−
√

3
|0〉+ eiκ 1√

3+
√

3
|1〉 , |σ2〉 = 1√

3+
√

3
|0〉+ eiκ 1√

3−
√

3
|1〉 , (4.40)

with κ = 0, π3 ,
2π
3 , π,

4π
3 ,

5π
3 . The entanglement is Eg(|ψpos

10 〉) = log2

(
32
5

)
≈ 2.678072,

which is less than 0.1% difference from Eg(|Ψpos
10 〉).

4.2.8 Eleven qubits

The known numerical solution to Thomson’s problem has the form (1-2-4-2-2) in

Föppl notation [158], yielding the approximate entanglement Eg(|ψTh
11 〉) ≈ 2.482570.

On the other hand, the solution to Tóth’s problem is obtained by removing one

vertex of the regular icosahedron, yielding a pentagonal antiprism with a pentagonal

pyramid on one of the two pentagonal surfaces, or (1-5-5) [180]. From the known

geometric properties of the icosahedron the solution is found analytically to be

|ψTó
11 〉 =

√
462
25 |S0〉 + 11

25 |S5〉 −
√

42
25 |S10〉. Unsurprisingly, the corresponding spherical

amplitude function is very imbalanced, with the single CPP lying antipodal to the

removed icosahedron vertex, yielding Eg(|ψTó
11 〉) = log2

(
625
462

)
≈ 0.435963. By varying

the latitude of the MP circles, however, it is possible to obtain a state with much higher

entanglement. The state shown in Figure 4.9(a) is rotationally symmetric around the

Z-axis and has 11 CPPs. The form of the state is |Ψ11〉 = α|S0〉+ β|S5〉 − γ|S10〉, with

approximate values

α ≈ 0.376611967 , β ≈ 0.715661256 , γ ≈ 0.588211181 . (4.41)

Its MPs are

|φ1〉 = |0〉 , |φ2,3,4,5,6〉 = cθ|0〉 − eiκsθ|1〉 , |φ7,8,9,10,11〉 = sϑ|0〉+ eiκcϑ|1〉 , (4.42)

with κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 , and approximate latitudinal angles θ ≈ 1.168499343 and

ϑ ≈ 2.253247569. The entanglement is Eg(|Ψ11〉) ≈ 2.817698505, making this state

the potentially maximally entangled symmetric state of 11 qubits.

Analogous to the 10 qubit case, the numerically determined maximally entangled

positive symmetric state does not have a rotational symmetry. The state, shown in
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(a) (b) (c) (d)

Figure 4.9: For 11 qubits the candidate for maximal entanglement |Ψ11〉 is shown in
(a) and (b). The numerically determined maximally entangled positive state |Ψpos

11 〉,
shown in (c) and (d), has only two CPPs, but its spherical amplitude function has
seven more local maxima with values very close to those at the CPPs.

Figure 4.9(c), is of the form |Ψpos
11 〉 = α|S1〉+ β|S5〉+ γ|S10〉, with the approximate

values

α ≈ 0.550982113 , β ≈ 0.578058577 , γ ≈ 0.601886195 . (4.43)

This state has only two CPPs, but the spherical amplitude function has seven more

local maxima with values close to the CPPs. The geometric entanglement of this state

is Eg(|Ψpos
11 〉) ≈ 2.773622669.

4.2.9 Twelve qubits

For 12 points both Tóth’s and Thomson’s problem are solved by the icosahedron. Due

to the high symmetry present in Platonic solids, the icosahedron state is also a strong

candidate for maximal symmetric entanglement in the 12 qubit case. The state can

be cast with real coefficients |Ψ12〉 =
√

7
5 |S1〉 −

√
11
5 |S6〉 −

√
7

5 |S11〉, and its MPs can be

derived from the known angles and distances in the icosahedron:

|φ1〉 = |0〉 , |φ2,3,4,5,6〉 =

√
3+
√

5
5+
√

5
|0〉+ eiκ

√
2

5+
√

5
|1〉 ,

|φ12〉 = |1〉 , |φ7,8,9,10,11〉 =
√

2
5+
√

5
|0〉 − eiκ

√
3+
√

5
5+
√

5
|1〉 ,

(4.44)

with κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 . The MP distribution is shown in Figure 4.10(a). From the

icosahedral symmetry and the antipodal pairs of MPs, it can be easily inferred that

there exist 20 CPPs, one at the centre of each face of the icosahedron, describing a

dodecahedron on the Majorana sphere. Although Lemma 3 and Lemma 19 cannot be

applied to the icosahedron state, its CPPs can be verified analytically by considering

the values of the spherical amplitude function g(θ, ϕ) within the area of one spherical
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(a) (b) (c)

Figure 4.10: For 12 qubits the icosahedron state |Ψ12〉, shown in (a) and (b), is
conjectured to be the maximally entangled symmetric state. In the subset of positive
states the state |Ψpos

12 〉 shown in (c) is detected as the maximally entangled one.

triangle spanned by three neighbouring MPs. The CPPs thus obtained are

|σ1,2,3,4,5〉 = a+|0〉 − eiκa−|1〉 , |σ11,12,13,14,15〉 = b−|0〉+ eiκb+|1〉 ,
|σ6,7,8,9,10〉 = b+|0〉 − eiκb−|1〉 , |σ16,17,18,19,20〉 = a−|0〉+ eiκa+|1〉 ,

(4.45)

with κ = 0, 2π
5 ,

4π
5 ,

6π
5 ,

8π
5 , and

a± =

√
1
2 ± 1

2

√
5+2
√

5
15 , b± =

√
1
2 ± 1

2

√
5−2
√

5
15 . (4.46)

With the knowledge of the exact positions of the MPs and CPPs, the entanglement

follows as Eg(|Ψ12〉) = log2

(
243
28

)
≈ 3.117458. Naturally, the icosahedron state is

totally invariant under the icosahedral rotation group Y , so it follows from Lemma 9

that its entanglement is the same for the three distance-like entanglement measures.

However, since |Ψ12〉 is not positive, the conditions of Theorem 11 are not fulfilled,

and it is not known whether |Ψ12〉 is additive.

The numerical search for the maximally entangled positive state yields a state of

the form |Ψpos
12 〉 = α|S1〉+ β|S6〉+ α|S11〉 with

α ≈ 0.555046977 , β ≈ 0.619552827 . (4.47)

From Figure 4.10(c) it can be seen that this state is similar to the icosahedron, with

one of the horizontal circles of MPs rotated by 36◦ so that it is aligned with the

MPs of the other circle. There are 15 CPPs distributed on three circles, with one

circle coinciding with the equator. The approximate amount of entanglement is

Eg(|Ψpos
12 〉) ≈ 2.993524700.
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(a) (b) (c) (d)

Figure 4.11: For 20 qubits the Majorana representation and the spherical volume
function g

2
3 (θ, ϕ) of the dodecahedron state |ψ20〉 is shown in (a) and (b), respectively.

This state is not maximally entangled, and two counterexamples are the solutions of
Tóth’s and Thomson’s problem, shown as spherical volume functions in (c) and (d),
respectively. The radius of the outer and inner circle are the maximal values of g

2
3 for

|ψ20〉 and |ψTh
20 〉, respectively.

4.2.10 Twenty qubits

For the sake of completeness we mention the 20 qubit case, because it contains the

dodecahedron, the Platonic solid with the largest number of vertices. It was seen that

the 20 CPPs of the icosahedron state describe a regular dodecahedron, and therefore

the MPs of the dodecahedron state are immediately given by Equation (4.45). The

analytic form of the dodecahedron state is

|ψ20〉 = 1
25
√

3

(√
187|S0〉+

√
627|S5〉+

√
247|S10〉−

√
627|S15〉+

√
187|S20〉

)
. (4.48)

Its Majorana representation is shown in Figure 4.11(a), and its spherical volume

function g
2
3 (θ, ϕ) is shown in Figure 4.11(b). From the icosahedral symmetry and

the antipodal configuration of the MPs it can be easily inferred that this state has

12 CPPs, one at the centre of each face of the dodecahedron. Therefore the CPPs

are given by Equation (4.44). With |σ1〉 = |0〉 being a CPP, we immediately obtain

G2 = 187
1875 and Eg(|ψ20〉) = log2

1875
187 ≈ 3.325780. Like the icosahedron state, the

dodecahedron state is totally invariant under the icosahedral symmetry group Y , but

it cannot be cast as a positive state. Therefore its entanglement coincides for the

three distance-like entanglement measures, but additivity results are not known.

As mentioned in Section 3.2, the dodecahedron does not solve either of the

classical problems. Here we show that it does not solve the Majorana problem either.

This can be easily seen by converting the numerically known point distributions of

Tóth’s and Thomson’s problem into 20 qubit symmetric states and determining their

entanglement. Their spherical volume functions g
2
3 (θ, ϕ) are shown in Figure 4.11(c)

and (d), respectively, and the numerically derived values of their geometric entan-

glement are Eg(|ψTó
20 〉) ≈ 3.327075 and Eg(|ψTh

20 〉) ≈ 3.418012. Thus the solution of

Tóth’s problem is only marginally more entangled than the dodecahedron state, but
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the solution of Thomson’s problem has a significantly higher amount of entanglement.

The latter state has only three CPPs, which describe an equilateral triangle on the

equator, so it is reasonable to expect that yet higher entangled 20 qubit symmetric

states exist.

4.3 Summary and Discussion

In the following we discuss the results gathered about highly and maximally en-

tangled symmetric states from several viewpoints, and formulate some results and

conjectures.

4.3.1 Entanglement scaling

In Chapter 2 and Chapter 3 it was found that the maximal geometric entanglement

of n qubit states scales linearly, whereas the maximal symmetric entanglement scales

logarithmically. Combining the upper and lower bounds for the symmetric case, it is

seen that the maximal symmetric n qubit entanglement scales as

log2

√
nπ
2 ≤ Emax

g ≤ log2(n+ 1) , (4.49)

i.e. polylogarithmically between O(log
√
n) and O(log n). Stronger lower bounds can

be found numerically from the known solutions of Tóth’s and Thomson’s problem

by translating their point distributions into the corresponding symmetric states and

determining their entanglement. Martin et al. [90] did this for up to n = 110

and found that Eg(|ΨTh
n 〉) ≈ log2

(n+1)
1.71 = log2(n + 1) − 0.775 for the solutions of

Thomson’s problem, which provides a strong, but not strict, lower bound for the

maximally entangled symmetric states.

For 3 qubits the maximally entangled state |W〉 is symmetric. On the other hand,

for n > 5 qubits the maximally entangled state can be neither symmetric nor LU-

equivalent to a symmetric state, because the lower bound Eg ≥ n
2 for general states

is higher than the upper bound Eg ≤ log2(n+ 1) for symmetric states. Regarding the

cases of n = 4, 5 qubits, we consider the entanglement of the maximally entangled

symmetric states derived in the previous section, and find that Eg(|Ψn〉) < n
2 in both

cases, which implies that the maximally entangled states of the general Hilbert space

can be symmetric only for n ≤ 3 qubits.

Table 4.3 summarises the largest entanglement values that we found for sym-

metric n qubit states with positive and general coefficients for up to 12 qubits. For

comparison purposes, the upper and lower bound are also listed. Where closed-form

expressions could not be found for the entanglement of the positive and general

solutions, numerical values were calculated with a precision of at least ten digits.
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Table 4.3: Entanglement values for symmetric n qubit states in terms of the geometric
measure. Listed from left to right are the entanglement of the most entangled Dicke
state, the maximally entangled positive symmetric state, the conjectured maximally
entangled symmetric state and the upper bound on symmetric entanglement. The
inequalities Eg

(
|Sbn/2c〉

)
≤ Eg

(
|Ψpos

n 〉
)
≤ Eg (|Ψn〉) < log2(n + 1) hold for all n,

and wherever the amount of entanglement does not increase from left to right, the
respective right-hand cell has been left blank.

n Eg
(
|Sbn/2c〉

)
Eg
(
|Ψpos

n 〉
)

Eg (|Ψn〉) log2(n+ 1)

2 1 log2 3
3 log2(9/4) 2
4 log2(8/3) log2 3 log2 5
5 ≈ 1.532 824 877 ≈ 1.742 268 948 † ≈ 2.584 962 501
6 log2(16/5) log2(9/2) log2 7
7 ≈ 1.767 313 935 ≈ 2.298 691 396 † 3
8 ≈ 1.870 716 983 ≈ 2.445 210 159 ≈ 3.169 925 001
9 ≈ 1.942 404 615 ≈ 2.553 960 277 † ≈ 3.321 928 095
10 ≈ 2.022 720 077 ≈ 2.679 763 092 ≈ 2.737 432 003 ≈ 3.459 431 619
11 ≈ 2.082 583 285 ≈ 2.773 622 669 ≈ 2.817 698 505 ≈ 3.584 962 501
12 ≈ 2.148 250 959 ≈ 2.993 524 700 log2(243/28) ≈ 3.700 439 718

† Closed-form analytic expressions are known, but not displayed due to their complicated form.

The values for Eg
(
|Ψpos

n 〉
)

can be considered reliable in the sense that we detected

the maximally entangled state with a high likelihood. In contrast to this, the values

Eg (|Ψn〉) for general symmetric states are less reliable: While the entanglement of

the candidates was calculated with high precision, there is no guarantee that these

states are indeed the maximally entangled ones. However, even if more entangled

states do exist, they are likely to have only a slightly higher amount of entanglement.

The diagram in Figure 4.12 displays the entanglement of our candidates and

solutions along with the entanglement of the classical problems and the upper and

lower bounds. It is seen that the solutions of Thomson’s problem generally exhibit a

higher amount of entanglement than those of Tóth’s problem, which verifies that for

large n the solutions for Thomson’s problem are generally a better approximation for

the Majorana problem than the solutions of Tóth’s problem.

4.3.2 Number and locations of MPs

The spherical amplitude function g(θ, ϕ) = |〈ψs|σ(θ, ϕ)〉⊗n| proved to be a valuable

tool for numerically determining the MP locations of a given symmetric state |ψs〉,
because the zeroes of this function coincide with the antipodes of the MPs. By

considering the power g
2
3 (θ, ϕ) of this function, we obtained the spherical volume

function which describes a three-dimensional volume that is constant for all n qubit

symmetric states (cf. Corollary 8). This function can be used to explain the Majorana
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Figure 4.12: The geometric entanglement of different n qubit symmetric states
is shown. The numerically determined maximally entangled symmetric states are
represented by blue crosses. For n = 10− 12 these states are not positive, and the
corresponding maximally entangled positive states are denoted by red crosses. The
known upper and lower bound on maximal symmetric entanglement is shown as
a black and gray line, respectively, with the Stirling approximation of the equally
balanced Dicke states displayed as a dotted gray line. The solutions of Tóth’s problem
(olive diamonds) and Thomson’s problem (green circles) yield nontrivial lower
bounds for the maximal symmetric entanglement. The fitting EThomson

g ≈ log2
(n+1)
1.71

for the solutions of Thomson’s problem of up to n = 110 was derived in [90] and is
displayed as a dashed green line. Because of the relationship (2.5) the values of Eg
are lower bounds for the maximal symmetric entanglement of the relative entropy of
entanglement ER and the logarithmic robustness of entanglement ERob.
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representation of highly entangled symmetric states: A “bunching” of MPs in a small

area, e.g. in one half-sphere of the Majorana sphere leads to high values of g
2
3 in that

area, and this imbalance of the spherical volume function leads to low entanglement.

This explains the tendency of MPs to spread out widely over the sphere, in a similar

fashion to the classical problems. Rather surprisingly, however, there also exist highly

entangled states where two or more MPs coincide (as seen for n = 3, 8, 9). This is

intriguing because such configurations are the least optimal ones for classical point

distributions. Again, this can be explained with the constant integration volume:

Because the zeroes of g
2
3 are the antipodes of the MPs, a lower number of different

MPs means that the spherical volume function has fewer zeroes, and due to the

constant volume, this can lead to smaller values at the global maxima.

With regard to the Platonic solids, it was found that they solve the Majorana

problem only for n = 4, 6, 12, which is in full analogy to the classical problems. How

can this be understood? For Tóth’s problem an intuitive description was already

given for n = 8 in Figure 3.4: By turning the cube into a regular antiprism, the

nearest neighbour distances can be increased, at the expense of breaking the Platonic

symmetry. In general, Thomson’s problem and the Majorana problem also favour

such increased nearest-neighbour distances. For n = 4, 6, 12 the Platonic solids are

composed of regular triangles, whereas the cube (n = 8) is composed of regular

squares and the dodecahedron (n = 20) of regular pentagons. From this it can be

inferred that the vertices of optimal point distributions tend to form triangles with

their nearest neighbours.

Summing up the behaviour of MPs of maximally entangled symmetric states, we

can say that they prefer to be either well spaced apart from each other, or to coincide

into degeneracies. Like the classical point distributions, the MPs tend to describe

polyhedra that are made up mostly or entirely of triangles. Because phased states

are in general considerably more entangled than positive states (cf. Theorem 4 and

[135]), and because positive coefficients impose strong restrictions on the locations

of MPs and CPPs (cf. Section 3.3.3), it is expected that for larger n the maximally

entangled symmetric states no longer exhibit any symmetry features in their Majorana

representation. For Thomson’s problem, the first distribution without any symmetry

features (and therefore no representation as a real state, cf. Corollary 17) arises at

n = 13, and for Tóth’s problem at n = 15. It is therefore reasonable to expect that

the situation is similar for the solutions of the Majorana problem.

From a mathematical point of view, an interesting question is in which cases

the MPs and CPPs of certain states (such as the maximally entangled ones) can be

derived analytically as an algebraic or closed-form number. The positions of the MPs

and CPPs are often given by the roots of polynomial equations. Abel’s impossibility

theorem states that the general quintic and higher equation is impossible to solve

92



4.3. Summary and Discussion

algebraically [187]. In the cases n = 7 and n = 9 we encountered such polynomials,

but we could reduce them to cubic equations by suitable substitutions. This may

not be possible in general, and Galois theory may then be useful in answering the

question of algebraic solvability [187].

4.3.3 Number and locations of CPPs

Excluding the Dicke states with their continuous ring of CPPs, one observes that

candidates for maximal entanglement tend to have a large number of CPPs. The

prime example is the case of five qubits, where the classical solution with only three

CPPs is less entangled than the “square pyramid” state which has five CPPs. In

Theorem 21 it was shown that 2n − 4 is an upper bound on the number of CPPs

of positive symmetric n qubit states. In Table 4.4 this bound is compared to the

number of CPPs of all candidates and solutions. It can be seen that the bound is

obeyed by all states, including those that cannot be cast with positive coefficients.

In many cases the number of CPPs comes close to the bound (n = 5, 8) or coincides

with it (n = 4, 6, 7, 12). This raises the question whether the upper bound of 2n− 4

on the number of CPPs also holds for general symmetric states. One indication in

favour of this conjecture is given by Euler’s formula for convex polyhedra, which

states that a convex polyhedron with n vertices can have at most 2n− 4 faces, with

the bound being strict iff all faces are triangles. This is intriguing because our proof

of Theorem 21 is of a very technical nature, where the number 2n − 4 arises in a

seemingly arbitrary fashion. This hints at a deeper lying connection between the

faces spanned by the MPs and the number of local maxima present in the spherical

amplitude function g(θ, ϕ). We therefore formulate the following conjecture:

Conjecture 22. With the exception of the Dicke states, every n qubit symmetric state
has at most 2n− 4 CPPs.

What can we say about lower bounds on the number of CPPs of the maximally

entangled symmetric states? With Theorem 1 we have derived a powerful result

for the general case, which unfortunately becomes less powerful when adapted to

the symmetric case. For maximally entangled symmetric n qubit states Corollary 5

predicts the existence of only two distinct CPPs, but our results show that in general

there is a considerably larger number of CPPs, and that the CPPs tend to be well

spread out over the sphere.

For n = 10, 11 the numerically determined maximally entangled positive sym-

metric states do not exhibit a rotational symmetry. This is somewhat surprising,

because Lemma 19 implies that the CPPs can only lie on the positive half-circle of the

Majorana sphere, thus possibly resulting in an imbalance of the spherical amplitude

function g(θ, ϕ). However, this imbalance is only very weakly pronounced for the
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Table 4.4: The number of CPPs and polyhedral faces in the Majorana representation
of the solutions or conjectured solutions are listed. The upper bound 2n− 4 holds for
the number of faces (due to Euler’s formula) and for the number of CPPs of |Ψpos

n 〉
(due to Theorem 21). Entries are omitted where the underlying state is the same as
the conjectured solution |Ψn〉 of the Majorana problem.

n CPPs |ψTó
n 〉 CPPs |ψTh

n 〉 CPPs |Ψpos
n 〉 CPPs |Ψn〉 faces |Ψn〉 2n− 4

4 4 4 4
5 3 3 5 5 6
6 8 8 8
7 3 10 10 10
8 2 2 10 10 12
9 3 3 10 10 14
10 2 8 3 8 16 16
11 1 2 2 11 16 18
12 15 20 20 20

solutions of n = 10, 11, with the non-global maxima of g(θ, ϕ) coming very close to

the value at the CPPs. It was seen that both |Ψpos
10 〉 and |Ψpos

11 〉 are cast with only three

nonvanishing basis states, and that Theorem 12 implies that shifting the MPs in a

way that each horizontal MP ring assumes a rotational Z-axis symmetry would result

in four nonvanishing basis states. It thus seems that, at least for positive symmetric

states, a lower number of nonvanishing basis states is more favourable than Majorana

representations with certain symmetry features.

It was found that for 3 < n ≤ 12 the maximally entangled symmetric n qubit

states are not Dicke states. This result can be easily extended to n > 12 by comparing

the entanglement scaling of the equally balanced Dicke state (2.14) to e.g. the

superpositions of Dicke states shown in Table 4.1, or to the entanglement scaling of

the symmetric states defined for all n in [90]. Since Dicke states are the only states

whose Majorana representation exhibits a continuous rotational symmetry, we obtain

the following result:

Corollary 23. For n > 3 the maximally entangled symmetric n qubit states with respect
to the geometric measure have only a finite number of CPPs.

This finding is interesting in light of the question raised in Section 2.2, namely

whether maximally entangled states of arbitrary multipartite systems have a discrete

or continuous amount of CPSs (see also Tamaryan et al. [148, 149]). The answer for

the general case is not known, but the investigation of the symmetric n qubit case

gives reason to believe that for most multipartite systems the maximally entangled

states have only a finite number of distinct CPSs.
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Chapter5
Classification of Symmetric State
Entanglement

In the previous chapter the entanglement of symmetric states was

investigated primarily from a quantitative point of view. Now the focus

shifts towards the qualitative characterisation of symmetric states. The

concepts of LOCC and SLOCC equivalence are adapted to the symmetric

case, and the Degeneracy Configuration (DC), an entanglement classifica-

tion scheme specifically for symmetric states, is reviewed. It is found that

SLOCC operations between symmetric states are described by the Möbius

transformations of complex analysis. This allows for an intuitive visuali-

sation, as well as practical uses such as the determination of whether two

symmetric states belong to the same SLOCC class. The symmetric SLOCC

and DC classes for up to five qubits are studied in detail, and represen-

tative states are derived for each entanglement class. Connections are

made to known SLOCC invariants as well as related works, such as the

Entanglement Families (EFs) [51] or alternative definitions of maximal

entanglement [58, 183].

5.1 Entanglement classification schemes for symmetric states

The entanglement classification schemes LOCC and SLOCC were already discussed

in Section 1.2.3. In particular, it was seen that SLOCC equivalence gives rise to a

coarser partition than LOCC equivalence in the sense that every LOCC operation

is also an SLOCC operation, but not vice versa. The concepts of LOCC and SLOCC

equivalence are now applied to the subset of symmetric states, and a comparison

is made to the Degeneracy Configuration (DC) [82], an entanglement classification
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scheme designed specifically for symmetric states.

5.1.1 Symmetric LOCC and SLOCC operations

The condition for LOCC equivalence between two arbitrary n qudit states formulated

in Equation (1.13) is a special case of the SLOCC equivalence (1.17). The special

linear group SL(d,C) contains all invertible d× d complex matrices with unit deter-

minant, which explains why SLOCC operations are also known as Invertible Local

Operations (ILOs) [18]. Note that SL(d,C) contains SU(d) as a subgroup. In the

following we focus on the qubit case (d = 2) and on permutation-symmetric states.

Given two symmetric n qubit states |ψs〉 and |φs〉, is there a way to simplify

Equation (1.13) and Equation (1.17) to take permutation-symmetry into account?

Mathonet et al. [86] recently discovered that there always exists a symmetric ILO

between two SLOCC-equivalent symmetric states:

|ψs〉 SLOCC←→ |φs〉 ⇐⇒ ∃B ∈ SL(2,C) : |ψs〉 = B⊗n|φs〉 . (5.1)

This statement is far from obvious, in a fashion that bears resemblance to the existence

of symmetric CPSs for all symmetric n qubit states. Just as the result of Hübener et al.
[84] greatly simplifies the quantitative determination of the geometric entanglement

of symmetric states, Equation (5.1) greatly simplifies the qualitative decision problem

of whether two given n qubit symmetric states belong to the same SLOCC class or

not. Instead of considering arbitrary ILOs B1 ⊗ · · · ⊗ Bn ∈ SL(2,C)⊗n with 6n real

degrees of freedom (d.f.), it suffices to consider only the six d.f. present in SL(2,C),

regardless of the number of qubits.

Another similarity between the results of Hübener et al. [84] and Mathonet et
al. [86] is that there are exceptions to the converse statements. Regarding the first

result, while symmetric n qubit states always possess at least one symmetric CPS, all

the CPSs are necessarily symmetric only for n ≥ 3 qubits [84]. Regarding the second

result, if two symmetric n qubit states are SLOCC-equivalent, then there must exist

a symmetric ILO between them, but there may also exist non-symmetric ILOs [86].

However, non-symmetric ILOs between symmetric states exist only for states that

belong to the separable class, the W class and the GHZ class. For n ≥ 4 qubits these

three SLOCC classes constitute only an infinitesimal fraction in the set of all SLOCC

classes [86].

From the arguments in [86] it can be easily inferred that Equation (5.1) holds in

analogous form for LOCC operations1:

|ψs〉 LOCC←→ |φs〉 ⇐⇒ ∃A ∈ SU(2) : |ψs〉 = A⊗n|φs〉 . (5.2)

1This was also explicitly derived alongside an extension to mixed symmetric states in [188].
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(a) (b) (c)

SLOCC⇐⇒ LOCC⇐⇒

Figure 5.1: The MP distributions of three GHZ-type symmetric states of three qubits
are shown. The GHZ-state |S0〉 + |S3〉 displayed in (b) is LOCC-equivalent to the
rotated GHZ-state |S0〉+

√
3|S2〉 shown in (c). The GHZ-type state α|S0〉+ β|S3〉 in

(a) is SLOCC-equivalent, but not LOCC-equivalent to the others.

This reduces the complexity of determining the LOCC-equivalence of two symmetric

states from the 3n d.f. present in A1 ⊗ · · · ⊗ An ∈ SU(2)⊗n to the three d.f. of SU(2).

The three real d.f. present in SU(2) were already identified as the rotations (1.22) of

the MP distribution on the Majorana sphere. Therefore Equation (5.2) implies that

two symmetric n qubit states are LOCC-equivalent iff their MP distributions can be

converted into each other by a rotation on the Majorana sphere.

Is it possible to make a similar operational statement with regard to the MP

distribution of SLOCC-equivalent symmetric states? From Equation (1.21) and Equa-

tion (5.1) it is clear that B ∈ SL(2,C) acts on each MP individually. Therefore, once

the action of SL(2,C) on an individual Bloch vector is understood, one automati-

cally understands how MP distributions transform under the action of symmetric

SLOCC operations. Because of SU(2) ⊂ SL(2,C), three of the six d.f. of the special

linear group SL(2,C) can be identified as the usual rotations on the Bloch sphere.

From mathematics it is known that the Lie group SL(2,C) is a double cover of the

Möbius group, the automorphism group on the Riemann sphere. Because of this,

the transformation of the MPs under a symmetric SLOCC operation is described by a

Möbius transformation of complex analysis, with the Majorana sphere in lieu of the

Riemann sphere. The Möbius transformations will be covered in detail in Section 5.2,

and here we only present the example in Figure 5.1, showing three GHZ-type states

that are LOCC or SLOCC-eqivalent to each other.

5.1.2 Degeneracy configuration

The Degeneracy Configuration (DC) is an entanglement classification scheme in-

troduced specifically for n qubit symmetric states [82]. Its definition incorporates

the Majorana representation by counting the number of identical MPs of a given

symmetric state. Each n qubit symmetric state belongs to exactly one DC class

Dn1,...,nd with n = n1 + . . .+nd (n1 ≥ . . . ≥ nd), and where n1 stands for the number

of MPs coinciding on one point of the Bloch sphere, n2 for those coinciding at a

different point, and so on. We call the ni the degeneracy degrees, and the number
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d the diversity degree. The number of different DC classes into which the Hilbert

space of n qubits is partitioned is given by the partition function p(n). The usefulness

of the concept of DC classes can be seen from the fact that, due to the non-singular

nature of ILOs, the MP degeneracy of a given symmetric state remains invariant under

symmetric SLOCC operations: |φi〉 = |φj〉 ⇔ B|φi〉 = B|φj〉 for all |φi〉, |φj〉 ∈ C2 and

all B ∈ SL(2,C). On the other hand, two states that belong to the same DC class do

not necessarily belong to the same SLOCC class [82]. Thus we arrive at the following

refinement hierarchy:

Theorem 24. The symmetric subspace of every n qubit Hilbert space has the following
refinement hierarchy of entanglement partitions:

LOCC ≤ SLOCC ≤ DC . (5.3)

An obvious advantage of DC classes over SLOCC classes is that the number of

entanglement classes remains finite for arbitrary n. This is in stark contrast to the

number of SLOCC classes, which becomes infinite for n ≥ 4 qubits, even when

considering only the symmetric subset. Furthermore, operational implications have

been found for the concept of DC classes: Each DC class can be unambiguously

associated with specific parameter configurations in experiments [82].

5.2 Möbius transformations

As mentioned in the previous section, SLOCC operations between multiqubit symmet-

ric states can be understood by means of the Möbius transformations from complex

analysis. This intriguing link was independently discovered and described2 by me

[88] and by Ribeiro and Mosseri [189]. First, the definition of Möbius transforma-

tions is recapitulated, and then the transformations are employed to analyse and

visualise the freedoms present in symmetric SLOCC operations.

5.2.1 Introduction

The Möbius transformations are defined in complex analysis as the bijective holomor-

phic3 functions that project the extended complex plane C = C ∪ {∞} onto itself

2Unbeknownst to me as well as to Ribeiro and Mosseri during the writing of our manuscripts, some
partial properties were already discovered by Kolenderski [107]. In that paper the effect of GL(2,C)
operations on Bloch vectors is described, but the connection to the Möbius transformations of complex
analysis is not made.

3A complex-valued function of a complex variable is holomorphic if it is complex differentiable
everywhere on its domain. Complex differentiability is a very strong requirement, resulting in many
fascinating properties of holomorphic functions.
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Figure 5.2: A stereographic projection through the north pole of the Majorana
sphere mediates between the Majorana roots in the complex plane and the MPs
on the surface of the sphere. The SLOCC operation of Figure 5.1 is facilitated by
the transformation f(z) = z

2 which maps the set of roots {z1, z2, z3} onto the set
{z′1, z′2, z′3}, thus lowering the ring of MPs.

[111]. These isomorphic functions f : C→ C take the form of rational functions

f(z) =
az + b

cz + d
, (5.4)

with a, b, c, d ∈ C, and ad− bc 6= 0. The latter condition ensures that f is invertible.

In the case c 6= 0 the domain of f is C\{−d
c} and the codomain is C\{ac}, while for

c = 0 both the domain and codomain are C. The extension to a bijective mapping

f : C → C is mediated by f(−d
c ) := ∞, f(∞) := a

c for c 6= 0, and f(∞) := ∞
for c = 0. The coefficients give rise to the matrix representation B =

(
a b
c d

)
of the

Möbius group, and from Equation (5.4) it is clear that it suffices to consider those

B with determinant one (i.e., ad − bc = 1). Since +B and −B describe the same

transformation f(z), the Möbius group is isomorphic to the projective special linear

group PSL(2,C) = SL(2,C)/{±1}.
As outlined in Section 1.3.2, all points of C can be projected onto the Riemann

sphere by means of an inverse stereographic projection. With this projection the roots

{z1, . . . , zn} of the Majorana polynomial (1.27) are projected to the surface of the

Majorana sphere, where they become the MPs. The action of a Möbius transformation

f : C→ C on the roots {z1, . . . , zn} in the extended complex plane then translates on

the Majorana sphere to a generalised rotation B ∈ SL(2,C) acting on each MP, which

is precisely a symmetric SLOCC operation of the form (5.1). We can therefore view

the Möbius transformations (or equivalently symmetric SLOCC operations) either as

automorphisms on C or as automorphisms on S2, with the isomorphism between

these two manifolds described by the stereographic projection.

As an example, Figure 5.2 shows the action of the Möbius transformation f(z) = z
2
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which transforms the MPs of the distribution shown in Figure 5.1(b) into that of

Figure 5.1(a). It can be seen that circles remain circles under the action of this

transformation, both on the sphere and in the complex plane. Intriguingly, this

property holds for all Möbius transformations: Both on the Riemann sphere and

in the complex plane circles are projected onto circles, where we consider straight

lines in the complex plane to be circles too [190]. Furthermore, angles are preserved

under Möbius transformations, i.e. two lines or circles that meet at an angle α will

still meet at an angle α after the transformation. These properties4 become more

understandable when taking into account that every Möbius transformation (5.4)

can be composed from the following elementary operations [111]:

• Rotation & Dilation: z 7−→ az with a ∈ C\{0}

– Rotation: z 7−→ eiϕz with ϕ ∈ R

– Dilation: z 7−→ rz with r > 0

• Translation: z 7−→ z + b with b ∈ C

• Inversion: z 7−→ 1
z

Möbius transformations can be categorised into different types, depending on

the values of the trace and eigenvalues of the transformation matrix B. There

exist parabolic, elliptic, hyperbolic and loxodromic Möbius transformations [190], but

a unifying feature is that two not necessarily antipodal or distinct points on the

Riemann sphere are left invariant. This generalises the SU(2) rotations, where the

two invariant points are the intersections of the rotation axis with the sphere. As

an example, the SLOCC operation shown in Figure 5.2 is mediated by a hyperbolic

Möbius transformation. These transformations are characterised by the two invariant

points (here the north and south pole) acting as attractive and repulsive centres, with

the MPs moving away from the repulsive centre towards the attractive one.

A well-known property of Möbius transformations is that for any two ordered

sets of three pairwise distinct points {v1, v2, v3} and {w1, w2, w3} there always exists

exactly one Möbius transformation that maps one set to the other [190]. This is

in general not possible for two sets of four pairwise distinct points, but the cross-

ratio preservation of Möbius transformations [190] can be employed to derive

a necessary and sufficient condition: An ordered quadruple of distinct complex

numbers {v1, v2, v3, v4} can be projected onto another quadruple {w1, w2, w3, w4} by

4It is said that one picture is worth a thousand words, and this is probably even more true for a
video. To gain a good understanding of the Möbius transformations it is recommended to watch the
beautiful video clip of Arnold et al. [191] which has featured in a visualisation competition of Science
magazine.
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a Möbius transformation iff

(v1 − v3)(v2 − v4)

(v2 − v3)(v1 − v4)
=

(w1 − w3)(w2 − w4)

(w2 − w3)(w1 − w4)
. (5.5)

5.2.2 Relationship to SLOCC operations

From the preceding introduction of the Möbius transformations and from Equa-

tion (5.1) the following theorem is clear.

Theorem 25. Two symmetric n qubit states |ψs〉 and |φs〉 are SLOCC-equivalent iff there
exists a Möbius transformation (5.4) between their Majorana roots.

How to determine whether such a Möbius transformation exists? Naturally, |ψs〉
and |φs〉 must belong to the same DC class, as SLOCC equivalence is a refinement

of DC equivalence. One crucial property of Möbius transformations in this regard is

that any set of three pairwise distinct points can be projected onto any other. This

immediately leads to the following important result, first described in [82].

Corollary 26. If two symmetric n qubit states |ψs〉 and |φs〉 belong to the same DC class
Dn1,...,nd with diversity degree d ≤ 3, then they are SLOCC-equivalent.

This corollary implies that DC classes with a diversity degree of three or less

consist of a single SLOCC class. In particular, this means that for two and three qubit

systems the partition into SLOCC classes is the same as the partition into DC classes.

The reverse of Corollary 26 clearly does not hold in general, and for states with

diversity degree d = 4 the cross-ratio preservation (5.5) yields the following result:

Corollary 27. Let |ψs〉 and |φs〉 be two symmetric n qubit states that belong to the same
DC class Dn1,...,n4 with diversity degree d = 4. The Majorana roots of |ψs〉 and |φs〉
corresponding to the degeneracy ni are labelled vi and wi, respectively. If the vi and wi
fulfil Equation (5.5), then |ψs〉 and |φs〉 are SLOCC-equivalent.

Note that the ordering of the roots has to be taken into account, because Equa-

tion (5.5) does in general not remain true under permutations, and because Majorana

roots corresponding to degenerated MPs have to be projected onto Majorana roots

with the same degeneracy. In case of a DC class that contains the same degeneracy

degree several times5, i.e. ni = nj for some i 6= j, there is obviously more than one

way to designate the indices ni to the roots in decreasing order, and Equation (5.5)

needs to hold only for one such ordering to obtain SLOCC-equivalence.

Next we investigate the constituents of SLOCC operations, and identify the

freedoms that do not correspond to LOCC operations. The Möbius transformations
5This is the case for all DC classes of up to 9 qubits, as the 10 qubit class D4,3,2,1 is the first DC class

with four different degeneracy degrees.
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(5.4) have six real d.f., and are described by SL(2,C). The polar decomposition of

linear algebra states that every invertible complex matrix can be uniquely decomposed

into a unitary matrix and a positive-semidefinite Hermitian matrix [192]. We use

this result to factorise the d.f. that genuinely belong to SLOCC operations (i.e., which

cannot be realized by LOCC operations), and show that this factorisation corresponds

to a clear and intuitive visualisation with the Majorana sphere.

Theorem 28. Every SLOCC operation between two symmetric n qubit states can be
factorised into an affine Möbius transformation of the form

f̃(z) = Az +B , with A > 0 , B ∈ C , (5.6)

and an LOCC operation. This decomposition is unique, and the set of transformations
(5.6) forms a group that is isomorphic to SL(2,C)/SU(2).

Proof. First, the existence of a factorisation of each SLOCC operation into a transfor-

mation f̃ of the form (5.6) and an LOCC operation is shown. For each B =
(
a b
c d

)
∈

SL(2,C) we define B̃ = λB with λ =
√
aa∗ + cc∗ > 0. Since B̃ describes the same

SLOCC operation as B, it suffices to show that B̃ can be decomposed into an LOCC

operation A ∈ SU(2) and a Möbius transformation of the form (5.6):(
λa λb

λc λd

)
=

(
α −β∗
β α∗

)
⊗
(
A B

0 1

)
,

with A > 0 and α, β,B ∈ C, αα∗ + ββ∗ = 1. For given parameters a, b, c, d ∈ C with

ad− bc = 1, this is fulfilled for α = a
λ , β = c

λ , A = λ2 and B = λ2b+c∗

a = λ2d−a∗
c (for

a = 0 or c = 0 only one of the two identities holds). This proves the existence of a

factorisation.

To show the uniqueness of factorisations, it is assumed that a given SLOCC

operation B ∈ SL(2,C) can be factorised, up to scalar prefactors λ1, λ2 ∈ C\{0},
in the above way by two sets of parameters {α1, β1, A1, B1} and {α2, β2, A2, B2}.
Elimination of B from the resulting matrix equations yields the condition

λ2

λ1

(
α1 −β1

∗

β1 α1
∗

)
⊗
(
A1 B1

0 1

)
=

(
α2 −β2

∗

β2 α2
∗

)
⊗
(
A2 B2

0 1

)
.

A straightforward calculation yields
∣∣λ2
λ1

∣∣ = 1, and from this it readily follows that

the two sets of parameters must coincide. This uniqueness implies that the set of

transformations f̃ is isomorphic to SL(2,C)/SU(2), and their group properties are

easily verified explicitly.

Theorem 28 is closely related to the polar decomposition of matrices, which

has also been mentioned in connection with the Bloch sphere in [107]. However,
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Re
Im

z1
z2

z3
z4

M1

M2

M3

Figure 5.3: Alternative visualisation of Möbius transformations where a fixed set of
complex points is projected onto the surface of a moving sphere. The three innate
freedoms of SLOCC operations not present in LOCC operations are then described by
the translations of the Majorana sphere in R3. The north pole of sphereM1 (with the
MP distribution of the five qubit “square pyramid state”) lies 2 units above the origin
of the complex plane, while the one ofM2 lies 5 units above, andM3 is additionally
displaced horizontally by a vector 5− 5i. The parameters (A,B) of Equation (5.6)
for the transformation ofM1 toM2 andM3 are (5

2 , 0) and (5
2 , 5− 5i), respectively.

while the matrices describing the affine transformations f̃ are positive, they are in

general not Hermitian (unlike in the polar decomposition), and the introduction of

the prefactor λ in the proof is necessary because A and B are defined to have unit

determinants.

The orthodox way to visualise Möbius transformations is to fix the Riemann sphere

in R3, and points {z1, . . . , zn} on the complex plane are transformed to different

points {z′1, . . . , z′n} under the action of (5.4). Alternatively, the points in the plane

can be considered fixed, and instead the Riemann sphere moves in R3, as shown

in Figure 5.3. The six d.f. of the Möbius transformations are then split into three

translational freedoms (movement of sphere in R3) and three rotational freedoms

(SU(2)-rotations of sphere). By considering these elementary operations it can be

verified by calculation that this is an equivalent way of viewing the change of MPs on

the sphere under the action of Möbius transformations. A general SLOCC operation

between two symmetric states is then described by a translation of the Majorana

sphere in R3, followed by a rotation. In this approach the affine transformations
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(5.6) exactly describe the set of translations in R3 that leave the sphere’s north pole

above the complex plane. The parameters of the affine function f̃(z) = Az + B

correspond to the translation as follows: The parameter A = h2
h1

is the ratio of the

heights of the north pole before (h1) and after (h2) the transformation, and B is the

horizontal displacement vector (cf. Figure 5.3). Regarding the subsequent rotation

of the Majorana sphere, it is clear that it leaves the relative MP distribution invariant

and can be described by an LOCC operation.

5.3 Representative states for SLOCC classes

In the following the SLOCC and DC classes of symmetric states of up to 5 qubits are

characterised, and representative states are given for each equivalence class. The aim

is to provide representations that are not only unique (i.e. the representative states

are all inequivalent to each other), but that also allow for a simple analytical form as

well as simple MP distributions. Before tackling this problem, we briefly investigate

the relationship between general and symmetric states under SLOCC operations. For

example, if it were possible to transform every nonsymmetric state into a symmetric

state by SLOCC, then the restriction to symmetric states would be merely an artificial

one, because all states in H could be represented by symmetric states.

5.3.1 Relationship between symmetric and nonsymmetric states

From a comparison of parameters it can be easily seen that the aforementioned sym-

metrisation of generic states by SLOCC operations is a rare exception: Unnormalised

pure states of n qubits are described by 2n complex coefficients, and taking the global

phase into account, this leads to 2n+1 − 1 independent real degrees of freedom (d.f.).

General SLOCC operations (which include LU operations that can be associated with

basis transformations and standard forms) are described by SL(2,C)n and have 6n

real d.f., so the number of remaining independent d.f. is 2n+1 − 6n− 1. On the other

hand, unnormalised symmetric n qubit states are described by n + 1 Dicke states,

yielding 2(n+ 1)− 1 independent real freedoms. Since 2n+1 − 6n− 1 ≤ 2(n+ 1)− 1

holds only for n ≤ 4 qubits, it is clear that generic states of five and more qubits

cannot be symmetrised by SLOCC. In Section 1.2.3 the SLOCC equivalence classes of

systems with up to four qubits were already reviewed, and we will now follow up on

this by investigating whether these equivalence classes contain symmetric states.

First, we note that the symmetrisation of the SLOCC class of n qubit product

states is trivial, because every product state can be turned into a symmetric state (e.g.

|0〉⊗n) by an LU operation. This SLOCC class coincides with the DC class Dn.

The other extreme with regard to symmetrisation are the SLOCC classes with
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D2

|S0〉
(separable)

D1,1

|S1〉
(entangled)

D3

|S0〉
(separable)

D2,1

|S1〉
(W-type)

D1,1,1

|S0〉+ |S3〉
(GHZ-type)

Figure 5.4: The SLOCC and DC classes of 2 and 3 qubit symmetric states are
represented by the MP distributions of characteristic states. Because of Corollary 26
each DC class consists of a single SLOCC class. Excluding the biseparable 3 qubit
states, every 2 or 3 qubit state can be transformed into one of the symmetric states
shown here by a (generally nonsymmetric) SLOCC operation.

states that are neither product states nor entangled over all parties. As an example,

the three qubit state |ψ〉A-BC = |000〉 + |011〉 = |0〉 ⊗ (|00〉 + |11〉) is biseparable,

because the first qubit is not entangled with the rest. This inherently asymmetric

property cannot be lifted by SLOCC operations, since local operations cannot create

entanglement over disentangled parts. Thus the SLOCC class to which |ψ〉A-BC

belongs does not contain a single symmetric state. As symmetric states are either

fully separable or entangled over all parties [193], this implies that for three and

more qubits there always exist fundamentally nonsymmetric SLOCC classes.

Every pure bipartite state (which includes the 2 qubit case) can be cast as a

symmetric state by means of the Schmidt decomposition (1.8), which means that

every state is LU-equivalent to a symmetric state. For 2 qubits there are two SLOCC

equivalence classes, containing the separable and entangled states, respectively.

Choosing the states |S0〉 and |S1〉 as representatives of these SLOCC classes, we

display their Majorana representations in Figure 5.4.

For 3 qubits there exist six different SLOCC classes, the separable class, the three

biseparable classes, and the two inequivalent classes with GHZ-type and W-type

entanglement [18, 194]. All states of the latter two classes are SLOCC-equivalent

to the |GHZ〉 and |W〉 state, respectively [18]. Therefore, with the exception of the

biseparable states, every three qubit state can be turned into a symmetric state by

SLOCC. In Figure 5.4 the three symmetric SLOCC classes are represented by the

states |S0〉, |S1〉 and |S0〉 + |S3〉. From Corollary 26 it is clear that the DC classes

coincide with the SLOCC classes, with D3 containing the separable states, D2,1 the

W-type entangled states and D1,1,1 the GHZ-type entangled states.

For 4 qubits the number of SLOCC classes becomes infinite [18], even when

considering only the subset of symmetric states. The symmetric entanglement classes

of 4 qubits will be investigated in detail in the next section, and in Section 5.4 these

classes will be linked to the Entanglement Families (EFs) of Verstraete et al. [51].
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5.3.2 Four qubit symmetric classes

For symmetric states of 4 qubits there exist five DC classes and a continuum of SLOCC

classes [82]. As shown in Figure 5.5, four of the DC classes coincide with SLOCC

classes (which is clear from Corollary 26), while the generic class D1,1,1,1 with no

MP degeneracy is comprised of a continuum of SLOCC classes (cf. Figure 2 in [85]).

We will now parameterise this continuum in a way that exactly one state, acting as

the representative state, is chosen from every SLOCC class6. The high symmetry

present in an equidistant distribution of three MPs along the equator facilitates the

restriction of the remaining MP to a well-defined, connected area on the sphere’s

surface:

Theorem 29. Every pure symmetric state of 4 qubits is SLOCC-equivalent to exactly
one state of the set

{|S0〉, |S1〉, |S2〉, 2|S0〉+ t|S1〉+ |S3〉+ 2t|S4〉} ,

with t = eiϕ tan θ
2 , and (θ, ϕ) ∈ {[0, π2 )× [0, 2π

3 )} ∪ {{π2 } × [0, π3 ]} .

Proof. First it will be shown that every symmetric 4 qubit state |ψs〉 can be trans-

formed by SLOCC into one of the above states. From the previous discussion and

Figure 5.5, this is clear for all DC classes except D1,1,1,1. Given an arbitrary state

|ψs〉 ∈ D1,1,1,1, there always exists a Möbius transformation f : |ψs〉 → |ψ′s〉 s.t. three

MPs are projected onto the three corners of an equilateral triangle in the equato-

rial plane. If the fourth MP |φ4〉 is not projected into the area parameterised by

(θ, ϕ) ∈ {[0, π2 )× [0, 2π
3 )} ∪ {{π2 } × (0, π3 ]} (cf. Figure 5.5), then it can be projected

into that area by a combination of {Rs
x(π),Rs

z(
2π
3 )}-rotations which preserve the

equatorial MP distribution.

It remains to show that this set of states is unique, i.e., two different MPs |φ4〉
and |φ′4〉 within the aforementioned parameter range give rise to two different states

|ψs〉 6= |ψ′s〉 which are SLOCC-inequivalent. By considering all 4! possible projections

between the MPs of |ψs〉 and |ψ′s〉 it can be easily verified explicitly with the cross-ratio

preservation (5.5) that a transformation is possible only if |φ4〉 = |φ′4〉.

5.3.3 Five qubit symmetric classes

The DC classes of 5 qubits and representative states for the SLOCC classes can

be seen in Figure 5.6. The SLOCC classes of the generic class D1,1,1,1,1 can be

parameterised by two complex variables, corresponding to two MPs in the black and

6The uniqueness implied by “exactly one” is an improvement over alternative representations such
as the EFs [51] where some of the representative states are SLOCC-equivalent to each other.
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D4

|S0〉

D3,1

|S1〉

D2,2

|S2〉

D2,1,1

2|S0〉+|S1〉+
|S3〉+2|S4〉

D1,1,1,1

2c|S0〉+s|S1〉+
c|S3〉+2s|S4〉

Figure 5.5: Only four of the five DC classes of 4 qubit symmetric states coincide
with a single SLOCC class. Due to the continuum of SLOCC classes present in
D1,1,1,1, only three MPs can be fixed in its representative state, with the unique
locations for the fourth MP c|0〉 + s|1〉 parameterising the set of representative
states. Here c = cos θ2 and s = eiϕ sin θ

2 , and the range of parameters is (θ, ϕ) ∈
{[0, π2 )× [0, 2π

3 )} ∪ {{π2 } × (0, π3 ]}, shown as a black grid. The fixed equatorial MPs
of the representative states are equidistantly spaced.

white area, respectively. Unlike the 4 qubit case, however, this parameterisation is

neither unique, nor confined to the generic DC class. Different sets of parameters

(θ1, ϕ1, θ2, ϕ2) 6= (θ′1, ϕ
′
1, θ
′
2, ϕ
′
2) can give rise to SLOCC-equivalent states, and for

(θ1, ϕ1) = (θ2, ϕ2) the corresponding state does not even belong to D1,1,1,1,1 because

of an MPs degeneracy. A unique set of representative states can therefore be provided

only for the subset of symmetric states with at least one MP degeneracy:

Theorem 30. Every pure symmetric state of 5 qubits with an MP degeneracy (i.e.,
diversity degree d < 5) is SLOCC-equivalent to exactly one state of the set

{|S0〉, |S1〉, |S2〉,
√

10 (|S0〉+ t|S5〉) + t|S2〉+ |S3〉+
√

2 (1 + t) (|S1〉+ |S4〉)} ,

with t = eiϕ tan θ
2 , and (θ, ϕ) ∈ {[0, π2 )× [0, 2π)} ∪ {{π2 } × [0, π]} .

Proof. The proof runs analogous to the one of Theorem 29, with the observation

that the representative states of the D3,1,1 and D2,2,1 class are readily subsumed in

the parameter range of D2,1,1,1. The fixed MPs of D2,1,1,1 are left invariant under

a Rs
x(π)-rotation, thus ensuring that the remaining MP can be projected into the

desired parameter range. The uniqueness is again verified by considering all possible

cross-ratios.

An over-complete set of representative states for the general case can be given as

follows:

Corollary 31. Every pure symmetric state of 5 qubits is SLOCC-equivalent to one or
more state of the set

{|S0〉, |S1〉, |S2〉,
√

10 (|S0〉+ t1t2|S5〉) + t1t2|S2〉+ |S3〉+
√

2 (t1 + t2) (|S1〉+ |S4〉)} ,
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D5

|S0〉

D4,1

|S1〉

D3,2

|S2〉

D3,1,1

(see D2,1,1,1

with c = 1,
and s = 1)

D2,2,1

(see D2,1,1,1

with c = 1,
and s = ei 2π3 )

D2,1,1,1

√
10 (c|S0〉 + s|S5〉) +
s|S2〉 + c|S3〉+√

2(c+s) (|S1〉 + |S4〉)

D1,1,1,1,1

√
10 (c1c2|S0〉 + s1s2|S5〉) +
s1s2|S2〉 + c1c2|S3〉 +√

2(s1c2 +c1s2) (|S1〉 + |S4〉)

Figure 5.6: The first five of the seven DC classes of 5 qubit symmetric states coincide
with SLOCC classes, while the representative states of D2,1,1,1 are parameterised
by one MP c|0〉 + s|1〉 (black grid), and those of D1,1,1,1,1 by two MPs (black and
white grid). The parameter range for D2,1,1,1 is (θ, ϕ) ∈ {[0, π2 )× [0, 2π)} ∪ {{π2 } ×
(0, π]}\{{π2 } × {2π

3 }}. For D1,1,1,1,1 the range of (θ1, ϕ1) is the same as (θ, ϕ), and
(θ2, ϕ2) ∈ {[0, π]× [0, 2π

3 )}\{{π2 } × {0}}. The fixed equatorial MPs of the representa-
tive states are all equidistantly spaced.
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with ti = eiϕi tan θi
2 , and (θ1, ϕ1) ∈ {[0, π2 ]× [0, 2π)} ∪ {{π2 } × (0, π]} ,

(θ2, ϕ2) ∈ {[0, π]× [0, 2π
3 )} .

Proof. Only the generic class D1,1,1,1,1 needs to be considered. Given an arbitrary

state of this class, three of its MPs can be projected onto the vertices of an equilateral

triangle by means of a Möbius transformation. These MPs are left invariant under

{Rs
x(π),Rs

z(
2π
3 )}-rotations. If the fourth MP does not lie in the (θ1, ϕ1)-area, it can

be projected there by a Rs
x(π)-rotation. Subsequent Rs

z(
2π
3 )-rotations can project the

fifth MP into the (θ2, ϕ2)-area, while leaving the fourth MP in the (θ1, ϕ1)-area.

As the number of qubits increases, the picture gradually becomes more compli-

cated, because DC classes with diversity degree n contain a continuous range of

SLOCC classes that is parameterised by n− 3 variables [82].

5.4 Entanglement families of four qubits

The concept of Entanglement Families (EFs) was already briefly touched upon in

Section 1.2.3. Derived by Verstraete et al. [51] with some advanced methods of

linear algebra, this classification scheme reduces the complexity of the four qubit case

by replacing the infinite amount of SLOCC classes with nine different EFs. The EF a

state belongs to does not change under SLOCC operations, thus making the partition

into SLOCC classes a refinement of the partition into EF classes (SLOCC ≤ EF). The

nine EFs are represented by the following ranges of states, with a, b, c, d ∈ C being

arbitrary complex parameters.

• Gabcd = a+d
2 (|0000〉+ |1111〉) + a−d

2 (|0011〉+ |1100〉) + b+c
2 (|0101〉+ |1010〉)

+ b−c
2 (|0110〉+ |1001〉)

• Labc2 = a+b
2 (|0000〉+|1111〉)+ a−b

2 (|0011〉+|1100〉)+c (|0101〉+|1010〉)+|0110〉

• La2b2 = a (|0000〉+ |1111〉) + b (|0101〉+ |1010〉) + |0110〉+ |0011〉

• Lab3 = a (|0000〉+ |1111〉) + a+b
2 (|0101〉+ |1010〉) + a−b

2 (|0110〉+ |1001〉)
+ i√

2
(|0001〉+ |0010〉+ |0111〉+ |1011〉)

• La4 = a (|0000〉+ |0101〉+ |1010〉+ |1111〉) + (i|0001〉+ |0110〉 − i|1011〉)

• La203⊕1̄
= a (|0000〉+ |1111〉) + (|0011〉+ |0101〉+ |0110〉)

• L05⊕3̄
= |0000〉+ |0101〉+ |1000〉+ |1110〉

• L07⊕1̄
= |0000〉+ |1011〉+ |1101〉+ |1110〉

• L03⊕1̄03⊕1̄
= |0000〉+ |0111〉
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Up to permutations, every pure 4 qubit state is SLOCC-equivalent to a state from ex-

actly one of these families. Unlike in our Theorem 29, however, the parameterisation

of the EFs is not unique, i.e. two different sets of parameters (a, b, c, d) 6= (a′, b′, c′, d′)

can give rise to two SLOCC-equivalent states. This non-uniqueness can be already

seen from the non-normalised nature of the generic family Gabcd which is due to

the choice of the parameters a, b, c, d as the eigenvalues of a matrix employed for

the proof in [51]. A less trivial example are the two symmetric states |ψa〉 = |S2〉
and |ψb〉 = (|S0〉+ |S4〉) +

√
2
3 |S2〉 which are both present in the family Gabcd. Their

LU equivalence |ψa〉 LU←→ |ψb〉 can be immediately seen from their MP distributions

|φa1,2〉 = |0〉, |φa3,4〉 = |1〉, and |φb1,2〉 = 1√
2
(|0〉+ i|1〉), |φb3,4〉 = 1√

2
(|0〉 − i|1〉).

Here we are interested in the subset of symmetric 4 qubit states. In the following

we will determine in which EFs the symmetric SLOCC classes are located, and we

will elucidate the relationship between the DC and EF classes, both of which are

coarser partitions than the SLOCC classes.

First, we identify the EFs of the SLOCC and DC classes shown in Figure 5.5. The

separable state |S0〉, and therefore the entire D4 class, is LU-equivalent to the state

|0110〉 embedded in the family Labc2 for parameters a = b = c = 0. The W state

|S1〉 representing D3,1 is recovered from the family Lab3 by setting a = b = 0 and

spin-flipping the last two qubits. The state |S2〉 representing D2,2 can be found in the

general family Gabcd by setting a = 1, b = 2, c = 0, d = −1. A state of the degeneracy

class D2,1,1 is found in Labc2 by setting a = 1, b = 0, c = 1
2 and spin-flipping the

second and third qubit, yielding the state |ψ〉 =
√

2
5 |S0〉 +

√
3
5 |S2〉 which is made

up of the MPs |φ1,2〉 = |0〉 and |φ3,4〉 = 1
2 |0〉 ± i

√
3

2 |1〉. The continuum of SLOCC

classes present in the generic class D1,1,1,1 has previously been parameterised in [82]

as (|S0〉+ |S4〉) + µ|S2〉, with µ ∈ C\{±
√

2
3}. These states are recovered from the

general family Gabcd for a = 1 + µ√
6
, b =

√
2
3µ, c = 0, d = 1 − µ√

6
. The reason for

the exclusion of µ = ±
√

2
3 is that the MP distribution then becomes degenerate,

and it was already seen above that |ψb〉 = (|S0〉+ |S4〉) +
√

2
3 |S2〉 is LU-equivalent to

|S2〉 ∈ D2,2. Summing up, we found

• D1,1,1,1,D2,2 ⊂ Gabcd

• D2,1,1,D4 ⊂ Labc2

• D3,1 ⊂ Lab3

In particular, only three of the nine EFs contain all the states of the symmetric

subspace of the 4 qubit Hilbert space, including those non-symmetric states that are

SLOCC-equivalent to symmetric states. The other six EFs only contain genuinely non-

symmetric states that cannot be symmetrised by SLOCC operations. Furthermore, it
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is noteworthy that the families Gabcd and Labc2 each contain two different DC classes.

This is somewhat unexpected, because there exist nine different EFs, but only five

different DC classes. We can therefore conclude that the EFs are not a particularly

useful classification scheme for symmetric states, due to their coarseness. Since all

states of a given DC class are contained in only one EF, Theorem 24 can be specified

for the 4 qubit case:

Theorem 32. The symmetric subspace of the 4 qubit Hilbert space has the following
refinement hierarchy of entanglement partitions:

LOCC < SLOCC < DC < EF . (5.7)

5.5 Determining SLOCC inequivalence from the MP distri-

bution

The known properties of Möbius transformations can be employed to immediately

determine whether two symmetric n qubit states with the same degeneracy of their

MPs could be SLOCC-equivalent. As outlined in Section 5.2.1, circles on the surface

of the Majorana sphere are always projected onto circles, and the angles at which

two circles meet are preserved. These properties can be exploited by identifying and

comparing circles with MPs on them.

As an example, Figure 5.7 shows the MP distributions of some states investigated

in Chapter 4. The two 5 qubit states |ψ5〉 and |Ψ5〉 are not SLOCC-equivalent, because

|Ψ5〉 exhibits a ring with four MPs, whereas no ring with four MPs can be found

for |ψ5〉. Similarly, it can be shown for most of the states investigated in Chapter 4

that they are SLOCC-inequivalent. For 12 qubits it is not immediately clear that the

positive solution |ψ12〉 and the icosahedron state |Ψ12〉, shown in Figure 5.7, are

SLOCC-inequivalent, since both states have several rings with four or five MPs each.

In the icosahedron state |Ψ12〉 it is possible to identify 20 circles, each through three

adjacent MPs (the corners of all faces of the icosahedron), so that the interior of each

circle is free of MPs. This property must be preserved under Möbius transformations,

but for |ψ12〉 it is not possible to find such twenty distinct circles that are all free of

MPs in their interior.

Markham [85] determined the SLOCC-inequivalence of the four qubit GHZ state

|GHZ4〉 and tetrahedron state |T〉 analytically from the values of their Schmidt rank

and geometric entanglement. Interestingly, with the geometrically motivated ap-

proach employed here there is no need for such calculations: The MPs of |GHZ4〉 all

lie on the single ring, but those of |T〉 don’t.

The SLOCC-inequivalence of all totally invariant states of up to 7 qubits was
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|ψ5〉 |Ψ5〉 |ψ12〉 |Ψ12〉

(a) (b) (c) (d)

Figure 5.7: The MP distributions of four highly or maximally entangled symmetric
states introduced in Chapter 4 are shown. The 5 qubit “trigonal bipyramid state” |ψ5〉
is SLOCC-inequivalent to the “square pyramid state” |Ψ5〉. Likewise, the 12 qubit
icosahedron state |Ψ12〉 cannot be reached from |ψ12〉 by SLOCC operations.

determined in [85] by considering the MP degeneracies as well as the Schmidt rank,

and a conjecture was made that all totally invariant symmetric states are SLOCC-

inequivalent to each other. Using the preservation of circles and angles under Möbius

transformations, it is expected that this conjecture becomes much easier to verify.

The existence of n qubit states that are not LOCC or SLOCC-equivalent to their

complex conjugates has been affirmed [39, 43], and the operational consequences of

this for distinguishing such states have been discussed [43, 195]. Taking the complex

conjugation into account, the number of parameters to describe pure three qubit

states up to LU were reduced from six to five [195]. In the case of symmetric states

we immediately see that complex conjugation corresponds to a reflection of the MPs

along the X-Z-plane. We can therefore explain the LOCC-inequivalence of complex

conjugate symmetric states with the geometric concept of chirality (or handedness):

Although having the same distances and angles, the mirror image of an arbitrary MP

distribution is in general not LU-equivalent to the original. This idea can be easily

extended to SLOCC-equivalence, with the result that general symmetric states are

not even SLOCC-equivalent to their complex conjugate.

5.6 Symmetric SLOCC invariants on the Majorana sphere

We are already familiar with the property of Möbius transformations to preserve

circles and angles, as well as the cross-ratios (5.5) of ordered quadruples of points.

These quantities can therefore be considered to be symmetric SLOCC invariants.

A detailed study of symmetric LU and SLOCC invariants with the Majorana rep-

resentation was recently undertaken by Ribeiro and Mosseri [189]. With regard to

symmetric LU operations (which are equivalent to LOCC operations between sym-

metric states, cf. Equation (5.2)), they found that the well-known six LU invariants

for 3 qubits [50, 196] can be expressed in terms of the 3! angles between pairs of

MPs. With regard to symmetric SLOCC operations, the cross-ratios were identified as
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(a)

D1,1,1,1

2c|S0〉+ s|S1〉+
c|S3〉+ 2s|S4〉

-2 -1 0 1 2 3
-2

-1

0

1

2

Re(λ)

Im(λ) λ1 λ3λ6 λ4

λ5 λ2

(b)

(c)

Figure 5.8: An alternative parameterisation of the generic 4 qubit DC class D1,1,1,1 is
shown in (a), with the parameterisation of the fourth MP c|0〉+ s|1〉 being (θ, ϕ) ∈
{[0, π)× [0, π3 )}. The six different areas {λi} in the complex plane that correspond to
permutations of the entries in Equation (5.8) are shown in (b). The plane is cut by
the line Re(z) = 1

2 , as well as two unit circles with centres z = 0 and z = 1. Aligning
the poles of the sphere (a) with the points z = 1

2 + i and z = 1
2 − i in (b) yields

the arrangement (c), which can be understood as a stereographic projection of the
parameter range (θ, ϕ) onto one of the six areas {λi}.

a natural basis for invariants. Given a cross-ratio,

λ :=
(v1 − v3)(v2 − v4)

(v2 − v3)(v1 − v4)
∈ C , (5.8)

the 24 different possible ways to permute the entries {v1, v2, v3, v4} generally leads

to six different values {λi} for the cross ratio: {λ, 1
λ , 1 − λ, 1

1−λ ,
λ
λ−1 ,

λ−1
λ } [189].

These different values partition the complex plane into six distinct regions, as seen in

Figure 5.8(b).

Here we point out a relationship of this partition to the generic SLOCC equivalence

classes of 4 qubits, namely the degeneracy class D1,1,1,1 studied in Section 5.3.2. The

parameter range chosen for the unique representative states of D1,1,1,1 in Figure 5.5 is

not the only possibly choice, and an equivalent parameterisation with a high degree

of symmetry is shown in Figure 5.8(a). There the fourth MP |φ4〉 = c|0〉 + s|1〉
has the parameterisation (θ, ϕ) ∈ {[0, π) × [0, π3 )}. As shown in Figure 5.8, this
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parameter range can be projected onto one of the six areas {λi} in the complex plane

by means of a stereographic projection. This is by no means a coincidence, but rather

a consequence of SLOCC invariants: Every value within the parameter range of (θ, ϕ)

corresponds to a unique state that is SLOCC-inequivalent to any other value within

that range. Likewise, two 4 qubit symmetric states with no MP degeneracies are

SLOCC-inequivalent iff the cross-ratios (5.8) of their Majorana roots are different for

all possible permutations, which implies that the values of their cross-ratios need to

be considered only for one of the six areas {λi}.

5.7 Global entanglement measures

Polynomial SLOCC invariants that provide information about the type of entangle-

ment present in a system were already mentioned at the end of Section 1.2.3. Here

we review two well-known approaches in light of our results about symmetric states.

5.7.1 Maximal n-tangles

Osterloh and Siewert [58, 59] constructed entanglement monotones from antilinear

operators that are invariant under SLOCC operations, and that can be understood

as generalisations of the 3-tangle [50]. This allows for the construction of a “global

entanglement measure” with the aim to detect only genuine n qubit entanglement

in the sense that it is blind for k-partite entanglement with k < n. More formally,

an n qubit state |Ψn〉 is a “maximal n-tangle” if the following two conditions hold

[58, 59, 197]:

1. All reduced density matrices of |Ψn〉 with rank ≤ 2 are maximally mixed.

2. All k-site reduced density matrices of |Ψn〉 have zero k-tangle (1 < k < n).

This definition of maximal entanglement is very similar to those proposed in [41, 183].

The first condition implies that a maximal amount of information is gained when

reading out a qubit, something that is closely related to the stochastic states of

[41]. The second condition excludes hybrids of various types of entanglement, thus

following the concept of monogamy [50], i.e. that the total entanglement is a resource

distributed among different types of entanglement. Occasionally, a third condition

is imposed, namely that the maximally n-tangled states have a phase-independent

canonical form, i.e. that the first two properties shall be unaffected by relative phases

in the coefficients [59]. This implies that maximally n-tangled states can always be

written with positive coefficients, which is quite interesting for us because of our

focus on positive states. On the other hand, this is a first indication that “global

entanglement measures” are qualitatively different from e.g. the geometric measure,
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because the latter is not expected to be maximised for positive states in general.

Another interesting property of global entanglement measures is that they are closely

related to the concept of symmetry, in the sense that permutational invariance was

identified as a characteristic property of such measures [50].

The n qubit GHZ state is a maximally n-tangled state for all n, and in the case of

3 qubits it is the only such state. Therefore the SLOCC class of 3 qubit states with

genuine tripartite entanglement is represented by the GHZ state.

Another maximally n-tangled state for every n ≥ 3 is the following state,

|Xn〉 =
√
n|S1〉+

√
n− 2|Sn〉 , (5.9)

coined the X-state [197]. Note that in the 3 qubit case the state |X3〉 is LU-equivalent

to |GHZ3〉. The maximally n-tangled states |GHZn〉 and |Xn〉 are the two extremes

in the sense that |GHZn〉 is always the maximally n-tangled state of minimal length

whereas |Xn〉 is the one of maximal length. Here, length means the number of

components in the canonical form of a state [59].

For 4 qubits there exist three inequivalent SLOCC invariants7, and a corresponding

“basis” of three inequivalent maximally 4-tangled states with neither 3-tangle nor

concurrence has been determined [58, 62]. These states are the GHZ state

|Ψa
4〉 = 1√

2
(|S0〉+ |S4〉) , (5.10)

the 4 qubit X-state

|Ψb
4〉 =

√
2
3 |S1〉+

√
1
3 |S4〉 , (5.11)

and the 4 qubit cluster state

|Ψc
4〉 = 1

2 (|1111〉+ |1100〉+ |0010〉+ |0001〉) . (5.12)

We immediately notice that |Ψb
4〉 is identical to the tetrahedron state defined in (3.5),

up to a Rs
x(π)-rotation (spin-flip). Quite surprisingly, this link does not seem to have

been discovered before, despite the state (5.11) having periodically appeared in

various analytical forms in the literature since at least 1998. In [183] the state was

determined as the symmetric state that maximises a more stringent version of the

global entanglement measure (outlined further below), and it is also the unique state

that maximises a variant of the global measure defined in [199]. The distinguished

position of the tetrahedron state for polynomial invariants and global measures is

7Ren et al. [198] discovered that one of the three entanglement monotones defined in [58] is not
permutation-invariant, and they proposed a new permutation-invariant monotone in place of the old
one. The states detected by the corresponding invariant (the 4 qubit cluster states) are not affected by
this redefinition.
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further seen from the fact that it is the only one of the three maximally 4-tangled

states that can be detected by the hyperdeterminant introduced by Miyake [52]. This

is yet further proof that the Platonic symmetry of the Majorana representation is a

signature of distinguished properties of the underlying symmetric states.

The 4 qubit cluster state and its permutations are representative states of one of

the two classes of graph states that exist for 4 qubits, with the other class of graph

states being represented by the GHZ state [62, 198, 200, 201]. The positive state

|Ψc
4〉 displayed in Equation (5.12) is LU-equivalent to the canonical form for cluster

states introduced by Briegel et al. [153], which can be seen by flipping the first two

qubits and applying the Hadamard gate H = 1√
2

(
1 1
−1 1

)
on the last two qubits:

σx⊗σx⊗H⊗H|Ψc
4〉 = 1

2

(
|00−−〉+ |00++〉+ |11−+〉+ |11+−〉

)
(5.13)

= 1
2

(
|0000〉+ |0011〉+ |1100〉 − |1111〉

)
. (5.14)

Somewhat surprisingly, |Ψc
4〉 is neither symmetric nor LU-equivalent8 to a symmetric

state, which implies that maximally n-tangled states are not necessarily symmet-

ric, despite the monotones for global entanglement being invariant under qubit

permutations.

The three different types of genuine entanglement detected by the 4-tangle are

not distinguished by the EFs of [51], because the states (5.10), (5.11) and (5.12) all

belong to the generic family Gabcd. Therefore, the global entanglement measure can

be more useful than the EFs to distinguish different types of 4 qubit entanglement.

States of 5 and 6 qubits with maximal global entanglement were found in [59],

and in the case of 5 qubits four different types of entanglement are detected [59, 60].

The normal forms of the corresponding states are the GHZ state, two states that can

be easily verified to be LU-nonsymmetric, as well as the 5 qubit X-state

|Ψd
5〉 =

√
5
8 |S1〉+

√
3
8 |S5〉 . (5.15)

Unlike the other three states, however, the state |Ψd
5〉 does not satisfy all the condi-

tions imposed on maximal 5-tangles, because it has a non-vanishing 4-tangle [59].

Nevertheless, |Ψd
5〉 can be considered to have an extremal amount of global entan-

glement. A comparison of Equation (5.15) with Equation (4.3) reveals that the

Majorana representation of |Ψd
5〉 is a spin-flipped square pyramid state. Defining

|Φ5〉 = Rs
x(π)|Ψd

5〉 =
√

3
8 |S0〉+

√
5
8 |S4〉, we compare the 5 qubit X-state to the max-

imally entangled symmetric 5 qubit state |Ψ5〉 in terms of the geometric measure,

8The LU-inequivalence can be verified e.g. by the different eigenvalues of the reduced density
matrices ρ12 = Tr34 (|Ψc

4〉〈Ψc
4|) and ρ23 = Tr14 (|Ψc

4〉〈Ψc
4|). The question of whether |Ψc

4〉 is SLOCC-
equivalent to a symmetric state is irrelevant in this context, because the resulting state would no longer
be in the normal form required for maximally n-tangled states.
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derived in Section 4.2.2. The latitudinal angle of the MP circle of |Ψ5〉 is θ ≈ 1.874,

whereas for |Φ〉 one obtains tan4( θ2) = 5√
3
, yielding θ ≈ 1.833. This induces an

imbalance in the spherical amplitude function, resulting in |σ〉 = |0〉 being the only

CPP of |Φ5〉. This results in a geometric entanglement of Eg(|Φ5〉) = log2(8
3) ≈ 1.415,

which is well below that of |Ψ5〉 and which coincides with the entanglement of

the maximally entangled Dicke state Eg(|S2〉) = log2(8
3). Even though the small

difference in the latitudinal MP angle leads to a large decrease of the entanglement,

the fidelity remains very close to the original state:

F = |〈Φ5|Ψ5〉| =
√

3 +
√

5A

2
√

2
√

1 +A2
≈ 0.996752 . (5.16)

It is remarkable that the 5 qubit X-state – apart from the GHZ state the only symmetric

state to be detected by the global entanglement measure – is so close to the square

pyramid state which we determined to solve the Majorana problem of 5 qubits. In

contrast to this, the classical optimisation problems of Tóth and Thomson are solved

by the trigonal bipyramid state, a state with a qualitatively different MP distribution

and which is not detected by the 5-tangle.

5.7.2 Maximal mixture in all reduced density matrices

Gisin et al. [183] introduced and studied five different criteria for maximal global

entanglement. Their investigation is limited to symmetric states, which they justified

with the argument that all of the n qubits of maximally entangled states should

be equivalent, with no privileged part. The conclusion is that four of the five

criteria discussed in [183] are compatible (with GHZ states having maximal global

entanglement), while the fifth criterion is qualitatively different from the others. This

criterion is that all reduced density matrices shall be maximally mixed, which is a

more stringent variant of condition 1. outlined at the beginning of Section 5.7.1.

States that satisfy this strong criterion exist only for n = 2, 3, 4 and 6 qubits. Recast

in our notation, the states found in [183] are:

|Ψ3〉±1 = 1√
2

(
|S0〉 ± |S3〉

)
, (5.17a)

|Ψ3〉±2 = 1
2
√

2

(
|S0〉 ±

√
3|S1〉 −

√
3|S2〉 ∓ |S3〉

)
, (5.17b)

|Ψ4〉±1 = 1
4

(
−
√

3|S0〉 ± 2|S1〉+
√

2|S2〉 ± 2|S3〉 −
√

3|S4〉
)
, (5.17c)

|Ψ4〉2 = 1
2

(
|S0〉+ i

√
2|S2〉+ |S4〉

)
, (5.17d)

|Ψ6〉±1 = 1√
2

(
|S1〉 ± |S5〉

)
, (5.17e)

|Ψ6〉2 = 1
4

(
−
√

3|S0〉+
√

5|S2〉+
√

5|S4〉 −
√

3|S6〉
)
, (5.17f)

|Ψ6〉±3 = 1
3

(√
2|S0〉 ± i

√
5|S3〉+

√
2|S6〉

)
. (5.17g)
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The first index denotes the number n of qubits and the second index counts the

different states. Interestingly, the states with same n are all LU-equivalent to each

other. This can be verified by calculating and comparing their Majorana representa-

tions. For example, |Ψ3〉±1 and |Ψ3〉±2 are all equivalent to the 3 qubit GHZ state via

symmetric LUs:

|Ψ3〉+1 = Rs
z(π)|Ψ3〉−1 = Rs

z(π) Rs
x(π2 )|Ψ3〉+2 = Rs

z(π) Rs
x(π2 ) Rs

z(π)|Ψ3〉−2 . (5.18)

Analogous identities hold for the 4 and 6 qubit states listed above, and these states

represent the tetrahedron state and the octahedron state, respectively. We thus

arrive at the conclusion that symmetric states whose reduced density matrices are

all maximally mixed possess an exceptionally high amount of geometric symmetry

in their MP distributions. Only four such states exist: Two antipodal points (n = 2),

the equilateral triangle (n = 3), the regular tetrahedron (n = 4), and the regular

octahedron (n = 6).

A common property of these point distributions is that they look exactly the same

from the viewpoint of each vertex9. It is therefore legitimate to ask why only two

of the five Platonic solids give rise to this kind of maximal global entanglement.

Considering that the cube (n = 8) and the dodecahedron (n = 20) neither solve

the classical point distribution problems nor maximise the GM, it is perhaps not

surprising that they are missing. But how to explain the absence of the icosahedron

(n = 20)? We put forward the conjecture that this is because the icosahedron

state cannot be cast with positive coefficients. It is well-known that the maximally

n-tangled states generally allow for a positive representation, which is why the

criterion of a phase-independent canonical form is sometimes added to the list of

conditions for maximally n-tangled states [59]. It is therefore conceivable that a

positive computational representation is a necessary property for any state whose

reduced density matrices are all maximally mixed.

9This is one of the possible ways to define the Platonic solids. Since polyhedra (three-dimensional
polytopes) need to have at least four vertices, the configurations of two antipodal points (n = 2) and
the equilateral triangle (n = 3) are not considered to be Platonic solids.
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Chapter6
Links and Connections

The aim of this penultimate chapter is to outline some novel links

between the study of quantum states in terms of the Majorana represen-

tation and other topics in mathematics and physics. On their own these

results are not strong enough to warrant their own chapters, and so they

are subsumed as independent sections under this chapter.

Firstly, the “Majorana problem” is compared and contrasted to spheri-

cal point distribution problems that seek to find the most non-classical

states, such as “anticoherent” spin states and the “queens of quantum”.

Secondly, the dual polyhedra of the five Platonic solids are linked to the

Majorana representations of the corresponding symmetric states, thus

discovering a quantum analogue to the Platonic duals of classical ge-

ometry. Thirdly, the Majorana representation is employed to investigate

the permutation-symmetric ground states of the LMG model, with a new

proof given for the derivation of its CPPs.

6.1 “Anticoherent” spin states and “queens of quantum”

As outlined in Section 1.3.1, there exists an isomorphism between the states of a

single spin-j particle and the symmetric states of 2j qubits, and this isomorphism

is mediated by the Majorana representation. The coherent states of a quantum

mechanical particle are considered to be the most classical states, and in terms

of the Majorana representation these states are those whose MPs all coincide at a

single point, thus describing as precisely as possible a “classical” spin vector. This

classical nature of coherent states can furthermore be seen from their resistance

to entanglement formation [99]. It is therefore natural to ask whether there also

exist “least classical states” which are the opposite of spin-coherent states in some
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sense, with the expectation that such states exhibit a large amount of non-locality.

Zimba [97] defined the “anticoherent” spin states as those whose polarisation vector

vanishes, p = 〈ψ|nS|ψ〉 = 0, and whose corresponding variance 〈ψ|(nS)2|ψ〉 is

uniform over the sphere. Here n is a unit vector in R3, and S = (Sx, Sy, Sz) is the

spin operator. This concept is sometimes generalised to higher-order anticoherence,

with a state |ψ〉 being anticoherent of order k if 〈ψ|(nS)i|ψ〉 is independent of n for

all i ≤ k [109]. It has been shown that the quantum states represented by the five

Platonic solids are all anticoherent [97], and this can be understood by means of the

mathematical concept of spherical designs [109].

Bearing in mind the isomorphism between general spin-j states and symmetric

states of 2j qubits, we put forward the question whether the Majorana representation

of the maximally entangled symmetric states coincides with that of anticoherent

spin states, and vice versa. This question is motivated by the observation that the

coherent states of a spin-j particle are described by 2j coinciding MPs, which precisely

corresponds to the symmetric 2j qubit states with zero entanglement. Unfortunately,

it turns out that no such direct link exists for the “opposite” case. From the fact that

the maximally entangled symmetric state of eight qubits is not a Platonic solid, it

follows that anticoherent MP distributions do not guarantee extremal entanglement.

On the other hand, the maximally entangled symmetric state of five qubits, the

square pyramid state |Ψ5〉 discussed in Section 4.2.2, is neither anticoherent nor

a spherical design, because the “centre of mass” of the five MPs does not coincide

with the origin of the Majorana sphere. In terms of anticoherent spin states this

leads to 〈Ψ5|Sz|Ψ5〉 6= 0. For spherical designs we observe that by setting p(x) = x

in Definition 2 of [109], it follows that for all spherical designs the “centre of mass”

must coincide with the sphere’s origin.

Anticoherent spin states are only one possibility to define the most non-classical

states. Giraud et al. [98] put forward the concept of the “queens of quantum”. These

states have the property to be furthest away (in terms of the Hilbert-Schmidt metric

‖A‖ = Tr(A†A)1/2) from the set of “classical states”, with the latter defined as those

states that can be written as a convex sum of projectors onto coherent states. This

definition bears resemblance to that of the relative entropy of entanglement [66, 119].

It turns out that the “queens of quantum” can always be found in pure states, and

that their Majorana representations have a high degree of geometric symmetry with

no MP degeneracies. In general, however, their Majorana representations differ from

those of our maximally entangled symmetric states, and they are not identical to the

solutions of Tóth’s and Thomson’s problem either.

Intriguingly, Martin et al. [90] found that the “queens of quantum” coincide with

the solutions of the Majorana problem if the Hilbert-Schmidt distance is replaced
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with the Bures distance DB. For product states the “Bures quantumness” reads

QB(|ψ〉〈ψ|) = min
ρc∈C

DB(|ψ〉〈ψ|, ρc) = min
ρc∈C

√
2− 2

√
〈ψ|ρc|ψ〉 , (6.1)

where C is the convex hull of spin coherent states. Thus every ρc can be written as

ρc =
∑

i λi|Φi〉〈Φi|, where the |Φi〉 are coherent states. This problem can be reduced

to finding the largest overlap of |ψ〉 with a coherent state |Φ〉,

QB(|ψ〉〈ψ|) =
√

2− 2 max
|Φ〉
|〈Φ|ψ〉| , (6.2)

which is equivalent to the Majorana problem (3.14) of symmetric states. In other

words, the Majorana representation of the spin-j state with the largest “Bures quan-

tumness” is identical to that of the maximally entangled symmetric state of 2j qubits

in terms of the geometric measure [90].

Concluding this section, we have seen that the Majorana representations of our

maximally entangled symmetric states are in general different from “anticoherent”

spin states as well as the original definition of the “queens of quantum”, but they are

identical to the “queens of quantum” in terms of the Bures metric. This link means

that any solution found for the Majorana problem of 2j qubits will also be a spin-j

“Bures-queen of quantum”, and vice versa.

6.2 Dual polyhedra of the Platonic solids

For a given polyhedron in 3D space the corresponding dual is obtained by associating

each vertex with a face, and vice versa. The dual polyhedra of the five Platonic

solids are particularly simple, as they are Platonic solids themselves [202]. As seen

in Figure 6.1, the octahedron and cube form a dual pair, and so do the icosahedron

and dodecahedron, while the tetrahedron is self-dual, i.e. it is its own dual.

Interestingly, these duality relationships can also be spotted in the Majorana

representations of the corresponding symmetric quantum states. For example, we

have already seen that the 20 CPPs of the icosahedron state |Ψ12〉 form the vertices of

a dodecahedron. On the other hand, when considering the 20 qubit “dodecahedron

state” |Ψ20〉 = 1
25
√

3

(√
187|S0〉+

√
627|S5〉+

√
247|S10〉 −

√
627|S15〉+

√
187|S20〉

)
with a dodecahedral MP distribution, it is easy to verify that this state has 12 CPPs,

one at the centre of each face, thus forming the vertices of an icosahedron. Thus the

Majorana representations of the icosahedron and dodecahedron state are dual to

each other with respect to an interchange of the MPs and CPPs.

As shown in Figure 6.2, the same duality relationship can be observed between

the octahedron state and the cube state. Furthermore, the tetrahedron state is its
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Figure 6.1: The relationship between the Platonic solids and their duals.

Figure 6.2: The MP and CPP distributions of the five “Platonic solid states”.

own dual, with the MPs and CPPs being identical. Unlike the dual of the Platonic

solid, however, the dual state of the tetrahedron state is not turned “upside down”,

but rather coincides with the original state.

We thus find that the five “Platonic solid states” exhibit the same duality relation-

ships as the classical Platonic solids, in the sense that the vertex-face association is

replaced with a MP-CPP association. We do not know the benefits of this mathemati-

cal property for quantum information science and related fields, but it is imaginable

that uses can be found, since the five “Platonic solid states” are exceptional states.

They have been coined the “perfect states” [97], and it was found that their property

of being spherical designs directly implies their anticoherence [97, 109]. Further-

more, they were found to be the optimal states for aligning Cartesian reference frames

[106]. With these recent discoveries in mind, it is conceivable that the quantum

analogue to the Platonic duals could come in handy at some point in the future.

6.3 Lipkin-Meshkov-Glick model

Quantum phase transitions are transitions between qualitatively distinct phases of

quantum many-body systems [203]. Such transitions play an important role in

physical systems, and recent studies have focused on analysing their phase diagrams

in terms of entanglement. One-dimensional models such as Ising spins in a magnetic

field allow for exact solutions, but they do not exhibit a particularly rich structure.

Higher-dimensional models are usually accessible only through difficult numerical

treatment, although certain symmetries of the Hamiltonian can make the model

exactly solvable. One such integrable model is the Lipkin-Meshkov-Glick (LMG)
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6.3. Lipkin-Meshkov-Glick model

model, whose solutions can be derived from an algebraic Bethe ansatz [204], but the

model can also be efficiently treated numerically. Originally introduced for nuclear

physics [113–115], the LMG model has since been employed to describe the quantum

tunnelling of bosons between two levels, and thus the Josephson effect in two-mode

Bose-Einstein-condensates [205]. It consists of a system of n mutually interacting

spin-1
2 particles embedded in a transverse magnetic field h:

H = − 1

n
(γxS

2
x + γyS

2
y)− hSz . (6.3)

Due to the symmetries of the Hamiltonian it suffices to consider h ≥ 0 and |γy| ≤ γx.

This anisotropic X-Y -system is known to undergo a second-order quantum phase

transition at h = γx or h = γy. Investigating the zero-temperature phase diagram

for the ground state reveals two phases, namely a symmetric phase for h > γx

where the ground state is unique, and a broken phase for h < γx where the ground

state becomes two-fold degenerate in the thermodynamic limit (n→∞). The full

spectrum is more complicated, with four different zones arising in the phase diagram

[22, 206]. The ground state always lies in the maximum spin sector, and is therefore

symmetric. In the large-field limit (h → ∞) the ground state becomes separable

|ψ〉 = |↑〉⊗N , and in the thermodynamic limit (n→∞) the spectrum of H remains

discrete.

Among other entanglement measures, the von Neumann entropy S(h), which

characterises the entanglement of a bipartite decomposition, has been used to analyse

the LMG model [207]. A maximum at the critical point was found, which is consistent

with a theoretical conjecture in [208]. Furthermore, the von Neumann entropy

of the ground state scales logarithmically with the block size L of the bipartite

decomposition [207].

6.3.1 Distribution of the MPs

The symmetric eigenstates of the LMG model [22, 206] can be represented in the spin

coherent basis by their Majorana polynomial ψ(α) ∝∏2s
k=1(α−αk), and the Majorana

roots αk become the MPs |φk〉 of the corresponding Majorana representation by means

of an inverse stereographic projection.

As outlined in [206], the Schrödinger equation of the LMG model has the form[
P2(α)

(2s)2
∂2
α +

P1(α)

2s
∂α + P0(α)

]
Ψ(α) = εΨ(α) , (6.4)

where the Pi are polynomials in α ∈ C, and Ψ(α) is the Majorana polynomial of

the eigenstate. We easily verify that if ψ(α) is a solution of Equation (6.4), then so

are ψ(−α) and ψ(α∗), which implies that if αk is a Majorana root, then so are −αk,
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αk
∗ and −αk∗. On the Majorana sphere this leads to reflective symmetries of the

MP distribution along the X-Z-plane and the Y -Z-plane, and combining these two

reflections, they give rise to a rotational symmetry along the Z-axis with rotational

angle ϕ = π. These symmetries are also visible in the examples of eigenstates shown

in [22, 206]. From Lemma 14 and Lemma 16 we obtain the result that the coefficients

of all eigenstates |ψ〉 =
∑s

m=−s am|s,m〉 of the LMG model are constrained to am ∈ R
for even m and am = 0 for odd m.

It is known that for all eigenstates of the LMG model the MPs are distributed

along two curves C0 and C1 on the Majorana sphere [22, 206]. The curve C0 always

coincides with the imaginary great circle, and while C1 coincides with the real great

circle in the simplest case, it is in general different. The MPs on the curves change

with the parameters of the Hamiltonian (6.3). For the ground state all MPs lie on

C0, as shown in Figure 6.3(a), and transitions between neighbouring energy levels

correspond to pairs of MPs switching from one curve to the other. This implies that

the k-th excited state has 2k MPs on C1 and 2(s− k) MPs on C0. From our discussion

in Section 5.5 it is clear that this qualitative difference of the MP distributions renders

these states SLOCC-inequivalent to each other, which means that the different energy

levels of the LMG model correspond to different types of entanglement.

In order to study the phase transition of the ground state in the thermodynamic

limit, it is convenient to simplify the Hamiltonian (6.3) as follows

H = − 1

N
γS2

y − hSz . (6.5)

This simplified Hamiltonian does not give rise to the full phase diagram anymore, but

otherwise it is expected to exhibit the same qualitative behaviour as the Hamiltonian

(6.3). In the thermodynamic limit the amount of MPs becomes infinite, so the

discrete distribution of MPs turns into a continuous probability distribution. From

the simplified Hamiltonian (6.5) the following distribution has been derived for the

latitudinal MP angles circle in the ground state [22, 209]:

Ph(θ) =


γ+h cos θ

2πγ for h ≤ γ (broken phase)
√
h(1+cos θ)(2γ−h+h cos θ)

2πγ for h ≥ γ (symmetric phase)
(6.6)

These two expressions converge at h = γ, and since only the ratio h
γ is physically

significant, we can set γ = 1 in the following. The function Ph(θ) is normalised for

all values of h within the respective areas where it is well-defined, i.e. θ ∈ [−π, π] for

h ≤ 1, and θ ∈ [− arccos h−2
h , arccos h−2

h ] for h ≥ 1. Plots of Ph(θ) for three different

values of h are shown in Figure 6.3(b).

In the corresponding finite-spin case the MPs are distributed along the imaginary
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circle in a pairwise fashion |φi〉 = cθ|0〉 ± isθ|1〉, as shown in Figure 6.3(a). The total

state |Ψ〉 is therefore positive, and it suffices to determine a positive CPP. The CPPs

come in pairs too, |σ〉 = cϑ|0〉 ± sϑ|1〉, so the overlap between any MP and CPP has

the form 〈φi|σ〉 = cθcϑ ± isθsϑ.

(a)
-3 -2 -1 0 1 2 3

0.0

0.1

0.2

0.3

0.4

Θ
PH

Θ
L

(b)

Figure 6.3: The MP distribution of the ground state of the LMG model at the phase
transition (h = 1) is shown in (a) for total spin s = 30. The 60 MPs all lie on the
imaginary great circle, and the corresponding eigenstate is positive. The latitudinal
probability distribution (6.6) of the MPs is shown in (b) for the three values h = 1

2
(orange), h = 1 (black) and h = 2 (blue). The finite-spin case and the thermodynamic
limit are shown as point distributions and continuous lines, respectively. It is seen that
the ring of MPs closes at the phase transition. [Figures generated from MATHEMATICA

code kindly provided by Pedro Ribeiro.]

6.3.2 Determination of the CPPs

In the finite-spin case the location of the positive CPP is determined by the maximum

of the spherical amplitude function g2(ϑ) = |〈Ψ|σ(ϑ)〉⊗n|2 =
∏n
i=1|〈φi|σ(ϑ)〉|2 over

all single-qubit states |σ(ϑ)〉 = cϑ|0〉+ sϑ|1〉. In order to find a continuous variant of

this quantity for the thermodynamic limit, we consider its logarithm because it will

turn the product into a sum, which naturally becomes an integral over a probability

distribution in the infinite limit:

G(ϑ) := − log2 g
2(ϑ) = − log2

[
n∏
i=1

|〈φi|σ(ϑ)〉|2
]

= −
n∑
i=1

log2|〈φi|σ(ϑ)〉|2 (6.7)

n→∞−→ −
2π∫
0

Ph(θ) log2|〈φ(θ)|σ(ϑ)〉|2 dθ . (6.8)

The monotonicity of the logarithm ensures that the maximum, and thus the CPP,

remains the same. The integral runs over the imaginary great circle where the MPs

lie. Note that g2(ϑ) is missing the normalisation factor K required for calculating
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the geometric entanglement, and an analytic calculation of this factor is believed

to be intractable. For the determination of the CPPs, however, we do not need the

normalisation factor.

In the following we present an analytic calculation of the positive CPP in the

broken phase (h ≤ 1). The logarithmic amplitude function along the real great circle

is then

G(ϑ) = −
2π∫
0

(1 + h cos θ)

2π
log2

[
c2
θc

2
ϑ + s2

θs
2
ϑ

]
dθ (6.9)

= − 1

2π

2π∫
0

(1 + h cos θ) log2

[
1
2(1 + cosϑ cos θ)

]
dθ . (6.10)

This integral can be solved with the help of the following two definite integrals

(found with MATHEMATICA) that hold for a ∈ [0, 1]:

2π∫
0

ln [1 + a cos θ] dθ = 2π ln
[

1
2

(
1 +

√
1− a2

)]
, (6.11)

2π∫
0

cos θ ln [1 + a cos θ] dθ =
2π

a

(
1−

√
1− a2

)
. (6.12)

With this we obtain

G(ϑ) = 2− log2

(
1 +

√
1− cos2 ϑ

)
− h

ln 2

1−
√

1− cos2 ϑ

cosϑ
. (6.13)

A numerical integration of Equation (6.9) verifies that Equation (6.13) is correct.

Setting the first derivative to zero yields the locations of the CPP:

∂G(ϑ)

∂ϑ
=

1

ln 2

(
h− cosϑ

1 + sinϑ

)
,

∂G(ϑ)

∂ϑ
= 0 ⇐⇒ h = cosϑ . (6.14)

Thus the relationship between the parameter h and the latitude ϑ of the CPPs

is h = cosϑ, yielding the two CPPs in the broken phase: |σ〉 =
√

1+h
2 |0〉 ±

√
1−h

2 |1〉.
This result has previously been obtained via the mean-field approach in [210], but

our method is different because instead of minimising the energy, we maximised the

spherical amplitude function of the geometric measure.
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In the symmetric phase (h ≥ 1) the logarithmic amplitude function reads

G(ϑ) = −
arccos h−2

h∫
− arccos h−2

h

1
2π

√
h(1 + cos θ)(2− h+ h cos θ) log2

[
1
2(1 + cosϑ cos θ)

]
dθ . (6.15)

An analytic solution of this integral is not known, but it is easily verified numerically

that the only CPP is the north pole |σ〉 = |0〉 for all h > 1, something that has been

noted before [23].

Surprisingly, the MPs and CPPs of the LMG ground state exhibit precisely the

same qualitative behaviour under variation of the magnetic field h as observed in

the simple 3 qubit model that we investigated in Section 3.1.2. In Figure 3.3 the

CPP initially stays at the north pole until the pair of MPs has moved sufficiently far

downwards. At the distribution in Figure 3.3(c) a “phase transition” occurs, where

the CPP abruptly leaves the north pole. This is the same behaviour that the CPP of the

LMG ground state exhibits around the phase transition h = 1 in the thermodynamic

limit, i.e. for infinitely many MPs.
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Conclusions

The aim of this final chapter is to provide a brief review of the main

results presented in this thesis, and to give an outlook at promising further

ideas and strategies that may be worthy of further investigation.

7.1 Summary of main results

In this thesis permutation-symmetric quantum states were investigated from various

perspectives, such as entanglement classification, extremal entanglement, invariants,

and connections to related physical phenomena. For this the Majorana representation

as well as the geometric measure of entanglement were the essential tools.

Chapter 2: Geometric Measure of Entanglement

A variety of analytical results about the GM was derived in Chapter 2. Particularly

noteworthy is Theorem 2.2 which predicts that the set of CPSs of the maximally

entangled pure state in terms of the GM spans the entire Hilbert space. It is conceiv-

able that the strategy of the proof can be employed to numerically determine the

maximally entangled states, and it was also found that the theorem can be straightfor-

wardly adapted for the case of permutation-symmetric states. Considering arbitrary

n qubit states with |0〉⊗n as a CPS, the necessary conditions for the coefficients of

these states were presented in Theorem 2, and it was argued that the conditions

can be viewed as a standard form similar to the one of Carteret et al. [40]. From

Theorem 4 we can conclude that complex phases are in general an indispensable

ingredient for highly entangled multipartite states. A new proof for the upper bound

Eg ≤ log2(n + 1) on the maximal geometric entanglement of n qubit symmetric

states was derived in Theorem 6, and the proof of this theorem ignited the idea of

visualising symmetric states by spherical bodies of constant volume. Finally, it was
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shown in Theorem 7 that W states of an arbitrary, but fixed number of excitations

cannot be useful for MBQC, even in the approximate regime.

Chapter 3: Majorana Representation and Geometric Entanglement

In Chapter 3 the Majorana representation was employed to gain a better under-

standing of the geometric entanglement of permutation-symmetric multiqubit states.

Effective visualisations of the entire information about the entanglement of symmet-

ric states were presented in Section 3.1.1, and in Section 3.1.2 they were applied to

review the two and three qubit case. With regard to the concepts of totally invariant

states and additivity, we discovered in Section 3.1.3 that states which are both positive

and totally invariant (e.g. the tetrahedron, octahedron and cube state) are additive

with respect to three distance-like entanglement measures. The relationship between

the “Majorana problem” of determining the maximal symmetric entanglement and

classical optimisation problems on the sphere was elucidated in Section 3.2. In

Section 3.3 a variety of analytical results were derived that link the analytic form of

symmetric states to the distribution of their MPs and CPPs. For example, Lemma 14

established that for a cyclic symmetry around the Z-axis of the Majorana sphere

to exist, many coefficients of the underlying state need to vanish, and Lemma 16

showed that states are real iff they exhibit an X-Z-plane reflective symmetry. In

Theorem 12 a “generalised Majorana representation” was derived where the sum

over all permutations of the n MPs is replaced with a sum over all permutations

of the subsets of an arbitrary, but fixed partition of the MPs. This generalisation

has the advantage that the analytical treatment of many MPs distributions can be

simplified by considering certain subsets of MPs, e.g. those MPs that are equidistantly

distributed over a circle. In the concluding Section 3.3.3 some strong results were

obtained for the Majorana representation of positive symmetric n qubit states. In

particular, they can have at most 2n− 4 CPPs, with the possible locations narrowly

pinned down to either the positive half-circle of the Majorana sphere, or to horizontal

circles corresponding to a cyclic Z-axis symmetry.

Chapter 4: Maximally Entangled Symmetric States

Strong candidates for the maximally entangled symmetric states of up to 12 qubits in

terms of the GM were found in Chapter 4. The combination of analytical and numeri-

cal methods employed for the search were outlined in Section 4.1. Visualisations by

means of the MPs and CPPs, as well as the spherical amplitude and volume functions

proved to be very useful tools in the search for high and maximal entanglement. The

CPPs of positive-valued Platonic states (tetrahedron, octahedron, cube) were found

to follow immediately from the rotation properties of the MPs. Comparisons with the
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extremal distributions of Tóth’s and Thomson’s problems shows that, in some cases,

the optimal solution to the Majorana problem is the same, but in other cases it signif-

icantly differs. In Section 4.3 the results obtained were interpreted and discussed.

With regard to the entanglement scaling it was found that our results are consistent

with the theory and similar studies, and that maximally entangled symmetric states

seem to admit a positive computational form only for n < 10 qubits. The distribution

behaviour of the MPs and CPPs could be appropriately explained with the spherical

amplitude and volume function, which is due to the fact that the global maxima and

minima are manifestations of the CPPs and MPs, respectively. Motivated by Euler’s

formula, Conjecture 22 affirms our belief in a deeper-lying geometric link between

the MP distribution and the maxima of the spherical amplitude function, something

that would yield a general upper bound of 2n− 4 CPPs.

Chapter 5: Classification of Symmetric Entanglement

In Chapter 5 the entanglement of n qubit symmetric states was investigated from

qualitative viewpoints. The three entanglement classification schemes LOCC, SLOCC

and the Degeneracy Configuration were reviewed for symmetric multiqubit states

in Section 5.1. It was found in Section 5.2 that the Möbius transformations from

complex analysis do not only allow for a simple and complete description of the

freedoms present in symmetric SLOCC operations, but also provide a straightforward

visualisation of these freedoms by means of the Majorana sphere. The symmetric

SLOCC classes of up to 5 qubits were fully characterised by representative states with

simple MP distributions in Section 5.3, and in the 4 qubit case these representations

are unique, unlike other classification schemes such as the EFs. Comparing the

symmetric SLOCC classes to the EFs, it is found in Section 5.4 that the partition into

symmetric SLOCC classes is a refinement of the partition into EFs. In Section 5.5 it

was seen how “invariants” of Möbius transformations, such as circles, angles and

cross-ratios, allow one to check whether symmetric states are SLOCC-equivalent or

not. In particular, the (S)LOCC-inequivalence of complex conjugate states could be

readily explained with geometric chirality. The different values of the cross-ratio

under permutations was linked to the generic DC class of 4 qubits by means of

SLOCC invariants in Section 5.6. Global entanglement measures were reviewed in

Section 5.7, and it was found that the tetrahedron state and other symmetric states

with high geometric entanglement or symmetries in their MP distribution play a

prominent role in the maximisation of these entanglement monotones.
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Chapter 6: Links and Connections

In the tripartite Chapter 6 several links between the Majorana representation and

related topics in mathematics and physics were highlighted.

Two different definitions of maximally non-classical spin-j states, namely the

“anticoherent” spin states and the “queens of quantum”, were linked to the corre-

sponding symmetric states by means of the Majorana representation in Section 6.1. It

was found that the MP distribution of maximally entangled symmetric n qubit states

in terms of the geometric measure does in general not describe anticoherent spin

states, but it coincides with the “Bures-queens of quantum”.

In Section 6.2 it was discovered that an analogue to the dual polyhedra of the

five Platonic solids exists for the corresponding symmetric states, in the sense that

the sets of MPs and CPPs are interchanged. This deepens the relationship between

the Majorana representation and the polyhedra of classical geometry.

Finally, the permutation-symmetric ground state of the LMG model in the thermo-

dynamic limit was investigated in light of the Majorana representation in Section 6.3.

By making a suitable transition from a discrete to a continuous MP distribution for the

thermodynamic limit, we found a new method to prove the degeneracy and locations

of the CPPs in the broken phase, something that could be used for investigating the

geometric entanglement of the LMG ground state.

7.2 Outlook and new ideas

It is all too natural that some of the ideas and strategies that spring up during a

research degree cannot be investigated with the rigour they deserve. This is especially

true for major open questions which may require a substantial amount of further

literature review, calculations or programming. Here I will briefly outline several

open questions and promising new ideas related to the topics of the present thesis.

Quantum computing with liquid Helium

Liquid Helium bubbles with stable electron patterns above their surface were already

mentioned in Section 3.2. When liquid 4He undergoes an electrohydrodynamic

instability in a vacuum, the system can emanate small bubbles of liquid Helium with

millions to billions of electrons hovering above the surface [162, 163]. The electrons

are localised in a stable potential well generated by the long-range positive mirror

charge in the dielectric Helium surface, and the (short-range) Pauli principle which

prevents the electrons from falling back into the liquid Helium [162, 163]. This

leads to the creation of a nearly ideal 2D electron gas described by a 1D hydrogenic

spectrum [162, 170].
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The radius of such Helium drops is typically between 10µm and 100µm, with the

electrons located around 100Å above the surface, and separated by 2000Å or more

from their nearest neighbours [162], see Figure 7.1. Typical electron numbers are

105 to 107, but there can be as many as 109. Lifetimes for the Helium drop of more

than 100ms have been achieved experimentally, and the feasibility of much longer

times in a quadrupole configuration has been proposed [162]. Very low decoherence

rates can be achieved by cooling the system down into the millikelvin range, yielding

spin coherence times beyond 100s for the electrons above the Helium [211].

Figure 7.1: Schematic diagram of electrons hovering above the surface of a liquid
4Helium drop. The number of electrons is typically in the range of 105 to 107, and
when cooling the system down into the millikelvin range the electrons are expected
to “freeze” into a pattern that solves Thomson problem (3.16).

For these reasons several schemes have been proposed for quantum computing

with liquid Helium, utilising the spin of electrons above a flat Helium layer on a gate

electrode arrangement [211], or by employing the lowest two hydrogenic levels of

individual electrons in the potential well above a Helium film [170]. Here we briefly

sketch a scheme employing the spin of the electrons around a Helium bubble, as

seen in Figure 7.1. The Coulomb energy between pairs of neighbouring electrons

is of the order 10K which is much larger than kBT in a system that is cooled down

to millikelvins, and a phase transition of the electrons into a “frozen” 2D pattern

has been observed experimentally [212]. Considering that the electrons describe a

nearly ideal 2D Coulomb system, we expect this pattern to be a solution of Thomson’s

problem (3.16). Since the point distributions of Thomson’s problem have been

verified to represent highly entangled symmetric states, one can ask whether the

geometry of the physical setup could be employed to generate almost maximally

entangled n qubit symmetric states with possible values of n spanning several orders

of magnitude. To do so, one would need to find a way to associate the spin of the

electrons with the states of the corresponding MPs in the Majorana representation of

the symmetric state. It is not clear how exactly this could be achieved experimentally,

and in particular how the permutation present in the Majorana representation (1.21)
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translates to an experimental setup, but any technique should take advantage of the

fact that the spatial distribution of the spin-1
2 systems precisely matches the Majorana

representation of the desired symmetric state. If it were possible to do this, one could

easily generate highly entangled symmetric quantum states that are subject to very

little decoherence and that could be used for applications in quantum information

theory that rely on symmetric states. To do so, it would also be necessary to devise

techniques for addressing and manipulating the individual spins in a controlled way.

Maximally entangled states

The question of which states of a given Hilbert space are maximally entangled with

respect to the geometric measure (or other entanglement measures) is still not solved,

although we were able make significant progress. For symmetric n qubit states we

found the solutions for the first few n, and in the process of doing so we gained

a good understanding of how the MPs and CPPs of highly entangled symmetric

states are distributed. For arbitrary multipartite systems we found in Theorem 1

that the maximally entangled state has a large number of CPSs, although it remains

open whether the set of CPSs is in general discrete or continuous. It would also be

interesting to explore whether the proof of Theorem 1 indeeds allows one to devise

an algorithm that determines maximally entangled states in terms of the geometric

measure.

In the context of maximally 4-tangled states Ðoković and Osterloh recently

stated that “The account of the complementary set of non-graph states as a resource

for quantum information processing is largely unexplored” [62]. Being the single

non-graph state among the three maximally 4-tangled states, the tetrahedron state

should therefore be considered a prime focus of future research. A summary of the

exceptional position that the tetrahedron state holds in 4 qubit Hilbert space was

already given in Section 4.2.1, and it is likely that further intriguing properties can

be found for this state or similar states (e.g. the Platonic states).

Morse theory

There are still open questions with regard to the number and distribution of the

CPPs of symmetric states. Most notably, it was shown in Section 3.3.3 that with the

exception of the Dicke states (which are the only ones with a continuous rotational

symmetry of the MP distribution) all positive symmetric n qubit states have at most

2n − 4 CPPs. In Section 4.3.3 the same upper bound was conjectured to hold for

general symmetric states, as well, with Euler’s formula for convex polyhedra being a

strong indication in favour of this. The conjectured relationship between the surfaces

of the polyhedron described by the MPs and the local maxima in the spherical
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amplitude function is particularly apparent for the five “Platonic states” shown in

Figure 6.2: each CPP of the tetrahedron state lies antipodal to the centre of a face,

and the CPPs of the other four Platonic states all lie at the centre of a face.

One potential way to shed light on this relationship is Morse theory, a branch of

differential topology that investigates how the topology of a manifold is related to

the stationary points, such as maxima and minima, of real-valued functions defined

on that manifold [213, 214]. To give an example, the different topologies of a line

and a circle manifest themselves in the fact that a line admits continuous functions

with arbitrarily large values (e.g. f(x) = x2), while the codomain of continuous

functions defined on a circle is limited to finite values, thus assuming a maximum

value somewhere on the circle. Recalling that the global maxima of the spherical

amplitude function are the CPPs, and that the global minima – the zeroes – lie

diametrically opposite to the MPs, it is straightforward to expect that the topology of

the Majorana sphere, which is simply the 3D sphere S2, can tell us more about the

number of CPPs.

Extensions of the Majorana representation

Finally we remark that questions still remain open as to how the elegant Majorana

representation of pure spin-J states – or equivalently pure symmetric states of 2J

qubits – can be extended to mixed states or to states of several spin-J particles.

Efforts have been made to find meaningful generalisations to n spin-J particles, most

notably in [107], where an insightful generalisation was derived with the help of

the Schur-Weyl duality. A generalisation to mixed states is considered much more

difficult, because the number of parameters present in mixed states of a spin-J

particle scales much faster with the dimension than 2J Bloch vectors in the interior of

the Majorana sphere can account for [107]. Nevertheless, an SLOCC entanglement

classification of mixed symmetric n qubit states has been achieved very recently with

the help of the DC classes [77].

Judging by the attention that the Majorana representation has gathered in recent

years, and the multitude of recently discovered results, it would not be surprising to

see significant further progress in this area.
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