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Abstract

This thesis is concerned with the dynamics of Bose-Einstein condensates in

optical lattices in the presence of an externally imposed force. We are especially

interested in the response of the system as a probe of the Mott insulator - superfluid

phase transition and use numerical simulations to study it.

To this end, we first discuss possible indicators of the Mott insulator and the

superfluid phases. We then employ the Bose-Hubbard model in an exact numerical

study of the equations of motion of bosons contained in a one-dimensional lattice.

We use these methods to study the effect of a static force across the lattice on

the particles and the consequences of this dynamical evolution of the system on a

number of observables.

We contrast these results from a static perturbation with the results of a time

dependent excitation of the system. We also discuss possibilities for experimental

indications of the phase (i.e. Mott insulator or superfluid) of the system based on

our numerical results for static and time dependent excitations.

In the last part of the thesis, we study the quasi-periodical nature of the dy-

namical behaviour of the system under a static force. In addition to the well known

Bloch oscillations, we find related, but distinct, oscillatory structures that are de-

pendent on which phase the system is in. We discuss possible causes of these effects

and present an analysis of our numerical results with a view to their experimental

relevance.

Throughout this thesis, our aim has been to examine a wide range of system

conditions. This has turned up novel dynamical features and suggests some future

experimental possibilities.



Acknowledgements

Firstly, I would like to thank Professor Keith Burnett for his supervision, interesting

discussions and emotional support. He has been an inspiration both as a scientist

and as a person and I am very grateful for the privilege of having been able to

spend a few years in his group.

Working with Dr Jacob Dunningham has been an absolute pleasure and I have

learnt a great deal from him. Many thanks for being so patient, helpful and just

all-around nice!

I have been lucky enough to meet a score of interesting people in the Clarendon

laboratory: thanks to Rachel, Eleanor, Donna, Vincent, Simon C., Angharad,

Zhao-Ma, Josh, Tom, David, Martin, Thorsten, Krzysztof, Thomas, Robert R.,

Matt, Simon G., Sam, Vicki, Mark, Robert S., Peter, Alex and Jacob for sharing

tea, coffee and conversations! Heartfelt thanks also go to Robert Schumann, Dr

Mark Lee and Dr Peter Kasprowicz for admirable patience in dealing with my

computer emergencies and to Dr. Simon Gardiner for some highly appreciated

advice.

My time in Oxford would not have been the same without my friends here and

I am immensely thankful to all of you for sharing some of your life with me. I

would especially like to thank Jan and Phil for being wonderful housemates and

making my last year in Oxford so enjoyable. It is also a great pleasure to thank

Mario and Kelley for succour and shelter in a time of great need (also known as

the final thesis writing stage.) It made such a difference!

I owe a large debt of gratitude to the Rhodes trust for generously supporting

me throughout my doctorate in the form of a Rhodes Scholarship. It has been a

great privilege to spend this time in Oxford and I much appreciate it. I would

also like to mention the Studienstiftung des deutschen Volkes and Merton College

and thank them for various forms of support. Thanks also go to the Clarendon



Laboratory for the use of their facilities.

Finally, I would like to thank my family for being so supportive and under-

standing. I could not have done this without you.



Contents

1 Introduction 1

1.1 Brief introduction to BEC . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 General theory . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 Experimental review . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3 Optical lattices . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2 Thesis outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Optical lattices and the Bose-Hubbard model 9

2.1 Optical lattices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Picturing a lattice - Bloch and Wannier functions . . . . . . . . . . 10

2.3 The Bose-Hubbard Model . . . . . . . . . . . . . . . . . . . . . . . 11

3 Quantum phase transitions 14

3.1 What are quantum phase transitions? . . . . . . . . . . . . . . . . . 14

3.2 The Mott Insulator - Superfluid phase transition . . . . . . . . . . . 15

3.2.1 Definitions of superfluidity . . . . . . . . . . . . . . . . . . . 17

3.2.2 Experimental signatures of the MI - SF transition . . . . . . 18

4 “Static” excitations 23

4.1 Experimental interest . . . . . . . . . . . . . . . . . . . . . . . . . . 23

4.2 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.3 Numerical setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5 Time-dependent excitations 44

5.1 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

i



CONTENTS ii

5.2 Numerical implementation . . . . . . . . . . . . . . . . . . . . . . . 46

5.3 Theory of excitations . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6 Oscillations - Bloch, hopping and beyond 63

6.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.2 Experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

6.3 Numerics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

7 Possible directions for future work 78

7.1 Comparison of local and global variables . . . . . . . . . . . . . . . 78

7.2 Dynamic excitations . . . . . . . . . . . . . . . . . . . . . . . . . . 79

7.3 Understanding the behaviour of resonance Bloch oscillations . . . . 80

7.4 Extensions of the Bose-Hubbard model . . . . . . . . . . . . . . . . 80

7.5 Concluding remarks - main findings of the thesis . . . . . . . . . . . 80

A Runge-Kutta numerical approximation 82



Chapter 1

Introduction

In this introductory chapter, we shall first give a brief overview of the historical

development of the theory of Bose-Einstein condensation. We then describe the

route to experimental realization and briefly touch upon the many exciting aspects

that can be studied with the help of Bose-Einstein condensates (BEC). Lastly, we

will give an overview of the specific work presented in this thesis.

1.1 Brief introduction to BEC

1.1.1 General theory

The theory of BEC has a long history: it all began in the early days of quantum

mechanics with the discovery that identical quantum mechanical particles do not,

in contrast to their classical counterparts, have well-defined trajectories in phase

space and are thus not individually distinguishable. Indeed, should we define a

many-body wave function where mathematical labels are assigned to each particle,

an exchange of these labels could lead to different physical outcomes.

In order to obtain unambiguous physical observables, certain symmetries re-

garding the exchange of particles had to be imposed on the many-body wave

function. It turns out that there are two possible symmetries - the many-body

wave function Ψ must be either symmetric or antisymmetric under the exchange

of particle labels. In mathematical terms, this is equivalent to

Ψ(. . . , xi, . . . , xj, . . .) = ±Ψ(. . . , xj, . . . , xi, . . .). (1.1)

1



1.1. Brief introduction to BEC 2

Symmetric exchange, i.e. invariance under particle label exchange, trivially

fulfills the condition of indistinguishability. The possibility of antisymmetric ex-

change, however, is a direct consequence of the quantum mechanical definition of

observables. All experimentally accessible variables A of the system can be written

such that

A = 〈Ψ|O|Ψ〉 (1.2)

for some operator O. Consequently, antisymmetric exchange does not change any

experimentally observable variables of the system and is permissible.

Particles with symmetric wave functions are said to obey Bose-Einstein statis-

tics and are called bosons while such with an antisymmetric wave function obey

Fermi-Dirac statistics and are termed fermions.

The property of symmetry or anti-symmetry is also related to the intrinsic an-

gular momentum of the particles by the spin statistics theorem [1]. According to

this, bosons have integer spin while fermions possess half-integer spin. Strictly

speaking, the spin statistics theorem applies only to elementary particles. Com-

posites of fermions (such as atoms) with a total integer spin, however, will behave

as bosons when energies are sufficiently low that their internal structures cannot

be resolved. For the atoms discussed in this thesis, such low energies will always

be assumed.

One consequence of the symmetry property is the marked difference between the

ground state occupation of fermions and bosons. While fermions are governed by

the Pauli exclusion principle that forbids sharing of the same quantum state, there

is no limit on the number of bosons that can occupy a quantum state. Consequently,

in equilibrium bosonic systems, the energetically lowest states tend to be multiply

occupied.

This behaviour of bosons is central to the thermodynamic phase that is known as

a Bose-Einstein condensate (BEC). Under the right conditions (most importantly of

density and temperature), the tendency towards multiple occupation of states can

lead to the macroscopic occupation of one single quantum state (most commonly

the ground state) [2]. The atoms in this quantum state are then collectively called

a Bose-Einstein condensate and, by definition, share all quantum properties.

For an ideal (i.e. non-interacting) gas, the calculation of the interesting thermo-

dynamical properties is very well understood and can be found in most statistical

mechanics textbooks [3]. One important result is the relation of the particle density

n to the de Broglie wave length λdB =
√

2π/mkBT (m is the particle mass, kB the

Boltzmann constant and T the temperature). For a three-dimensional system, we



1.1. Brief introduction to BEC 3

find that Bose-Einstein condensation, i.e. the phase transition to a BEC, occurs for

nλ3
dB ≥ 2.612. In other words, condensation becomes possible when the de Broglie

wavelength is comparable to the particle separation or, equivalently, when there is

a significant overlap of the particle de Broglie wavelengths.

In general, the introduction of interaction changes the behaviour of the many-

body system. By 1947, it was shown [4] that weak interactions do not profoundly

affect the nature of the BEC itself. They do, however, change observables such as

the low-lying excitations and whether or not the system is a superfluid. Building

on these fundamental results, BEC theory has evolved to such an extent over the

following decades that a comprehensive review would at least treble the length

of this thesis. More to this development can be found in the overview articles

[5, 6, 7, 8], books [9, 10, 11, 12] and references therein.

1.1.2 Experimental review

Despite its early theoretical beginnings, experimental realization of a BEC was only

achieved quite recently in 1995 [13]. In fact, for a long time theorists felt that the

high densities and low temperatures required to fulfill the condition nλ3
dB ≥ 2.612

would never be within experimental reach. Part of the problem was the need for

relatively weak interactions - even when sufficient densities and temperatures were

achieved in liquid helium, strong interactions meant that the resulting state was

not a pure BEC [14, 15]. These experimental limitations changed drastically with

the invention of the laser - and with the realization of one of its applications, the

experimental technique of laser cooling. From the 1980s on, techniques for cooling

and trapping of (mostly alkali) atoms grew more and more refined until success

in condensing 87Rb was reported by the group of Cornell and Wieman at JILA

in Boulder, Colorado [13] in 1995. Their success was rapidly followed by that of

several other groups who reported the observation of BEC in 23Na [16], 7Li [17]

and in atomic hydrogen [18].

Despite the variation in the condensed elements, the broad outline of all of these

experiments is rather similar. (For more detailed reviews see e.g. [19, 20]). In order

for cooling to be possible, atoms need to be thermally isolated from all material

walls - consequently, all trapping is done with electromagnetic fields. To avoid con-

tamination with other chemical elements as much as possible, this trapping takes

place in ultrahigh vacuum chambers. Atoms are first pre-cooled with lasers, gain-

ing about six orders of magnitude in phase space density, and then evaporatively
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cooled to condensation with another phase space density gain of about six orders

of magnitude.

Laser pre-cooling is usually carried out by superimposing pairs of counter-

propagating laser beams. These laser beams are slightly red-detuned below the

atomic resonance with opposite circular polarisation. The detuning is chosen such

that the laser opposing the atom’s motion is shifted towards the resonance in the

reference frame of the particle by the Doppler shift. Atoms are thus more likely to

absorb a photon from the opposing laser and will, on average, be slowed down.

This technique is known as “optical molasses” and is highly effective up to

the Doppler-cooling limit (usually at a velocity of a few ms−1, but dependent on

the type of atoms being cooled). The Doppler-cooling limit is a result of the

diffusive heating that laser beams cause by the absorption and random re-emission

of photons. The efficiency of cooling using optical molasses is thus determined

by the strength of cooling in comparison with diffusive heating. At the point of

equilibrium, optical molasses have reached the limit of their usefulness.

Optical molasses can be used in a variety of configurations, most commonly in

the magneto-optical trap (MOT). Some form of confinement of the atomic cloud

is usually necessary to allow the slowing force of the optical molasses to cool the

atoms without them escaping immediately. The MOT has the added advantage of

Zeeman shifting the atomic energy levels. The detuning of the atomic energy level

to the laser beam can then be made position dependent so that the radiative force

acting on the atoms is weak in the centre of the trap, but grows increasingly strong

away from the centre. The cloud is then not only cooled, but also focussed into

the centre.

After laser pre-cooling, atoms are typically cooled to temperatures of the order

of µK, but the phase space density can still be up to six orders of magnitude

smaller than that required for condensation. The next step is then evaporative

cooling. This method is often compared to blowing the steam off a coffee cup and

consists of removing the high-energy end of the thermal distribution from the trap.

With the loss of these atoms, more than the average thermal energy per atom is lost

from the trap so that, after rethermalization, the temperature in the remaining gas

will be lower. In order for evaporative cooling to be efficient, the loss rate from the

trap needs to be significantly slower than the rethermalization rate. Under ideal

conditions, the gain in phase space density is then about six orders of magnitude

at a cost of a factor of 1000 reduction in the total number of atoms.

As with the laser pre-cooling, evaporative cooling has its limitations. In addi-
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tion to the ‘good’ elastic collisions which enable rethermalization, one finds ‘bad’

inelastic collisions that cause trap loss and heating. Thus, if the truncation of the

thermal energy by the evaporative cooling is chosen too large, the increase in phase

space density will be more than cancelled out by the decrease due to (inelastic)

losses. Serendipitously, the ratio of elastic to inelastic collisions was found to be

favourable for the alkali atoms chosen in the JILA and MIT experiments so that

BEC could be reached with evaporative cooling. BEC in gases with less favourable

collision ratios such as Cs took significantly longer to obtain [21] - despite much

experimental effort, the first experimental observation was only in 2003.

1.1.3 Optical lattices

Once the techniques necessary to reach Bose-Einstein condensation were well es-

tablished, more and more applications of BECs beyond the simple establishment

of the condensed phase were proposed and (in some cases) carried out. After all,

a BEC can be compared to a magnified view of the quantum world - the quan-

tum properties of one atom are now shared by millions of others. Consequently,

BECs are a wonderful playground for testing out fundamental theories of quantum

mechanics.

Some examples from the last few years include the creation of vortices [22], the

use of condensates in an atom interferometer [23] and the construction of atom

lasers [24, 25, 26].

In this thesis, we shall explore the rich physics of Bose-Einstein condensates

in optical lattices. Optical lattices are formed by counterpropagating laser beams

that form standing waves. Atoms are then trapped at the nodes or anti-nodes of

the standing wave, depending on the polarization of the laser beams, by the dipole

force. We shall discuss the theoretical background to the interaction of bosons with

an electromagnetic field in some more detail in Chapter 2 and now proceed to give

an overview of experimental progress.

The technique used for optical lattices is very similar to optical molasses - they

were developed together with the technology needed for Bose-Einstein condensation

in the late 1980s and early 1990s to trap cold atoms [27, 28, 29, 30]. The initial

experiments [27] focussed on exploring the diffraction of atoms by standing light

waves rather than on trapping and containing them. With increasing experimental

sophistication, the focus shifted to the study of atoms trapped in an optical lattice

with a view to obtaining information about the dynamics of the laser-cooled atoms
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through the dependence of their energy spectrum on the parameters of the optical

lattice. Over the following years, techniques for detecting atom dynamics in optical

lattices grew increasingly more refined [31] leading to the development of atom-

optical elements [32] as well as to studies of quantum chaos [33].

At the same time, interest in the study of Josephson-effect interference was

growing, fuelled by the possibility of carrying out interference experiments with

coupled superfluid He(3) reservoirs [34]. The possibility of observing such phase-

dependent dynamics with BECs in optical lattices attracted much theoretical in-

terest [35, 36] and was finally verified in the Kasevich group at Yale in 1998 [37].

The exact trapping configuration for BECs in optical lattices varies from exper-

iment to experiment, but the general strategy is as follows. A dilute vapour is first

cooled to condensation as described above. With the condensate held in a magnetic

trap, the optical lattice is then created by gradually ramping up the intensity of a

standing wave of light. For two- and three-dimensional optical lattices, the neces-

sary number of beams is usually created by splitting and reflection of one initial

beam. For a three-dimensional lattice, the interfering standing waves then form a

crystal-like structure with regular local potential minima in which atoms can be

trapped. In a two-dimensional lattice, the effect of the laser waves is to divide

the initial condensate into regular tube-like quasi one-dimensional condensates. A

one-dimensional lattice could be used to divide the condensate into sheet-like two-

dimensional condensates. In these configurations, it is thus possible not only to

explore the interaction of atoms trapped in various potential minima, but also to

create and study lower-dimensional condensates.

Once the possibility of BECs in optical lattices was established, a wide range

of experiments followed (for a recent review see [38]).

In this thesis, we shall focus on one particular aspect of physics in optical

lattices: the Mott insulator (MI) - superfluid (SF) transition, its signatures and

excitational structure. In 1998, Jaksch and coworkers showed that BECs in optical

lattices can be described by the Bose-Hubbard model (BHM) where the system

parameters are controlled by laser light [39]. The BHM predicts a second order

quantum phase transition from a Mott insulator to a superfluid phase. The central

parameter of this phase transition is the dimensionless ratio g of the zero-range

onsite interaction constant U (caused by repulsion) to the tunneling matrix element

J . For g = U/J << 1, atoms are delocalized across the lattice, their kinetic energy

is much larger than the potential energy deriving from interactions and they are

in the superfluid phase. For g = U/J >> 1, in contrast, atoms are so strongly
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localized that the occupation number of atoms per site is pinned at an integer value

and the interaction energy is much higher than its kinetic energy. We shall discuss

the definitions of both superfluidity and the Mott insulator phase in more detail in

Chapter 3.

This phase transition was realized experimentally three years after the theo-

retical prediction in a seminal experiment by the group of Immanuel Bloch and

Ted Hänsch in Munich [40]. This was followed by an explosion of theoretical and

experimental interest in the specifics of the phase transition, applications of the MI

states, recreation in one dimension [41] and many other aspects.

1.2 Thesis outline

In this thesis, we are primarily interested in the exploration of the dynamics of

BECs in optical lattices near to the MI - SF phase transition and in the strongly

interacting Mott insulator regime. In order to lay the foundation for this work, we

present the theoretical framework for the Bose-Hubbard model in the second chap-

ter. We begin with a closer look at the atom-field interaction present in an optical

lattice for single particles. We then present the derivation of the BHM following

the method used in [39] and discuss the possible basis states and assumptions made

in that model.

In the third chapter, we look at the MI - SF phase transition in more detail.

Firstly, we consider the characteristics of quantum phase transitions in general. We

then review the specific points of the two phases. In the last part of this chapter

we discuss possible experimental signatures of the MI - SF transition.

Chapters 4, 5 and 6 represent original research that I have carried out during

the course of my doctorate.

Motivated by the beautiful experiment of Greiner et al. [40], the fourth chapter

will be concerned with the effect of a static force on the dynamics of an optical

lattice. We will present results of our numerical simulations. One of our main

interests is the response of states with various degrees of reduced number fluctu-

ations. Using an exact calculation, we find evidence for interesting excitational

structures in addition to those already observed experimentally. We also study the

relation between the number variance and the change in added energy as well as

in the interference pattern and find that the number variance can be a very good

indicator of excitations in the energy of the system.

In the fifth chapter, we study the response of bosons in a one-dimensional lattice
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for a dynamic excitation as it was realized in, e.g., the group of Esslinger at the

ETH [41]. We find that such excitations are indeed a very precise instrument for

exploring the energy eigenvalues of the system and identify features that could

possibly be of use in tracking the MI - SF phase transition.

The sixth chapter is a study of the rich oscillatory spectrum we have found

for the excitation of a one-dimensional lattice by a static force. We identify the

predicted Bloch oscillations and find and interpret additional oscillations that could

be very useful in a study of the resonances of the system. We also find a dependence

of oscillation strength on the phase of the system. As Bloch oscillations can be

present even for a non-interacting, single-particle system, the relation of these

oscillations to effects caused by the ‘particle-like’ nature of the MI phase may give

interesting insights into the state of the system.

In the seventh chapter, we will give a summary of the work discussed in this

thesis and discuss possibilities for future work. Details of the numerical procedures

used for Chapters 4 to 6 will be set out in an appendix.

Note: we set ~ = 1 throughout the thesis.



Chapter 2

Optical lattices and the

Bose-Hubbard model

In this chapter, we shall explain the interaction of bosons with an electromagnetic

field that is central to the trapping by optical lattices. We then discuss possibilities

for basis states in an optical lattice. Finally, we derive the Bose-Hubbard model

that will be central to all further work in this thesis.

2.1 Optical lattices

An optical lattice for BECs is produced by the interference of two or more laser

beams. The atoms are then subject to the so-called dipole force. For an excellent

introduction to this force see [42] and, slighty more specific to experimental proce-

dures, [43]. For a two-level atom, the Hamiltonian for a standing plane wave (i.e.

an interference of two laser beams) can be written as [11, 44, 45, 46, 47, 48]

Ĥ =

(
Ee 0

0 Eg

)
+

p̂2

2m

(
1 0

0 1

)
+ 2Ω cos(ωLt) cos(kLx)

(
0 1

1 0

)
(2.1)

where m is the atomic mass, Eg and Ee the ground and excited electronic states

of the atom and Ω the Rabi frequency between these states. ωL and kL are the

frequency and wave vector of the standing wave. We then substitute the ansatz

Ψ(x, t) = exp(−iωLt)ψe(x, t)|e〉 + ψg(x, t)|g〉 (2.2)

9
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into the Schrödinger equation for the Hamiltonian (2.1). In the rotating wave

approximation, one then obtains a system of coupled equations

i
∂ψe(x, t)

∂t
= −δψe(x, t) +

p̂2

2m
ψe(x, t) + Ω cos(kLx)ψg(x, t) (2.3)

i
∂ψg(x, t)

∂t
=

p̂2

2m
ψg(x, t) + Ω cos(kLx)ψe(x, t) (2.4)

(2.5)

where δ = ωL− (Ee−Eg) is called the detuning. We can gain decoupled equations

by making a number of further assumptions [49]. For one, we assume that the

detuning δ is much larger than the Rabi frequency Ω. We also assume that both

detuning and Rabi frequency are much larger than the momentum contribution

p̂2/2m. For the purposes of this thesis, we can also make the assumption that the

internal motion of the atom is instantly damped to equilibrium. As ψe carries the

internal motion, this implies that ∂ψe/∂t = 0.

We can then simplify the first excited state to

ψe(x, t) ≈
Ω

δ
cos(kLx)ψg(x, t). (2.6)

For this simplification, the Schrödinger equation then has the more convenient

form of

i
∂ψg(x, t)

∂t
=

(
p̂2

2m
+ Vlatt(x)

)
ψg(x, t) (2.7)

where the optical lattice potential Vlatt is equal to

Vlatt(x) = V0 cos2(kLx), V0 = Ω2/δ. (2.8)

2.2 Picturing a lattice - Bloch and Wannier func-

tions

For a periodic lattice, the eigenstates of the single particle Hamiltonian derived

above,

Ĥ0 = p̂2/2m+ Vlatt(x), (2.9)

take the convenient form of Bloch states ψnq. For this to hold, it is not even

necessary for Vlatt to take the form of Eq. (2.8). It only needs to be periodic so

that for all R = n1a1 + n2a2 + n3a3 (ni ∈ Z, ai are the lattice basis vectors), the
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condition of Vlatt(r) = Vlatt(r + R) ∀ r ∈ R is fulfilled. Bloch states can be written

in the form

ψnq(r) = unq(r)e
iq·r (2.10)

where unq(r) = unq(r + ai), i.e. they are periodic, q is the quasi-momentum and

n the band index. It is clear from Eq. (2.10) that the Bloch states are delocalized

and extend over the entire lattice. Conceptually, however, it can be easier to use

localized states in order to study many-body interactions. We therefore introduce

localized Wannier states wn(Ri) for each site Ri which are defined as the Fourier

transform of the Bloch eigenstates in the momentum representation. They can be

found by summing over all Bloch states in one Brillouin zone:

wn(r − Ri) ≡
1√
N

∑

q

e−iq·Riψnq(r). (2.11)

In their most general form, Wannier states are Mathieu functions which are not

trivial to solve (an introduction is given in [50]). For the purposes of the theory

in this thesis, however, it has been shown [51, 52] that we can approximate these

complex functions by the eigenstates of the harmonic oscillator, e.g. for the first

band by the Gaussian function

φ0+ =
1√√
πσ

exp(−x2/2σ2) (2.12)

where σ is dependent on the height of the potential barrier separating the sites in

the optical lattice. A necessary condition for this is the single-band approximation,

i.e. we assume that only the first Bloch band is populated. The approximation of

using the harmonic oscillator eigenstate of Eq. (2.12) is then valid as long as U >

ER/4 where

ER = k2/2m (2.13)

is the single photon recoil energy with k = 2π/λ and m is the atomic mass. We will

discuss these approximations and the exact form of the Wannier Gaussian function

for the BHM further in Chapter 5.

2.3 The Bose-Hubbard Model

Wannier functions are also crucial to the calculation of the second quantized Hamil-

tonian that is central to the Bose-Hubbard model (BHM) [53, 54]. The starting
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point for the derivation of the BHM Hamiltonian is usually [39, 55] the many-body

field Hamiltonian in second quantization

Ĥ =

∫
dr ψ̂†(r){Ĥ0 + Vext(r)}ψ̂(r) +

1

2
g

∫
dr ψ̂†(r)ψ̂†(r)ψ(r)ψ(r) (2.14)

A derivation of this can be found in most advanced quantum mechanics textbooks,

see e.g. [56]. Here ψ̂† is the boson field operator, Vext is an external potential in

addition to Vlatt and g = 4πas/m is the interaction strength, with as the s-wave

scattering length and m the atomic mass. Ĥ0 = p̂2/2m + Vlatt(x) is motivated

by the single-particle Hamiltonian of Eq. (2.9) derived above. We have made the

assumption that both the de Broglie wavelength and the distance between lattice

sites are very large compared to the range of interatomic forces. This allows us

to represent the interatomic potential Vint in terms of the binary s-wave scattering

length as as Vint = gδ(r−r′) [57]. We now expand the field operator into a Wannier

basis w of the ground band

ψ̂ =
∑

i

w0(r − Ri)âi (2.15)

and make the so-called tight-binding approximation, that is, we assume that the

Wannier states only have significant overlap between nearest-neighbour sites. That

means that we can use the scattering length description of the interaction as de-

scribed by [58]. The restriction of the basis to the first band allows us to approxi-

mate the Wannier functions by the Gaussian function

φ0+ =
1√√
πσ

exp(−x2/2σ2) (2.16)

of Eq. (2.12) as long as the condition U > ER/4 is fulfilled [51, 52]. This condition

holds for the given values of U in the relevant experiments [40, 59, 41] so that the

restriction of our numerical model to U > ER/4 should not limit its applicability.

Clearly, the restriction to the first band is an approximation that can (and

does [60] at times) fail in experimental settings. These transitions between Bloch

bands are known as Landau-Zener tunneling [61, 62]. The conditions under which

Landau-Zener tunneling sets in are strongly system dependent. For the purposes

of this thesis, we will focus on systems in which it does not play a significant role.
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With these approximations, the Hamiltonian of Eq. (2.14) reduces to

ĤBHM ≈ −J
∑

〈i,j〉

â†i âj +
∑

i

εiâ
†
i âi +

1

2
U
∑

i

â†i â
†
i âiâi. (2.17)

〈i, j〉 indicates summation over all nearest neighbours. The transitional matrix

element J is defined for adjacent sites i and j as

J =

∫
drw∗(r− Ri)Ĥ0w(r− Rj). (2.18)

It can also be thought of as a measure of the ‘hopping’ of atoms between adjacent

sites. The zero-range, on-site interaction strength U is defined as

U = 4πas

∫
dr |w(r− Ri)|4. (2.19)

The site-dependent local energy εi is equal to

εi ≡
∫

drw∗
0(r − Ri)Vext(r)w0(r − Ri). (2.20)



Chapter 3

Quantum phase transitions

In this chapter, we will briefly discuss the characteristics of phase transitions. We

will then explain specific features of the MI - SF quantum phase transition. Lastly,

we will use this to discuss experimental realisations of MI and SF phases and the

possible indicators for tracking the point of transition.

3.1 What are quantum phase transitions?

Generally, a phase transition is the sharp change of a thermodynamic system from

one phase to another. A phase in a system is a region in the parameter space of

the system’s thermodynamic variables in which the free energy is analytic. Equiva-

lently, if two states of a system can be transformed into each other without abrupt

changes in their thermodynamic properties, they are in the same phase. Conse-

quently, a phase transition is characterized by a sudden change in some thermo-

dynamic property (a typical example is a sudden change in heat capacity for a

fluctuation in temperature at the solid-liquid phase transition). Classical phase

transitions are usually driven by thermal fluctuations.

For a quantum phase transition, the sudden change in an observable is caused

by a quantum mechanical fluctuation. Indeed, quantum systems can have fluctu-

ations driven by, for example, the Heisenberg uncertainty principle, even at zero

temperature where classical phases would be frozen to the ground state.

More formally [54], a quantum phase transition can be identified as any point for

which the ground state energy becomes non-analytical. As this non-analyticity is

usually the result of competition between two terms in the underlying Hamiltonian,

14
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it can also be thought of as either an actual energy level crossing (possible in finite

and infinite systems) or an avoided level crossing (only possible in the limit of an

infinite system).

A system with an avoided level crossing thus only has a proper phase tran-

sition in its infinite limit. After all, when the system is finite, it does not have

a point of non-analyticity. The thermodynamic phases, however, are usually still

present. For finite systems, the transition between them will be gradual rather

than instantaneous - we get a cross-over phase.

In this thesis we are interested in the MI - SF transition which is a so-called

second order quantum phase transition. This implies that a characteristic energy

scale of fluctuations above the ground state will vanish as the system approaches

the non-analytical transition point.

3.2 The Mott Insulator - Superfluid phase tran-

sition

The phase transition from the Mott insulator to a superfluid is commonly [63]

described by starting out from the atomic limit (where the tunneling matrix element

J is very small), i.e. the MI phase. The ground state is then given by

|Np, 0〉Mott =

Ns∏

i=1

1√
Np!

(â†i)
Np |000 . . .0〉 (3.1)

where Np is the number of particles per site and Ns the number of sites. |000 . . . 0〉
is the vacuum state and |Np, m〉 is taken to mean the mth eigenstate so that |Np, 0〉
is the ground state. We find that the MI phase is incompressible, i.e. there is an

integer number of particles Np εN per site. The MI - SF phase transition is then

found by studying excitations of the energy ground state. In the incompressible

MI phase, these excitations correspond to a finite non-zero energy, EG, which is

generally termed as showing an energy gap, i.e. EG, or being gapped. At the MI -

SF transition, EG → 0 which is known as the energy spectrum becoming gapless.

For the MI phase, the excitations of the ground state are defined by the addition

or removal of a particle with respect to a specific site i and can be written as

|Np, 0; i〉part =
1√

Np + 1
â†i |Np, 0〉Mott (3.2)
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|Np, 0; i〉hole =
1√
Np

âi|Np, 0〉Mott. (3.3)

|Np, 0; i〉part denotes the ground state with the addition of a particle at site i while

|Np, 0; j〉hole represents the ground state with the addition of a hole (i.e. removal

of a particle) at site j.

For J = 0, their energy relative to the ground state of Eq. (3.1) is equal to

Epart = UNp − µ (3.4)

Ehole = −U(Np − 1) + µ, (3.5)

where U is the interaction strength as defined in Eq. (2.19) and µ is the chem-

ical potential. Whether excitations are gapped or gapless is determined by the

difference ∆ between the energy gained by an added particle and lost by a hole,

i.e.

∆(U, J) = |Epart| − |Ehole|. (3.6)
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Figure 3.1: This plot illustrates the general features of the zero-temperature phase diagram for
the MI - SF transition [53, 64] schematically. The dashed blue lines in the SF phase represent
constant integer density Np = 1, 2, 3. They touch the MI phases at the tips of the lobes at a
critical value J/U which decreases with increasing density Np.

For J = 0, we immediately see that ∆(U, J) = U . With increasing J , ∆(U, J)

decreases until, at the phase transition, the energy to remove a particle and the
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energy to add a particle become degenerate so that ∆(U, J) = 0 and the MI phase

vanishes completely. This dependence of the transition point on energy fluctuations

above the ground state shows that the MI - SF transition is a second order phase

transition.

The precise location of the point for which ∆(U, J) = 0, is not easy to determine

and is strongly dependent on the dimensionality and total number of atoms of

the system. For a one-dimensional lattice, Quantum Monte Carlo studies [65],

renormalization group results [66], mean-field approximations [67, 68] and strong-

coupling expansions [63] give (U/J)c = 3.8 for Np = 1 (Np is the mean number

of atoms per site) and (U/J)c = 2.2Np for Np >> 1. In the three-dimensional

lattice [53, 69, 70, 71], the MI - SF transition occurs at (U/J)c = 5.8z (z is the

number of nearest neighbours) for Np = 1, and (U/J)c = 4Npz for Np >> 1.

Fortunately for the applicability of results, the qualitative features of the phase

transition are not dependent on the dimension even though the quantitative values

such as the point of transition vary. Fig. 3.1 shows the qualitative structure of

the zero-temperature phase diagram schematically. We have already seen that the

MI phase is characterized by an energy gap. It is important to realize that this

also implies non-compressibility. For J << U , one thus obtains a series of ‘Mott-

lobes’ with fixed integer filling Np = 1, 2, . . . The integer filling Np depends on the

chemical potential µ. One consequence of this non-compressibility is that for a

state with non-integer filling, i.e. for Np = m + ε where m ∈ N and 0 < ε < 1,

the system cannot be in the MI phase. In other words, the ground state will be

superfluid even for J << U .

In finite systems, one still finds the thermodynamic phases but the transition

between them will be ‘soft’. The characteristic sharpness of the transition (i.e. the

non-analyticity of the derivative of some operator O, ∂O/∂x = ∞) is lost. The

geometry of the confining traps, e.g. an inhomogeneous trap, can further change

the characteristics and critical values of the phase transition [72, 73].

3.2.1 Definitions of superfluidity

In the last section, we have found that the MI - SF transition can be described

by the energy gap of the excitations of the ground state. Superfluidity is not just

the absence of Mott insulation, however. In a situation where we already know

that the transition will be between an MI phase and a SF phase, the excitation

energy gap would be sufficient indication. Depending on the system characteristics,
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however, there can also exist other phases such as the Bose glass phase (insulating,

but gapless and compressible, usually present only for disorder) [53].

Consequently, we need to explore more specific signatures of a superfluid as

well. This is not entirely trivial as there are diverse definitions for the SF phase

[74, 75, 76]. Their main difference lies in the distinction between the response of the

superfluid to a static perturbation versus a dynamic perturbation. The reason for

these divergences is possibly caused by the fact that the concept of superfluidity can

be taken to cover more than one phenomenon. As explained by Leggett in [77], there

are at least two effects which can cause the phenomenon of ‘frictionless flow’ which

was the original motivation for the concept of superfluidity. One phenomenon, the

so-called Hess-Fairbank effect, is a manifestation of the equilibrium behaviour of

the system while the other effect is characterized by metastability.

For the purposes of this thesis, both definitions are equivalent as we will study

the MI - SF transition for T = 0 only. To emphasize the link between Bose-Einstein

condensation and superfluidity, we will define the superfluid density as a coefficient

in the effective long-wavelength action which governs phase fluctuations. We can

immediately see that a condensate will always be superfluid.

An alternative definition of the superfluid density can be found by using the

response of the system to moving boundaries [75, 76]. The superfluid fraction is

then dependent on the kinetic energy of the superflow that is imparted by a twist

of the boundary condition.

The relation between these two definitions is discussed by Roth in [76].

3.2.2 Experimental signatures of the MI - SF transition

The BHM Hamiltonian appears to be relatively simple but the physics it gives rise

to is not. Specifically, it has been difficult to observe the MI - SF transition in a real

system, despite much theoretical and experimental attention [40, 41, 64, 73, 76, 78,

79]. This may be partly due to the fact that the phase transition is characterized

by an avoided level crossing rather than an actual level crossing. Consequently,

for finite lattices, the transition will not be sharp. Mostly, though, the difficulty of

experimental confirmation of the MI - SF transition is simply down to the difficulty

of gaining indications of the transition from the experimentally accessible variables.

The experimental procedure used to observe the MI - SF transition utilizes

the change in the momentum pattern as, for example, in the seminal experiment

by Greiner et al. [40]. This change in the momentum distribution is tracked by
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absorption imaging [20] the cloud after a given time of flight. Typically, all confining

potentials (optical and magnetic) are switched off so that the cloud can drop onto a

screen. Switching off the confinement not only causes the atoms to drop under the

influence of gravity, it also allows the cloud to expand. The expansion of the cloud

brings with it that the localized wave functions of each lattice site (assuming the

tight-binding approximation) overlap and thus form an interference pattern which

reveals the momentum distribution of the system. This interference pattern can

then be imaged by a CCD camera when the atoms hit the screen. An example of

typical experimental data for this method can be seen in Fig. 3.2.

For a shallow lattice, one finds so-called Bragg peaks in addition to the zero-

momentum peak that is characteristic of a BEC in the absence of an optical lattice.

These Bragg peaks first become more pronounced with increasing lattice depth and

then abruptly begin to weaken and eventually vanish altogether (see Fig. 3.2).

Figure 3.2: Reproduced with kind permission from Ref. [40]. It shows absorption images
of multiple matter wave interference patterns which were obtained after suddenly releasing the
atoms from an optical lattice potential with different potential depths V0 after a time of flight of
15 ms. Values of V0 were: a, 0ER; b, 3ER; c, 7ER; d, 10ER; e, 13ER; f, 14ER; g, 16ER; and h,
20ER, where ER is the recoil energy of Eq. (2.13).

The relation of Bragg peaks to the MI - SF phase transition is not entirely

straightforward. As we mentioned earlier, the interference pattern after expansion

of the cloud reflects the momentum distribution across the lattice. This implies

that the presence of Bragg peaks in the observed pattern is an indicator of (off

diagonal) long-range coherence across the lattice. This implication is a result of

the fact that the momentum distribution n(k) for atoms confined to the lowest
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band of the lattice can be expressed in terms of the exact one-particle density

matrix ρ1(xi,xj) = â†i âj [64, 80],

n(k) = n|w(k)|2
∑

x,x′

exp(ik(x − x′))ρ1(x,x
′), (3.7)

where w(k) is the Fourier transform of the associated Wannier wave function. The

summation is carried out for all separations x−x′ that are equal to integer multiples

of the lattice basis vectors. The one-particle density matrix in turn describes

coherence across the lattice. Consequently, when atoms are allowed to expand and

fall freely, the resulting interference pattern shows the momentum distribution.

In the extreme limits of zero phase coherence and maximal long-range phase

coherence, the interpretation of the presence or lack of Bragg peaks with regard to

the MI - SF phase transition is straightforward. No phase coherence whatsoever

implies a complete lack of overlap of wave functions between sites. This means that

the eigenstates of the system are now Fock states, an energy gap has opened and

the system is in the MI phase. At the other end of the spectrum, phase coherence

across the entire lattice allows the definition of the condensate fraction n0 through

the maximal value of ρ1 by lim|x−x′|→∞ ρ1 = n0/n (n is the total density). When the

entire system has a ‘common’ condensate fraction, i.e. we can define a condensate

that extends across the lattice, it is in the superfluid phase [81].

It has been shown [76], however, that the change of phase coherence around

the MI - SF phase transition does not correspond exactly to the change in the

superfluid fraction. In the MI regime, phase coherence can still extend over several

lattice sites even though the long-range coherence is gone. Consequently, these off-

diagonal elements in the one-particle matrix can still cause Bragg peaks to appear

in the interference pattern. In other words, while Bragg peaks in the interference

pattern can indicate the phase of the system for extreme conditions, they are not

in themselves good observables for tracking the transition point.

In the analysis up to now, we have assumed a homogeneous system where the

atom density is constant across the lattice. In experiments, however, optical lattices

are usually created inside a trap due to the need for additional confinement of the

atoms. This additional potential causes a variation in the atom density across

the lattice so that we now have a range of critical values for (U/J)crit as this is

dependent on the MI phase density. Even more importantly, depending on the

strength of the perturbation through the additional trapping potential, the nature

of the phase transition itself can change to the point where it can no longer be
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characterized by global behaviour [72, 73]. (For similar results regarding the Bose-

Einstein phase transition, see [82]). Instead, a pattern of SF and MI “domains”

should form. The emergence of a domain of MI phase will then cause restructuring

of the spatial distribution of the superfluid component which in turn will result in a

fine structure of the particle momentum distribution. This fine structure, visible in

the central momentum peak, may be a more useful observable to locate the point

of the MI - SF transition, but has not been confirmed experimentally yet.

So far, we have focussed on evidence of superfluidity. As we discussed in the

previous section, the other side of the coin, i.e. the MI phase, has more properties

than simply the absence of superfluidity. Most prominently, for a homogeneous

system, the MI phase is characterized by an energy gap. The existence of this gap

has been verified experimentally [40, 41] by applying a (static or dynamic) force

in the MI phase. After application, the system is rapidly and non-adiabatically

transferred back to the SF phase. The resulting excitations are then measured

by switching off all potentials, allowing the cloud to expand and measuring the

resulting interference pattern. The strength of these excitations is assumed to be

reflected in the full width at half maximum (FWHM) of the central interference

peak. While this measure underestimates small gains in excitational energy, it

gives a good picture of the qualitative features of the excitation spectrum [41].

The dependence of excitations on the applied force then shows the extent of an MI

energy gap - for an example of experimental data, see Fig. 3.3.

Figure 3.3: Reproduced with kind permission from Ref. [41]. The figures show the FWHM
of the central interference peak for an array of gases with different dimensionalities (1D, 1D-3D
crossover and 3D). Within each plot, excitation spectra are compared for different lattice potential
strengths. The values for U/J in brackets were calculated using a band structure model with
tight-binding approximation.

This approach has the disadvantage of disturbing the system with an additional

perturbation. If the force is too high or the perturbation time too long, the energy
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gap can be wiped out by heating before it can be measured. To avoid this effect,

methods such as Bragg spectroscopy that use very weak perturbations have been

utilized experimentally. We shall discuss the details of the experimental implemen-

tations of the energy gap measurement in the context of our results below.

In conclusion, we find that there are a range of possible indicators of the MI -

SF transition. Due to the finite system size (both in experiments and in theory),

a sharp transition point is not present, but it should be possible to see a gradual

change between phases. So far, the experimental realizations of indicators of su-

perfluidity are fraught with difficulties. Possible alternatives have been suggested

in literature, but not yet tested experimentally. The MI phase, however, thanks

possibly to its local character, can be established with more confidence.



Chapter 4

“Static” excitations

In this chapter as well as in Chapter 5 and 6, we will discuss original work carried

out by the author during the course of her doctorate.

The experimental feasibility of adding a linearly varying component to the

lattice potential, so-called tilting, has opened up a new way to study the MI to

SF phase transition. In this chapter, we will present numerical simulations of this

technique which enable us to compare the effect of such tilting on states with various

degrees of reduced number fluctuations. Our focus is on the region of the phase

transition where the repulsion between atoms is larger than the hopping amplitude

and strong number squeezing results. This work follows the general lines we set

out in [83].

4.1 Experimental interest

There are many interesting potential applications that arise from adding a static

force to BECs in optical lattices. For one, there is considerable interest in the

use of such systems for high precision interferometry [84, 85]. Other experiments

are focussed on finding Bloch oscillations [59]. Most prominently perhaps, static

excitations have been employed [40] to probe the MI - SF phase transition.

As we discussed the trapping of atoms in optical lattices in Chapter 1, we only

give a brief review here. Conceptually, it is fairly simple. One first creates a

condensate through laser cooling and evaporative cooling, holds the condensate in

a trap and then gradually ramps up the strength of the lattice potential created

by interference of laser beams. Obviously, this involves a number of experimental

23
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challenges in order to be able to carry out these procedures with sufficient efficiency,

but these have been overcome by a number of groups.

Once the lattice has been created, the question arises as how best to probe the

atoms. In this chapter, we will look at the application of a static force to the lattice

in this context.

A number of different probes using static forces have been used in experiments.

In one of the earliest experiments [37], the optical “lattice” was positioned so

that gravity caused a potential difference between sites. Other experiments [40]

perturbed the lattice within a harmonic magnetic trap. A variation in the trapping

field can be used to produce a gradient in the force on the atom. Moving the lattice

from the centre of the trap will thus create a static force along the lattice. A third

approach [59] relies on a steady acceleration caused by switching one of the lattice

beams on suddenly and ramping the intensity of the other up gradually. This so-

called chirping of the lattice is a very precise way of imposing a force on the atoms

in the lattice.

4.2 Theory

As we discussed in Chapter 3, the MI phase is characterized by atoms being local-

ized in the wells. The further we proceed into the MI phase, the closer the ground

state is represented by a Fock state with distribution ψ = |NpNp . . . Np〉 where

Np = Ntotal/Ns is the number of atoms per site. As a consequence of this localiza-

tion, the signature of the MI phase is more directly related to the observables that

have been experimentally accessible so far than signatures of the SF phase.

In consequence, we focus on the characteristics of the MI phase and treat the

encroaching features of superfluidity - present as this is a gradual transition -

as perturbations of the localized atom picture. This allows us to interpret the

excitations present in our system in a relatively simple number-basis picture.

As we discussed in Chapter 3, the excitations for a perfect MI phase in an

infinite lattice should occur at energies of

∆(U, J) = |Epart| − |Ehole| = |UNp − µ| − |(−U(Np − 1) + µ| = U, (4.1)

i.e. ∆ is independent of the number of particles per site Np or the chemical potential

µ. The effect of the static force, of course, is to create an energy difference between

sites. When this energy difference between neighbouring sites is equal to the energy
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Figure 4.1: Top row: Number of atoms per site for the first five number states and Etilt =U/100

(left), Etilt =U/2 (middle) and Etilt =U (right). Bottom row: Number of atoms per site, but

multiplied with the probability for the wave function to be in this state. All values are for Np = 1

and Ns = 6.

U contained in a excitation of the ground state, we expect to find a resonance. For

the infinite lattice, resonances correspond to the creation of a particle-hole pair. In

the Hamiltonian, the energy difference is implemented by adding a site-dependent

energy in the form of

Ê =
∑

k

Ckn̂k (4.2)

where n̂k is the number operator n̂k = â†kâk. For Ck = kU , the difference between

adjacent sites is then just equal to U . We refer to a lattice with additional site-

dependent energy of the form of Eq. (4.2) as a tilted lattice.

The location of the particle-hole pairs created by the additional term in the

Hamiltonian depends on the strength of the applied force. From now on, we shall

discuss the force in terms of the energy difference it creates between neighbouring

sites and term it Etilt. When this energy difference is equal to the particle-hole

excitation energy U , we expect to find a resonant creation of particle-hole pairs

from adjacent sites. As the tunneling probability depends on the overlap between

sites, the nearest neighbour resonance for adjacent particle-hole pairs should be the

strongest. In addition to this, we should see weaker resonances at multiples of U .
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These correspond to the simultaneous creation of a number of nearest neighbour

particle-hole pairs and are consequently energetically possible, but less probable.

The exact relation of these ‘multiple’ excitations to the simple particle-hole excita-

tion is dependent on the size of the lattice. For an infinite lattice, the probability

for an n particle-hole excitation should simply be P n where P is the probability

of a single particle-hole excitation. Finite lattice size manifests itself in a further

decrease of the probability for n particle-hole excitations when n→ Ns.

Another interesting possibility is the creation of particle-hole pairs from non-

adjacent holes. The energy needed to produce one such particle-hole pair is again

equal to U . The energies Etilt between adjacent wells are then fractions of U . For

example, a particle-hole pair created in next nearest neighbour sites should be

found for Etilt =U/2, adding up to a total energy difference of U/2 + U/2 = U ,

while larger distances are reflected in resonances at even smaller fractions of U . In

general, particle-hole pairs that are n sites apart will appear for energy differences

between adjacent sites that are equal to U/(n+ 1).

In principle, a combination of simultaneous creation of multiple particle-hole

pairs together with creation in non-adjacent holes could cause resonances at other

fractions of U, e.g. nU/m. As these processes are much less probable than the sim-

ple resonances at nU and U/n, n ∈ N, they are unlikely to be of much importance

in the general resonance spectrum.

We are, of course, not able to study an infinite lattice. The particle-hole picture

still works surprisingly well even for our moderately-sized lattice, however. To

illustrate this, we have plotted the wave function for U/J = 50 and Np = 1,

Ns = 6 for various values of Etilt in the number state basis in Fig. 4.1. To increase

the clarity of our plots, we show the effects on the five states with the largest

probability coefficients only. In the top row of plots in Fig. 4.1 we plot the number

of atoms per site for these five states for a non-resonant force (Etilt =U/100), a

next nearest neighbour resonance (Etilt =U/2) and a nearest neighbour resonance

(Etilt =U). To illustrate the occupation probability for these states, we plot the

number of atoms per site multiplied by the probability of the number state in the

bottom row of plots. In other words, if we plotted the five number states

|111111〉, |111201〉, |110211〉, |201111〉, |102111〉
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in one of the bar plots on the top, the bottom plot would have the row vectors φi

φ1 = |〈111111|ψ〉|2 |111111〉
φ2 = |〈111201|ψ〉|2 |111201〉
φ3 = |〈110211|ψ〉|2 |110211〉
φ4 = |〈201111|ψ〉|2 |201111〉
φ5 = |〈102111|ψ〉|2 |102111〉.

For the very small, off-resonance energy Etilt =U/100, we then find the expected

result for a state far into the MI phase: a very high probability (about 99 %) for

the system to be in the MI ground state |111111〉. At Etilt =U/2, we see clear signs

of next nearest neighbour hopping. Four of the five most probable states show a

next nearest neighbour particle-hole pair (the fifth is the |111111〉 ground state).

Similarly, the righthand plots with Etilt =U show nearest neighbour hopping. Both

for Etilt =U and Etilt =U/2, we find that the probability of the ground state is far

lower than the 99 % of Etilt =U/100. In other words, the excitation of the system is

high. We find that a plot of the mean value of the number variance for U/J = 50

and time period τ = 0 – τ = 10/J , as in Fig. 4.2, also shows these resonances

(both fractional and integer) clearly.

Due to the finite size of the lattice and J 6= 0, we find that our results show

excitations at additional values for U/J even for squeezed configurations, as is

visible in Fig. 4.2. In order to support the assumption that these additional

excitations describe real physics and are not down to numerical error, we also

plot some of the transition probability matrix elements Mn,1 for the applied force.

These matrix elements are defined as

Mi,j = 〈ψi|Ê|ψj〉. (4.3)

i.e., they represent the probability of the perturbation by the energy operator Ê
coupling eigenstate i with eigenstate j. Ê =

∑
i Cin̂i is the energy operator we

defined in Eq. (4.2). In Fig. 4.2, we show the matrix elements for the transition

probability from the ground state to excited states, Mn,1, where n designates the

nth excited state. We find that the matrix elements are in good agreement with

the location and width of the main peak. We will see that the slightly broader tail

of the main resonance at Etilt = U is caused by Bloch oscillations.

As might be expected, excitations closer to the phase transition are less easy
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Figure 4.2: The blue line shows the mean value of the number variance. The average is carried

out over the perturbation period from τ = 0/J to τ = 10/J . The red lines show the matrix

elements Mn,1 for overlap with the ground state. Values are for U/J = 50 and Ns = 6, Np = 1.

to understand in a particle-based picture. After all, the SF phase is characterized

by the delocalization of atoms across the entire lattice. Close to the phase tran-

sition, therefore, the wave function should be spread out over the number state

basis. For delocalized particles, our formalism of particle-hole excitations does not

give an accurate description of the physics as particles cannot be thought of as

localized to a well. Consequently, a description of excitations in terms of particles

hopping from one well to another does not make sense. In other words, a lack

of excitations understandable in a particle-hole formalism indicates closeness to

the phase transition between the localized MI phase and the delocalized SF phase.

A study of the matrix elements Mn,1, Mn,2, Mn,3 and Mn,4 for such a transi-

tion state (U/J = 1), as plotted in Fig. 4.3, shows good agreement between the

excitation spectrum and overlap. In other words, even when excitations cannot

be understood in the particle-hole picture, there still is a correspondence between

the overlap matrix elements of the static system and the excitations found in our
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simulations.

It should be noted that transition states show a significantly larger number

of non-zero matrix elements than those in the MI phase. This can be understood

through the behaviour of the energy gap EG. As EG vanishes with the approaching

phase transition, the difference between eigenstate energies grows smaller as well

by definition. This means both that more states are populated and that the range

of states i and j, for which some given Etilt has a non-zero matrix element grows

larger.

0 5 10 15
0

0.5

1

1.5

2

2.5

E
tilt

 [in U]

M
ea

n
(V

ar
ia

n
ce

)

Mean(Variance)
M

n, 1
M

n,2
M

n, 3
M

n, 4

Figure 4.3: The blue line is the mean of the number variance for t = 0 - t = 10/J and U/J = 1,
Ns = 6, Np = 1. The additional elements show the location and strength of some of the overlap
matrix elements M. Blue diamonds: Mn,1, red star: Mn,2, magenta dot: Mn,3, black +: Mn,4.

In the superfluid regime, e.g. at U/J = 0.001, the excitation process lacks

distinctive features. Due to the delocalization across the lattice, there is no gap

to overcome in order to add energy to the lattice. Consequently, the perturbation

strength simply varies smoothly with the strength of the applied force. In Fig.

4.4, we show the dynamics of the number variance over time for the SF phase and
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Figure 4.4: Top row: SF phase (U/J = 0.001, left plot) and transition phase (U/J = 0.1, right

plot), bottom row: transition phase (U/J = 1, left plot), MI phase (U/J = 10, right plot). All

values are for Ns = 6 and Np = 1.

transitional states. The oscillatory structures visible in that figure are caused by a

combination of Bloch oscillations and oscillations at the tunneling frequency, both

of which will be discussed further in Chapter 6. Below, we will argue that the

number variance dynamics provide a useful tracker of the phase transition due to

its local nature.

4.3 Numerical setup

For all calculations in this chapter, we use the Bose-Hubbard model, as described

on page 12, with an added energy term shown in Eq. (4.2) where the Hamiltonian

is equal to

ĤBHM, add = −J
∑

〈i,j〉

â†i âj +
∑

i

Ciâ†i âi +
1

2
U
∑

i

â†i â
†
i âiâi. (4.4)
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The notation 〈〉 denotes summation about all nearest neighbours. As we are es-

pecially interested in the region of the phase transition, we chose to use an exact

approach based on the full Hamiltonian to study the dynamical development of

the system. This limits our studies in size and number of atoms and we consider

modestly-sized lattices with between four and eight sites and mean atom numbers

Np of up to three atoms per site. The exact approach does, however, allow us to

study developments right at the phase transition, which would not be possible for

mean field theories based on the Bogoliubov or Gross Pitaevskii approach.

Experiments that demonstrate the SF to MI transition typically involve many

more lattice sites than this [40, 41, 85, 86]. By considering the evolution of what

we expect to be locally determined quantities such as the number variance, we are,

however, able to minimize the effects of finite size on our results. This, in turn,

allows us to gain some insight into the behaviour of larger lattices than we are able

to treat numerically. When comparing results for different numbers of lattice sites,

we find that they show remarkably similar behaviour, encouraging us in our use

of the number variance as an indicator of lattice response. Due to the qualitative

similarity of the zero-temperature phase diagram for one, two and three dimensions

[53, 64] we also believe that, while we use a one-dimensional system for numerical

simplicity, the general features of our results can be applied to higher-dimensional

systems.

We study our system by solving the coupled equations of motion for the com-

ponents of the wave functions in the number state basis using a fifth order Runge-

Kutta approximation [87]. The initial states for the simulations are the eigenstates

of the Hamiltonian given in Eq. (4.4) for different values of U/J . We obtain

these eigenstates by exact diagonalization of the Hamiltonian. The eigenstates are

then probed by tilting the lattice in our simulations. This tilting is implemented

by adding a linearly varying component Ê (Eq. (4.2)) to the on-site energy Ej.

Further details of the numerical approach will be set out in Appendix A.

There are a number of observables that we can use to track the effect of exci-

tations. Primarily, we will study the number variance V, defined as

V = 〈(n̂i)2〉 − 〈n̂i〉2, (4.5)

where n̂i is the number operator for site i and 〈〉 denotes the expectation value. Why

use the number variance? As discussed in Chapter 3, excitations in the MI phase

are usually measured experimentally (e.g. in [86]) via changes in the interference

patterns observed in the distribution of atoms released from the lattice. Excitations
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caused by tilting the lattice show up in the increased width of the main interference

peaks found when the system is taken back into the SF phase [86]. In other words,

these excitations are observed through changes induced in the phase coherence

across the lattice.

For single wells, number fluctuations V and the phase coherence φ across the

well are related by the uncertainty relation

√
Vδφ ≥ 1 (4.6)

which states that the simultaneous measurement of number and phase is limited

in precision.

There is no such relation between the number fluctuations of one well and

the phase coherence across the lattice. That becomes immediately obvious by

considering that it is theoretically possible to count all the atoms in one well without

destroying the phase coherence between the other lattice sites.

A reasonable assumption to make, however, is that a decay of the ‘local’ phase

coherence at each lattice site will cause the decay of the ‘global’ phase coherence

across the lattice at some point. Consequently, a change in number fluctuations

should be reflected in the interference pattern in some form and vice versa.

In the extreme limits (i.e. for a lattice with infinite barrier height or an absent

lattice), the relation between the two observables is simple. Deep in the insulator

state there is no phase coherence so that δφ >> 0 and correspondingly zero number

variance. For a superfluid, the number variance is large while the phase across the

whole system is well defined - δφ ≈ 0.

We are, of course, interested in what happens in the transition region. While the

use of number variance in the theory of BEC and the relationship between phase

coherence and number variance has been discussed for some cases [88, 86, 89], a

simple relation between the two has not been found. Quite to the contrary, it

has been shown [76] that such quantitative measures as the fringe visibility of the

interference pattern have no immediate relation to the fluctuations in the number

variance.

We should note that the number variance is also an experimentally accessible

quantity. It directly affects the collapse and revival times of the relative phase

between sites [86, 88, 89, 90, 91, 92]. It also plays a role in the three-body loss

rate: the three-body correlation function Gi
3 is strongly dependent on the number

variance [93]. We can also think of the number variance in terms of so-called
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number squeezing. The MI phase states with vanishing number fluctuations are

then number squeezed.

Consequently, the dynamics of the number variance are of theoretical and ex-

perimental interest in their own right. At the same time, they can also serve as an

indication of what might be expected to happen in the interference pattern.
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Figure 4.5: In this plot we show the energy for the first 100 eigenstates for U/J = 1, 10, and

50 (bottom to top) and Ns = 6 and Np = 1.

Using the ground state of the Hamiltonian (calculated by exact diagonalization)

as the inital state allows us to study the change in EG directly as we can calculate

the energy eigenspectrum. As we discussed earlier, the phase transition will not

be sharp in a lattice of finite size. For the MI - SF transition in a finite lattice,

this translates into a gradual onset of the energy gap. We find a similar effect for

the energy eigenspectrum of our simulations. In Fig 4.5, we plot some exemplary

energy eigenvalues for a number of values of U/J that are studied in our simulations:

for the transition region (U/J = 1), we see indeed that no gap is observable. As

expected, states further into the Mott insulator regime (U/J = 10 and U/J = 50)

show a definite gap, even though the bands are still broadened.
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4.4 Results

We study the dynamical evolution of the BHM Hamiltonian for a number of rea-

sons. Firstly, we want to explore the excitational structure around and beyond the

phase transition. Secondly, we want to investigate the use of the energy gap as an

indicator of the phase transition. In order to do that, we shall compare the use of

number variance to other observables, such as the added energy and change in the

interference pattern, to gain an idea of how useful the various observables might

be.
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Figure 4.6: Excitation pattern for τperturb = 2/J , U=10, J=1, Ns = 4 and Np = 1, 2 and 3

(bottom to top). The mean variance (y-axis) is dimensionless.

To these ends, we use states with a range of different degrees of number squeez-

ing as the initial states in our simulations and apply a tilt for a time τperturb. We

then determine the number variance V, the added energy E and interference pat-

terns for the resulting wave function of atoms in the lattice. We shall first discuss

our results for number variance at some length and then explore the relation to the

other observables.
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We find that even for rather small lattices the location of peaks is in good

agreement with those corresponding to particle-hole pairs expected for an infinite

lattice. Fig. 4.6, for example, shows excitations for filling factors of one, two and

three for four lattice sites. All these graphs show one-particle-hole excitations at

Etilt ≈ U and Etilt ≈ U/2. For Np ≥ 2, two, three and even four-particle-hole

excitations appear.

It is interesting to note that the qualitative features are still present for non-

integer filling. As is shown in Fig. 4.7, non-integer filling results in a more promi-

nent continuous spectrum, as might be expected in a system with defects. However,

we still see distinct Mott insulator peaks, albeit with somewhat greater widths.

Non-integer filling is of interest because the phase diagram for the infinite lattice

(see Fig. 3.1) predicts that non-integer density should lead to a superfluid ground

state as the density in the MI phase is pinned to integer values. Finding that the

particle-hole excitations are still clearly visible is a good indicator that the ‘soft’

phase transition does have different features to those in an infinite lattice. In other

words, the crucial property of non-compressibility is no longer present even though

the excitation spectrum shows clear signs of a distinct energy gap. A similar effect

has been noted for optical lattices in inhomogenous traps [72].

We now turn to the dependence of excitations on the number of lattice sites for

a range of four to eight lattice sites. For more than five lattice sites and U/J ≥ 20,

the changes in the results as a function of lattice size become modest (see Fig. 4.8).

Even for the smaller configurations, i.e. four and five sites, the important

features look qualitatively the same. This leads us to be reasonably confident of

the relevance of the principal features of our calculations for the larger systems

studied in laboratories. In studies of the convergence towards the thermodynamic

limit of the mean momentum [94] in lattices, it was found that good convergence

had set in for 12 lattice sites, provided the evolution time remained shorter than

the tunneling time. Even eight lattice sites already showed good agreement. We

study a local variable that should be less dependent on the size of the lattice than

the mean momentum. In other words, the results of [94] appear to confirm our

conclusion that we can consider dynamics in the MI phase as, at the very least, a

good indicator for possible effects in larger lattices.

We have found that the number variance corresponds well to the expected

particle-hole excitational structure. But how does it correspond to other observ-

ables? We can compare the number variance to the added energy Eadd which we
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Figure 4.7: The thick lines show the mean of the number variance for integer filling (black

Np = 2, red Np = 1), while the thin blue broken line shows results for Np = 11/6. For all Np,

the mean value is taken over a perturbation period τperturb = 5/J and for values U/J = 20 and

Ns = 6. The mean variance (y-axis) is dimensionless.

calculated by the expection value

Eadd = 〈ψ(t)|HBHM,0|ψ(t)〉 (4.7)

where ψ(t) is the wave function at time t and HBHM, 0 is the BHM Hamiltonian

for a non-tilted lattice. Eadd is a global variable so we would expect agreement

between V and Eadd to be best for a system characterised by local quantities (i.e.

the Mott insulator), while a superfluid might show greater differences.

Encouragingly, we find that even for a moderately squeezed system, i.e. for

U/J = 2 shown in Fig. 4.9, the number variance mirrors the pattern of the added

energy rather well. For more squeezed systems, the agreement is almost exact, as

can be seen in Fig. 4.10 and in Fig. 4.11 for mean values.

One interesting feature to note is an additional fractional peak in the added
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Figure 4.8: This plot shows the mean variance taken for t=0 - 7/J for U/J = 20, Ns = 4, 5, 6, 7

and 8 and Np = 1. The mean variance (y-axis) is dimensionless.

energy plots for U/J = 50 in Fig. 4.10 and Fig. 4.11. Here, fractional peaks

are visible not only, as expected from the simple model, at Etilt = U/3 or even

Etilt = U/4, but also at Etilt = U/5. This peak is not visible in the number

variance plots, however.

In the simple infinite lattice picture, this excitation can be understood as a

particle-hole excitation that is divided by four sites in between the particle site

and the hole site. A look at the number state basis for a wavefunction produced

by Etilt confirms this relation: Fig. 4.12 shows quite clearly that the wave function

after excitation is almost entirely a Fock state with |011112〉. This neatly illustrates

the dangers of local variables: if they are only read out in specific points of the

system, such as a site in the middle of the lattice, interesting effects involving

different sites could be missed.

In this case, we have studied the number variance for states towards the middle

of the chain to avoid end effects. Due to the limited size of our model, a fractional

resonance at Etilt =U/5 only shows up in the ends of the chain. The interference

pattern and energy, on the other hand, which are global variables that are calculated
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Figure 4.9: Left plot: contour plot of the number variance over time, right plot: contour plot

of the added energy over time. Both are for U/J = 2 and Ns = 6, Np = 1.

for the whole system, both show this effect. The relative strength of this excitation

compared to other effects is an effect of the limited size of the systems.

There are a number of conclusions to draw from this. For one, studying the

dynamics of the number variance gives us a very good idea of the change in energy -

but only up to the point where the dynamic processes reach the size of the system.

This is neither surprising nor worrying. Firstly, these dynamic processes only play

a very minor role in the total excitation spectrum and do not provide any new

information safe that we can extend possible excitations from hopping over four

states to hopping over five. Secondly, the very fact that the number variance

is a local quantity and thus, for highly squeezed systems, is sensitive to system

conditions might offer possibilities for use in an experimental context. After all,

theorists are currently predicting that bosons in optical lattices will - under the

right circumstances - form domains rather than exist in one common phase for the

entire system. A comparison of the excitational response of the number variance

to that of a global variable such as the interference pattern could then possibly be

an indicator of the size of these domains.

Due to numerical constraints, a comparison of dynamics of the number variance

with the interference pattern could not be carried out in as great a detail as the

comparison with the added energy. We shall discuss numerical results for a number

of interesting cases that suggest good agreement betwen the conjugate variables
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Figure 4.10: Left plot: contour plot of the number variance over time, right plot: contour plot

of the added energy over time. Both are for U/J = 50 and Ns = 6, Np = 1.

with respect to the main excitations.

We calculate the interference pattern as described in [80, 95] and Eq. (3.7) by

n(k) =
1

Ns

∑

〈i,j〉

exp(i∆φ)â†i âj (4.8)

where Ns is the number of sites and ∆φ is equal to the phase difference between

sites. The summation index i, j runs over all lattice sites.

In experiments, a change in interference pattern is usually quantified by taking

the full width at half maximum (FWHM) of the main interference peak. For a

small lattice such as ours, this is a rather imprecise measure as the main peak is

less pronounced and the small changes are likely to be of the order of numerical

uncertainty. Fig. 4.13 illustrates this difficulty: we have plotted the development

of the interference pattern over time for a relatively squeezed state (U/J = 50)

for a very small perturbation (Etilt = U/10) and a strong perturbation (Etilt = U).

While the small perturbation produces the expected result - oscillation, but no

sizable deviance from the initial pattern, the change in interference pattern for the

resonant excitation is drastic, but hard to quantify as the peak and the point at

which to take the FWHM are difficult to locate. For the purposes of this chapter,

however, we are interested not so much in the precise nature of the relationship
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Figure 4.11: This plot shows mean values of the number variance (blue) and the added energy

(green) taken for U/J = 50 and Ns = 6, Np = 1 over the time period τ = 0 – τ = 10/J .

between the number variance and the interference pattern (after all, we already

know that there is no one-to-one correspondence), but in the qualitative signatures

of particle-hole excitations for the interference pattern. Consequently, the exact

details of how to quantify change in the interference pattern are not of too much

importance.

We therefore choose to plot the loss in height of the central momentum peak.

This has the advantage of being simple to consistently measure for any pattern

and can be used as a simple measure of the disturbance of the interference pattern

by the exciting force. We find a very good correlation between excitations in

the number variance (short: Var) and interference pattern (short: Int) even for

relatively superfluid systems (Fig. 4.14, middle plot and right plot). As might be

expected, the correspondence grows increasingly worse with the importance of long-

range coherence (Fig. 4.14, left plot). Again, the gradual transition is visible in the
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excitational structure beyond the particle-hole excitations and smooth superfluid

increase.

4.5 Summary

We have presented a range of simulations of atoms in an optical lattice in the region

of a quantum phase transition. We have shown that the change in atom number

variance is a good indicator of excitations produced by tilting the lattice potential.

Moreover, we have seen that the main features of the excitation spectrum are only

weakly dependent on the size of the lattice and confirm the origin of resonances

seen in recent experiments [40, 41]. In addition, we observe higher order effects in

the response that fit very well into the picture of excitations at multiples of the

energy gap U in an infinite lattice. Our results also indicate that non-integer filling

does not obscure the Mott insulator peaks in the response of the lattice. This

implies that the change in atom number variance could be a useful probe even in
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Figure 4.13: We have calculated the interference pattern as in Eq. (4.8) for ∆φ = 1. These

plots show the development of the resulting n(k) momentum distribution over time. The left plot

shows the effect of a small perturbation (Etilt =U/10) while the right plot shows the momentum

pattern for a resonant energy Etilt =U . All calculations are for U/J = 50, Ns = 6 and Np = 1.

non-ideal systems, such as lattices with defects. It could also be a useful probe

of phases that go beyond a pure MI phase or SF phase, but rather incorporate

elements of both in a patterned structure.
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Figure 4.14: In these plots, we compare the mean value of number variance over time with the

mean height of the main interference peak. Blue diamonds: number variance, red squares: height

of interference peak. All values are calculated for Ns = 6 and Np = 1.



Chapter 5

Time-dependent excitations

While the application of a static force as in Chapter 4 has proved to be extremely

successful experimentally, it has a number of disadvantages. Most importantly,

the magnitude of force needed for experimentally distinguishable signals can cause

heating and thus destroy the very system it was intended to probe. A static force

will also cause Bloch oscillations which, even though interesting in their own right,

can make an analysis of the response of the system to excitations difficult.

One alternative approach is to use time-dependent excitations. In this chapter,

we will discuss a specific experimental realization of this, Bragg spectroscopy, and

its advantages. We will give a brief overview of the use of dynamical excitations

and explain our numerical implementation of this method. Finally, we will set out

the results of our numerics and discuss some possible consequences for experimental

work.

5.1 Experiments

One of the interesting aspects of bosons in optical lattices is that they bridge the

borderline between quantum optics and condensed matter physics. Experimen-

talists and theorists alike have transferred a wide range of techniques from both

sub-fields to this system. The technique that we are interested in here, Bragg

spectroscopy, has a very long history in condensed matter physics. It makes use of

Bragg scattering, a process that was first demonstrated in 1912 by W.H. Bragg [96]

for x-rays in crystals. He found that wave vectors are scattered when the Bragg

44
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condition

nλ = 2d sin θ (5.1)

is fulfilled. λ is the wavelength of the incoming wave, d the distance between lattice

planes and θ the angle of incidence. It was later [97, 98] established that Bragg

scattering is also applicable for particle de Broglie waves.

Bragg scattering of atoms off a standing light wave was first demonstrated in

1988 [99]. Experimentalists quickly realized the usefulness of this technique and it

was used in a variety of experimental settings, ranging from manipulation of atomic

samples in atom interferometers [100] to coupling out of Bose-Einstein condensates

[101]. The term ‘Bragg spectroscopy’ was coined in 1997 by Berman et al in [102] in

analogy to Raman spectroscopy. The authors show that a system where atoms are

Bragg scattered by counterpropagating light waves with different frequencies can

be reduced to that found for pump-probe spectroscopy of two or multilevel systems.

In pump-probe spectroscopy, the system is excited by a so-called pump beam and

then probed by a second beam called the probe beam. The momentum transfer q

and energy transfer 2πν are then given by |q| = 2Nk sin(θ/2) and ν = N∆ν where

θ is the angle between the two beams with wave vector k and frequency difference

∆ν.

Experimental evidence of Bragg spectroscopy was soon found by Stenger et al

[103] for a trapped condensate. The method was then applied to atoms in an op-

tical lattice in 2004 [41]. In contrast to the static force we discussed in Chapter

4, Bragg spectroscopy is not very susceptible to Zener tunneling or other heat-

ing effects. The Bragg scattering scheme can be implemented by modulating the

lattice potential with a sinusoidal amplitude modulation Amod sin(2πνt) in a one-

dimensional optical lattice. With this modulation, two sidebands with frequencies

±ν relative to the lattice laser frequency are added to the system. These then

define the energy 2πν of the excitation. If this excitation energy 2πν corresponds

to a resonance of the system, photons are absorbed and energy is transferred. The

location of the resonances are found by subsequently ramping down the lattice

potentials linearly, allowing atoms to rethermalize at a relatively shallow depth.

All potentials (including the magnetic trap) are then suddenly switched off and

the resulting matter wave interference pattern is detected by absorption imaging

after ballistic expansion. As discussed briefly in Chapter 3, the full width at half

maximum (FWHM) of the central momentum peak is taken as a measure of the

introduced energy.
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5.2 Numerical implementation

For our numerical model, we follow the design of a recent experiment [41] as de-

scribed in the last section and add a sinusoidal modulation to the lattice potential

of the Bose-Hubbard Hamiltonian (Eq. (2.14)). The new lattice potential Vlattice is

then equal to

Vlatt = V0 sin2(kx)(1 + F sin(ωt))

where k = 2π
λ

is the lattice wave vector for a standing wave with wavelength λ and

F is a dimensionless constant governing the strength of the perturbation.

Rather than keep the explicit space dependence of the second quantized Hamil-

tonian of Eq. (2.14), it is far more convenient numerically and conceptually to

simplify it to the well-known BHM Hamiltonian, albeit with time dependent coef-

ficients U and J .

As in Chapter 2 we once again assume that we can restrict the model to dy-

namics in the lowest band. We also make the assumption that the tight-binding

approximation is valid.

The shape of the Wannier functions

φ0+ =
1√√
πσ

exp(−x2/2σ2) (5.2)

then depends on the potential height since σ is determined by Vlatt(t). Following

a method first proposed by Baym and Pethick [104], we calculate σ by minimizing

the energy functional

E[φ] =
~

2

2m

∫
dx

∣∣∣∣
dφ(x)

dx

∣∣∣∣
2

+

∫
dx Vlatt(x, t)|φ(x)|2 +

1

2
g

∫
dx |φ(x)|4 (5.3)

for the given lattice potential. For Vlatt = V0 sin2(kx)(1 + F sin(ωt), the equation

for σ is then equal to

(1 + F)V0 sin(ωt)Nk2σ4 exp(−k2σ2) − N

2m
−
√
π

2

aN2

m
σ = 0. (5.4)

Due to the exponential term, a closed solution to this is not easy to find. As we

assume that the tight-binding approximation holds, however, it seems instructive

to gain a simpler variational estimate by approximating the lattice potential by

the harmonic form V = 1
2
mΩ2x2 where Ω =

√
V0(1+F) sin(ωt)k2

m
. In the tight-binding

approximation, there is little overlap between sites. For the Gaussian function
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φ0+, localized mainly in the centre of the trap, the trapping potential is then well

approximated by a harmonic trap. This approximation gives us the simpler form

of

σ4
int =

(
1

mΩ

)2

+
4πaσint

m
√

2πmΩ2
, (5.5)

as shown, for example, in [52]. This approximation allows us to calculate explicit

values for σ, using experimental parameters. It does not, however, give a single-

valued function for the development of σ over time which would be significantly

more convenient numerically. A first estimate of such a single-valued function can

be found by neglecting the interaction energy in the energy functional E[φ] so that

(5.3) changes to

E[φ] =
1

2m

∫
dx

∣∣∣∣
dφ(x)

dx

∣∣∣∣
2

+

∫
dx

1

2
mω2x2|φ(x)|2. (5.6)

It is then trivially easy to find σ :

σnon−int =

√
1

mΩ
=

(
1

mV0k2(1 + F sin(ωt))

) 1

4

(5.7)

where Ω =
√

V0 sin(ωt)k2

m
. This is the well-known length scale for the ground state

in a harmonic trap with potential 1
2
mΩ2x2. We find that, for the parameters used

in our system, σnon−int is a very good approximation of σint. Fig. 5.1 shows some

exemplary values of σnon−int and σint.

The BHM constants J and U consist of integrals over Wannier functions, i.e.

from Eqs. (2.18) and (2.19):

J =

∫
drw∗(r − Ri)Ĥ0w(r− Rj) (5.8)

U = 4πas

∫
dr |w(r− Ri)|4 (5.9)

where Ĥ0 = p̂2/2m+ Vlatt(x, t) is the single particle Hamiltonian (2.9).

Carrying out the integration in Eq. (5.9) results in

U = 2
√
πa/σ (5.10)

and
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Figure 5.1: The blue line shows σnon−int (Eq. 5.7) while the red stars are calculated by the
fourth order equation Eq. (5.5). System parameters are VR = 20ER and F=0.1.

J = exp

(
− 1

4σ2

(π
k

)2
)
× (5.11)

[
V0(1 + F sin(ωt))(

1

2
+ exp(−k2σ2))

1

4mσ2
− 1

2mσ4

( π
2k

)2
]
.

After substitution of σnon−int, J and U are equal to

U = 4πa

√√
mV0(1 + F sin(ωt))k (5.12)

J = exp

(
−1

4

√
mV0(1 + F sin(ωt)π2

k

)[
V0(1 + F sin(ωt))

2
+ (5.13)

V0(1 + F sin(ωt)) exp

(
− k√

mV0(1 + F sin(ωt))

)
+

k

4m

√
mV0(1 + F sin(ωt)) − V0(1 + F sin(ωt))

π2

8

]
.
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A simple way of thinking about the effect of lattice height on J and U is by

assuming that the overlap of wave functions between sites is so weak that it has,

roughly, a linear dependence on the barrier height. In that case, a sine wave

perturbation of V0 translates into

Jperturb = J0 exp(−F sin(ωt)) (5.14)
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Figure 5.2: The blue line shows J(σnon−int) and no interactions while the green line shows
Jperturb = J0 exp(−F sin(ωt)).

For the small perturbations used in experiments, we find that this very rough

picture already produces results that are surprisingly similar to the more involved

calculations discussed earlier. Fig. 5.2 shows both the change in J when calcu-

lating it with Wannier functions according to Eq. (5.12) and a simple sine wave

perturbation as in Eq. (5.14).

The simple sine wave perturbation in Eq. (5.14) is essentially equivalent to the

tight-binding approximation we made earlier. Consequently, we take the correspon-

dence of the two perturbations of Fig. 5.2 as an indication that the assumptions

we made in order to gain the time dependency we found for both J and U , are in

good agreement with the system parameters.
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5.3 Theory of excitations

The dynamics and excitation structure of the BHM has been the subject of much

theoretical attention [105, 106, 107, 108, 109, 110, 111]. The simplest excitations are

‘particle-like’: as we discussed in Chapter 4, for an infinite lattice and a strongly in-

teracting system, we can understand most effects by approximating the eigenstates

with Fock states. More complex, however, are the collective excitations which can

take the shape of breathing modes or dipole modes, for example. The precise form

of these excitations is highly dependent on various system parameters and phase

space can be chaotic.

Our interest lies mainly with the ‘particle-like’ excitations as we would like to

use dynamic excitations to explore the energy gap of the Mott insulator as well as

the phase transition. In order to ensure that we mainly excite these ‘particle-like’

states, we will compare the energy eigenstates of the static system with the results

of the perturbation. We assume that agreement between the energy eigenspectrum

of the static system and the resonance frequencies of the perturbed system indicates

that it is reasonable to use the static system to understand the excitation processes.
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Figure 5.3: Red: MU , blue: MJ . Values are calculated for Ns = 6, Np = 1 and U/J = 1 (left),
U/J = 10 (middle) and U/J = 100 (right).

Making the assumption that the system stays reasonably close to the static

system, which resonances do we expect? In order to understand the effect of

modulating J and U , we look at the matrix elements M of the overlap between the
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initial wave function |ψ〉 (calculated by exact diagonalization of the Hamiltonian)

and the perturbed wave function |ψ〉pert, i.e.

MJ = 〈ψ|Jmod(t)
∑

â†i âj|ψ〉, MU = 〈ψ|Umod(t)
∑

â†2i â
2
i |ψ〉. (5.15)

where Jmod(t) and Umod(t) are the time dependent variables of the BHM Hamilto-

nian.

We find that only a small number of the possible eigenstates show matrix el-

ements significantly larger than 0 (see Fig. 5.4 for a comparison of the range of

eigenstates with the location of non-zero matrix elements.)
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Figure 5.4: Red: MU , blue: MJ . The black line shows the energy spectrum of the static
Hamiltonian for U/J = 50, Ns = 6 and Np = 1.

This may be a result of the symmetries of the system. Let us first consider the

straightforward case of two atoms in two wells. The eigenstates of the system are

then, in the number state basis, equal to

|ψ〉1 = C1|11〉 − C2(|02〉 + |20〉) (5.16)

|ψ〉2 = D1|11〉 + D2(|02〉 + |20〉) (5.17)

|ψ〉3 = (|02〉 − |20〉)/
√

2 (5.18)
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where |ψ〉1 is the ground state and |ψ〉3 the state with the highest energy eigenvalue.

C1,2 and D1,2 are dependent on the ratio U/J . Applying the perturbed Hamiltonian

to the ground state then produces the new states

|ψ〉1,U = U
∑

â†2i â
2
i |ψ〉1 = −2C2(|02〉 + |20〉) (5.19)

|ψ〉1,J = J
∑

â†i âj|ψ〉1 =
√

2C1(|02〉 + |20〉) − 2C2|11〉 (5.20)

It is then clear that the matrix elements MU
3,1 = 〈ψ3|ψ〉1,U and MJ

3,1 = 〈ψ3|ψ〉1,J
vanish due to the anti-symmetry of |ψ〉3.

Obviously, larger lattices (and specifically those used in the simulations) have a

much larger basis. Due to the high degree of translational symmetry, permutations

of Fock states always have the same probability coefficient in the eigenstates. For

example, all number states with Np+1 atoms in one site, Np−1 atoms in a second

and Np atoms in all other sites will have the same probability p. The amplitude C
for each individual state can then only be equal to ±√

p. As both the interaction

perturbation Umod(t)
∑
â†2i â

2
i and and the coupling perturbation Jmod(t)

∑
â†i âj are

symmetric operators, the overlap between eigenstates then depends on the ratio

of positive C to negative C. Further details of the physics of the overlap matrix

elements will be the subject of future work (see also Chapter 7).

For experimental configurations, we expect the energy bands to be significantly

more narrow so that overlap for single eigenstates is indistinguishable and we see

a smooth curve over the band instead.

5.4 Results

There are a number of different effects we want to explore in this section. Firstly,

due to the different dependencies of the hopping J and the interaction U on the

perturbation strength F , the response of the system to the perturbation will, in

general, not just scale linearly.

Fortunately, for the weak perturbation strengths that we are interested in, both

U and J are roughly linearly dependent on F as can be seen in Fig. 5.5. The

relation of U to J , however, is not constant. This changing importance of MU

and MJ is illustrated in Fig. 5.3 - with growing squeezing, MJ is increasingly

stronger than MU . This is a direct result of the ground state distribution in the

number state basis. Roughly speaking, the probability for the system to be in the

|111 . . . 1〉 Fock state determines the strength of MJ , while the matrix element MU
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Figure 5.5: This plot shows the maximum value of perturbation (i.e. max(Umod(t)) and
max(Jmod(t))) for J0 = 1 (green) and U0 = 10 (blue) for F = 0.0001 to 0.1.

is dependent on the probability of states with dipole elements, e.g. |1 . . . 0112 . . . 1〉.
Consequently, while the location of excitations should be fairly independent of the

strength of the perturbation, the relative strength of peaks should vary.

A comparison of the results for F = 0.001 and 0.1 (see Fig. 5.6 for a detailed

view and Fig. 5.7 for an overview) shows that, despite the large difference in

perturbation strength, results show good agreement in the location of excitations.

We do find that stronger perturbations produce a greater number of visible peaks,

but this is due to the variation of the relative height of the peaks (see the detail in

Fig. 5.6 for an example).

This agreement of scaling is important for a number of reasons. For one, the

independence of location from the perturbation strength indicates that these exci-

tations are indeed resonant effects coupling specific states rather than static heating

effects. It also is a good indicator that the approximations made in the numerical

model in the calculation of the time dependence of U and J do not detract from the

fundamental objective of studying the system with a Bragg spectroscopy approach.

Another benchmark of the numerical model is the agreement of the matrix

elements MU, J for the static Hamiltonian (Eq. (5.15)) with the results of our
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strengths and for U/J = 20, Ns = 6 and Np = 1. Blue: F = 0.1, green: F = 0.001. Note that
the y1-axis and the y2-axis do not have the same scaling.

simulations. The original motivation for the use of dynamic excitations was the

possibility of exploring the energy spectrum of the system. Any perturbation of

a system runs the risk of exciting it to such an extent that the energy spectrum

suggested by the resonances bears no relation to that of the original configuration.

In order to exclude this possibility, we compare our results with the original energy

spectrum calculated by exact diagonalization of the static Hamiltonian.

Fig. 5.8 shows the mean value of the number variance over τ = 21/J for a

system with non-integer filling (7 atoms in 6 sites). Due to the greater complexity

of the eigenstates, the resonance spectrum is more varied than that for integer

filling (as in Fig. 5.6). The left subplot shows the resonance spectrum together

with the overlap calculated by exact diagonalization of the static Hamiltonian for

perturbation of the coupling (red) and of the interaction (black). We find that,

while the overlap corresponds well to peaks of the resonance spectrum, there are a

number of peaks left unexplained. This is due to the fact that in case of a favourable

transition between states (i.e. a non-zero matrix element), transition is possible

for fractions as well as integer multiples of the original transition frequency ω. In

the middle plot, we have added the matrix elements for ω/2 and the right plot

shows MJ and MU for ω, ω/2 and 2ω. All prominent peaks are then accounted
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Figure 5.7: These plots show scaling for F = 0.001 (green) and F = 0.1 (blue) for U/J = 10,
Np = 3 , Ns = 4 (left plot), U/J = 1, Np = 1, Ns = 6 (middle plot) and U/J = 10, Np = 7/6,
Ns = 6.

for, which encourages us in the assumption that the resonance spectrum is a valid

indication of the static energy structure. We find similar fractional and integer

structures for the other possible configurations (i.e. integer filling, variation of U

and J) as well (see also Fig. 5.13).

In order to understand the fractional resonances, we should remind ourselves

of the interpretation of Bragg spectroscopy as a two-photon process, giving the

integer resonances at (in the MI phase) ≈ U . During these two-photon processes,

one photon is absorbed und one emitted, coupling states to higher lying states of

the energy spectrum. An additional possibility is a four-photon process where two

photons are absorbed and two reemitted. This has been experimentally observed

for Bragg scattering of atoms off a standing light wave [112]. Characteristic for a

four-photon process is the simultaneous absorption of two photons with frequency

ν which results in the coupling to a momentum state with energy of 4πν.

The good correspondence of changes in the number variance with the original

energy spectrum is also supported by a comparison with the added energy which

we calculate by

Eadd = 〈ψ(t)|HBHM,0|ψ(t)〉. (5.21)

As with the static force in Chapter 4, changes in the number variance are closely

correlated to this observable. We find that location, dynamics and relative heights
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Figure 5.8: The coupling matrix elements are red dots (and scaled by 1/4 to fit), the interaction
matrix elements are black dots. Left plot: MJ,U ;n,1 , middle plot: MJ,U ;n,1 + MJ,U ;n,1/2, right
plot: MJ,U ;n,1 +MJ,U ;n,1/2 + 2MJ,U ;n,1. All values are calculated for U/J = 10, Ns = 6 and
Np = 7/6.

agree very well for states in the MI phase, as Fig. 5.9 shows for U/J = 20. For

superfluid states, however, the relative height of excitations changes drastically

while the location and dynamics remain remarkably similar.

We also find that the location of changes in the interference fringe pattern

corresponds both to the number variance and the added energy in the MI phase

and transition phase, see e.g. Fig. 5.10. Their relative height, however, varies

considerably. This is partly due to the relative simplicity of our indicator of in-

terference pattern change - as in Chapter 4, we track the height of the central

interference peak. This is related, but not identical to the FWHM as long as the

peak stays roughly Gaussian and the momentum spread is only moderate. For

high-momentum processes such as the four-photon process at ω/2, the strength of

the system perturbation could be underestimated. The fact that the resonances

other than the main peak at ω ≈ U show up so weakly in comparison to results for

the added energy and number variance thus supports the assumption that these

resonances occur for coupling to higher momentum states.

As discussed recently [76, 113], the correspondence between variance and inter-

ference pattern should break down at some point of the gradual transition, inde-

pendent of all numerical considerations. This combination of agreement in the MI

phase with increasing breakdown as the transition to the SF phase is approached
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Figure 5.9: The lefthand plot shows the mean values of the added energy and number variance
over time for U/J = 20 and Np = 1, Ns = 6. Note that the y1-axis and the y2-axis do not use the
same scale. The righthand plots show contour plots of the dynamics of the added energy (top)
and the number variance (bottom) for the same configuration as in the left plot.

could conceivably be used as an indicator for how close the system is to the phase

transition. At the very least, when the numerical dynamics and the interference

pattern dynamics agree, the system is certainly not in the SF phase. We will discuss

this possibility for future work further in Chapter 7.

We have seen that the location of excitations visible in the number variance (and

to some degree in the related observables) mirrors the static energy spectrum closely

even for superfluid systems. This is encouraging with respect to the usefulness of

the number variance for tracking the phase transition. The important aspect here

is not the focus on how the number variance changes with respect to the phase

transition, but rather to use the location of the excitations in the number variance

as a close picture of the energy spectrum. The energy spectrum, though, effectively
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Figure 5.10: The blue diamonds are mean values of the number variance, the red squares show
the height of the interference peak. The left plot shows results for U/J = 10, Ns = 6 and Np = 1,
the right plot shows results for U/J = 20, Ns = 6 and Np = 1.

describes the eigenstates of the system and can thus be used to determine the phase

of the system. This approach is really only viable for the precise resonances caused

by Bragg spectroscopy. As Fig. 5.11 shows for U/J = 0.1−10, a resonance structure

remains clearly visible even for U < J . This illustrates one of the advantages of

Bragg spectroscopy over other methods such as the application of a static force

- the resonances at small U/J are no longer obscured by Bloch oscillations and

various other effects.
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Figure 5.11: From top to bottom: the left plot shows contour plots of the number variance for
U/J =0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 1. The right plot shows contour plots of the
number variance for U/J = 1, 2, 3, 4, 5, 6, 7, 8, 9, and 10, Ns = 6 and Np = 1. The perturbation
strength is F = 0.1 in all cases. The oscillatory structure is caused by the time dependency of J
and U .
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Unfortunately, discerning the entire excitational spectrum and thus the under-

lying energy structure is far from trivial. Consequently, we will now explore which

specific aspects might be useful without needing to consider the details of the entire

resonance region.

One possibility is the strength of excitations in the number variance. Progress

towards the MI phase appears to be reflected in the ratio of peak to the starting

value of the number variance (and energy analogously). As shown in the left plot

in Fig. 5.12, peaks at the resonant energy grow progressively more pronounced.

This effect is even clearer when comparing it with the base level of the number

variance V for no perturbation as in the right subplot in Fig. 5.12 by plotting

δmax,min =
Max(V) − Min(V)

Min(V)
. (5.22)
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Figure 5.12: The left plot shows the mean value of the number variance for U/J=0.1 - blue, 1
- red, 5 - green, 10 - black, 30 - cyan, 40 - magenta. Noticable is also the shift in the resonance
location which is due to the change of energy gaps with shifting U . The right plot shows δmax,min

for U/J=0.1-40. All values are for Ns = 6 and Np = 1.

Another possibility for tracking the progress from superfluid to Mott insulator

is via the distance between peaks. The more squeezed the system, the clearer is

the ‘mirror’ of the main resonance of the first band at half the energy, see e.g. Fig.
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5.13. This has the added advantage that it should be apparent independent of the

exact structure within the band.

5.5 Summary

We have seen that Bragg spectroscopy offers a very precise instrument to study

the energy spectrum of a system. We find that resonances in the number variance

correspond very well to the static energy structure, indicating that this might be

a useful experimental observable. We also find a number of additional effects that

could be of use in tracking the phase of the system. Quantifying these variables

will be the subject of future work and we shall discuss this further in Chapter 7.
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Figure 5.13: In these plots we compare the main resonance at ω = U with the fractional
resonance at ω = U/2. The blue line shows the mean value of the number variance. The red
line represents the mean of the variance at half the frequency. Top row: U/J = 10 (left) and
U/J = 20 (right), bottom row: U/J = 30 (left) and U/J = 40 (right). All values are for Ns = 6
and Np = 1.



Chapter 6

Oscillations - Bloch, hopping

and beyond

While we were interested in the use of a static field simply as a tool to study the

energy gap of a Mott insulator in Chapter 4, the application of this static force

can also produce interesting effects in its own right. One of these effects is a rich

structure of oscillations over time both in the number variance and in the added

energy.

In this chapter, we will first discuss the various theoretical causes for oscillations,

then review some of the experimental work done on the subject and finally present

our results.

6.1 Theory

The problem of atoms in a periodic field and a static field is closely related to a

more general study of particles in a periodic lattice under the influence of a static

field. This system has been extensively studied over the last decades [114, 115, 116]

in the guise of the Wannier-Stark system. It was shown that these so called Bloch

particles can exhibit periodic motion, i.e. Bloch oscillations, with a Bloch period

of

TB = 2π/dF (6.1)

63
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where d is the distance between sites (i.e. the lattice periodicity) and F is the

static force in the single particle Wannier-Stark Hamiltonian

ĤWS =
p̂2

2M
+ V (x) − Fx, V (x+ L) = V (x). (6.2)

In experimental settings, the potential V (x) usually takes the form of a periodic

cosine wave, i.e. V (x) = V0 cos2(kLx) where kL = 2π/d.

This is a rather counter-intuitive result that was debated for years (see e.g.

Ref. [117, 118]) - after all, the classical response to a static force such as gravity

does not usually involve oscillations. In order to understand the dynamics, it is

helpful to first consider the eigenstates of the system. From an arbitrary eigen-

state of HWS, i.e. HWSΨ0 = E0Ψ0, one can construct a whole ladder of eigenstates

with eigenvalues El = E0 + ldF by a translation of Ψ0 over l periods of the lattice

constant d (assuming a simple single-band system). The resulting Wannier-Stark

(WS) eigenstates are the resonance states of the system and are collectively know as

Wannier-Stark ladders [119]. Any superposition of these WS states then shows os-

cillatory behaviour with a Bloch period. These oscillations are effectively caused by

Bragg scattering. On average, the Bloch particles do follow the static acceleration

and travel ‘down’ the lattice. During that motion along the lattice, they scatter

back and forth off the lattice as in standard Bragg theory where we get interfer-

ence for nλ = 2d sin θ. The calculation of the WS ladder, especially for interacting

particles and in higher dimensions, has proven to be non trivial [120, 121, 122].

Part of the reason for this is that, for more than one band, the decay of the WS

states has to be taken into account. Again, the exact form of this decay is system

dependent, but can be estimated using the formalism of Landau-Zener tunneling

[123, 116].

Bloch oscillations can also be studied from an atom optical view point [123].

This includes the assumption that we can think of the eigenstates of the static

system as ‘particle-like’, i.e. tight-binding and non-interacting.

The Schrödinger equation for the single particle Hamiltonian of Eq. (6.2) is

given by

i
∂ψ(p, t)

∂t
=

[
(p+ Ft)2

2M
+

1

2

]
ψ(p, t)+

∑

l

Ω∗
l ψ(p+lkd, t)+

∑

l

Ωlψ(p−lkd, t) (6.3)

where the coupling constants Ωl and Ω∗
l depend on the exact nature of the potential

V and kL = 2π/d is the border of the first Brillouin zone.
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The analogue to the Wannier-Stark ladder in momentum terms are the discrete

states ψn(t) = ψ(p0 + nkd, t) where n ε ± N0. The dynamic equation for these

discrete states is

i
∂

∂t




...

ψ1

ψ0

ψ−1

ψ−2

...




=




...
...

. . . ε1 Ω1 Ω2 Ω3 . . .

Ω∗
1 ε0 Ω1 Ω2

Ω∗
2 Ω∗

1 ε−1 Ω1

. . . Ω∗
3 Ω∗

2 Ω∗
1 ε−2 . . .

...
...







...

ψ1

ψ0

ψ−1

ψ−2

...




(6.4)

where εn := (p0 + nkd + Ft)2/(2M) + α0/(2). Any two ladder states ψn, ψn+l are

then coupled by the 2 × 2 matrix

(
i∂ψn

∂t

i∂ψn+l

∂t

)
=

(
εn Ωl

Ω∗
l εn+l

)(
ψn

ψn+l

)
. (6.5)

Resonances between states n and n + l occur at a time tn where the difference

between the diagonal elements is small, i.e. for

εn+l − εn =
lk0

M

(
1

2
(2n+ l)kd + p0 + Ft

)
→ 0. (6.6)

In other words, we expect a transition when the initial momentum p0 has changed

to a multiple of kd/2, i.e.

p0 + Ft = −k0(n + l/2) (6.7)

which brings us back to the condition of Bragg scattering discussed earlier. This

resonance condition is equivalent to the kinetic energy of the particle, p2/2M , being

equal to the spacing between the discrete ladder states. As suggested by [123], we

assume that at the time tn,n+l for which εn − εn+l → 0 all off-diagonal matrix

elements other than Ωl are suppressed.

For a Landau-Zener transition, the probability that a particle will stay in its

initial state is approximately [123]

Pstay(l) = exp

(
−π |Ωl|2

|lkdF/m|

)
(6.8)
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The probabilities for various transitions thus depend on the matrix elements Ωl.

For a sinusoidal potential and in the non-interacting approximation, we should

only find the simple Bloch oscillation occurring between ψ0 and ψ1 with a period

of tB = 2π/Fd. For a more complex potential and/or for non-zero interactions,

however, there are some Ωl 6= 0 for l 6= 0 so that higher order Bloch oscillations

may occur.

In the specific case of optical lattices in the Mott regime, neither the Wannier-

Stark picture nor the atom optical approach alone are sufficient as these are single

particle models. The effect of interactions on Bloch oscillations has been studied

in [124]. The author finds that there is an additional period with

Tadd = 2π/U. (6.9)

This result is only valid for a strong-field condition as the derivation makes the

assumption that the system is sufficiently squeezed that Fock states can be used as

eigenstates of the system. The exact dependency on the interaction, including weak

values, is complex and not yet clearly understood [122]. One approach [94] is to

study the quasi energy spectrum of the interacting Hamiltonian including the static

field, analogous to the study of WS resonances. The author of that paper finds

that the quasi energy states in a restricted basis, and with these the periodicity of

oscillations, depend on the detuning of interaction with respect to the static force

λ = (U − dF )/J . These oscillations are on a much longer time scale than the

‘normal’ Bloch oscillations. We will see that we find periodicities that also depend

on the detuning λ of the system from resonances. As [94] does not further quantify

the dependence of their results, further comparisons are difficult to make.

We interpret these detuning resonances as follows. Bloch oscillations are caused

by the dynamical evolution of ground state particles along the lattice where the

ground state is close to the |111 . . .1〉 Fock state. At the resonances, the system

can reach a state where it is predominantly in the Fock eigenstate of the tilted

system. Once a large part of the system is in the tilted ground state, however, we

should find additional Bloch oscillations with a periodicity of

Tres = 2π/|Fd− Eresonance|. (6.10)

These oscillations should give us an idea of the exact location of resonances as well

as the strength of the resonances when compared to the original Bloch oscillations.

For ease of distinction, we will refer to the Bloch oscillations with a detuned peri-
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odicity as resonance Bloch oscillations and call the normal Bloch oscillations origin

Bloch oscillations.

In the superfluid phase, i.e. for a very weak lattice, the system is more akin

to one large condensate. Consequently, we expect to find either oscillations at the

tunneling frequency or collective oscillations caused by exciting the system. These

oscillations can take a variety of forms and are highly dependent on the exact

system characteristics [106, 109, 111, 125, 126, 127].

6.2 Experiment

Bloch oscillations have been observed in a wide range of experimental conditions -

their first realization was in semiconductor superlattices [128]. In optical lattices,

Bloch oscillations (and the corresponding Wannier-Stark ladders) were first ob-

served under the influence of gravity [129, 130]. Later experiments created a static

force in the optical lattice configuration by using a tunable frequency difference

between the two (or more) counterpropagating waves that form the standing laser

wave [131].

This frequency difference is created by an upshift of the left laser wave (with

wavelength λ) by δν and a downshift of the right laser wave by an equal amount.

The two waves are then Doppler shifted into the same frequency when regarded in

a reference frame moving to the right at a velocity v = λδν. The periodic potential

is constant in this frame. A linear increase of δν over time ta from 0 to δfinal then

produces an uniformly accelerated potential with an acceleration proportional to

d(δν)/dt = const during time ta [132].

The reason for the large time lag between the theoretical conception of Bloch

oscillations in 1928 [133] to their experimental realization in 1992 [128] lies in

the dependency of the Bloch period on the force F and the lattice constant d

with TB = 2π/dF . In the solid-state electron systems for which the problem was

initially formulated, forces strong enough that the Bloch time was smaller than the

relaxation time caused significant scattering by impurities, electron-phonon and

phonon-phonon interactions so that Bloch oscillations were no longer observable.

Semiconductor superlattices that were fabricated by epitaxial growth of GaAs and

GaAlAs, in contrast, had periodic potentials whose period d was two orders of

magnitude larger than those of bulk semiconductors so that it was possible for

the Bloch time, thus reduced by two orders of magnitude, to be smaller than the

relaxation time.
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Part of the attraction of using optical lattices to find Bloch oscillations was the

absence of disturbances by scattering of phonons or lattice impurities, excitonic

effects and more. Another advantage is the ease of tuning the acceleration to

specific values. A common experimental procedure [130, 59] uses an adiabatic

switch-on of the static optical lattices after the atoms have been cooled (e.g. by

stimulated Raman cooling). This adiabaticity has the advantage of transfering the

initial momentum spread into a spread of the lattice quasi-momentum. The optical

potential is then accelerated over a time ta. Both the acceleration and the standing

optical potential are finally switched off abruptly so that a measurement of the

atomic momentum distribution of the free atoms can be taken as instantaneously as

possible. Comparing the atomic momentum distribution for a range of acceleration

times ta then shows the oscillating wave packets.

6.3 Numerics

As in Chapter 4, we take the eigenstates of the BHM Hamiltonian (Eq. (2.17))

(calculated by exact diagonalization of the static Hamiltonian) as our initial states

and then instantly switch on the perturbation so that the dynamic Hamiltonian is

Hdyn. = −J
∑

〈i,j〉

â†i âj +
∑

i

εiâ
†
i âi +

1

2
U
∑

i

â†i â
†
i âiâi (6.11)

where εi = (W − i)U , i.e. ε1 = (W − 1)U , ε2 = (W − 2)U and εW = 0U . We

then solve the Hamiltonian exactly using a fifth order Runge-Kutta approach [87].

While experimental setups usually study the change in the momentum distribution,

we will focus on the number variance. We will find that it corresponds well both to

the energy added to the system and to the changes in the momentum distribution

(in the form of the interference pattern). In contrast to the interference pattern, it

is significantly more efficient to calculate numerically due to its locality.

The wave function resulting from the dynamical approach is sampled at regular

time intervals (typically with an interval length of 0.0001/J). The number variance

V is then calculated from this wave function (V= 〈(n̂i)2〉 − 〈n̂i〉2 where n̂i is the

number operator for site i.)
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Figure 6.1: These plots show the dynamics of the number variance for a range of values for
U/J , Ns and Np. Top plot: U/J = 10, Ns = 6 and Np = 1, second plot: U/J = 10, Ns = 6,
Np = 7/6, third plot: U/J = 20, Ns = 4, Np = 2, bottom plot: U/J = 50, Ns = 6, Np = 1.
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The resulting dynamics of number variance, energy (and interference pattern,

for comparison purposes) show clear oscillatory structures as can be seen in Fig. 6.1

for the number variance. For a comparison between number variance and added

energy, see Figs. 4.9, 4.10, 6.2 and 6.3. In order to be able to interpret these

oscillations, we use a fast fourier transformation - the fft routine of Matlab 6.1 - to

extract the oscillation frequencies from the number variance.

6.4 Results

A plot of the dynamics of a very superfluid system with U = 0.001 and J = 1 (see

Fig. 6.2) shows a very small response with the periodicity of the tunneling time,

τJ = 2π/J . Fourier analysis for the number variance gives integer multiples of the

tunneling frequency νJ = 1/τJ . As expected, the strength of the response depends

on the strength of the perturbation and does not show any evidence of an energy

gap. Instead, there is a gradual increase with increased force. The lack of Bloch

oscillations is due to our choice of system parameters. As the interaction constant

U depends on the lattice height, a very small value for U will imply a very shallow

lattice. For a deep lattice with vanishing s-wave scattering length as, however, we

would expect to see Bloch oscillations similar to those of Bloch electrons in crystals.

In this thesis, we will focus on more strongly interacting systems.

Even a very moderate amount of squeezing, e.g. U/J = 1, causes a drastic

change (see Fig. 6.2). Instead of the smooth oscillations for the very superfluid

system with U = 0.001, J = 1, we now find a dependency on the force that is

related to the eigenvalue spectrum (see e.g. Fig. 4.3) and clear Bloch oscillations

with the Bloch period of approximately 2π/dF , see Fig. 6.3.

Interestingly, we also find signs of oscillations at 2νB. This is likely due to

the fact that the system is still only very moderately squeezed. The transition

probability between ladder states is thus relatively high so that higher order Bloch

oscillations are viable. These Bloch oscillations at 2νB and higher frequencies are

probably a sign of oscillating between sites that are not immediate neighbours,

analogous to the hopping we saw in Chapter 2. It is instructive to think of non-

adjacent lattice sites as lattices with a larger lattice constant. For example, we

consider next nearest neighbour hopping for a lattice with lattice constant 2d. The

concomitant Bloch oscillations clearly occur at ν ′B = Fd′/2π = Fd/π = 2νB. The

lattice site at d′/2 = d can then be treated as a perturbation that has the effect of

reducing the tunneling probability between sites at x and at x+ d′.
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Figure 6.2: The top plots show the dynamics of the number variance and the added energy for
U/J = 0.001. The bottom plots show number variance and added energy for U/J = 1. All values
are calculated for Ns = 6 and Np = 1.

The ‘normal’ Bloch oscillations are far stronger than the higher order ones,

however. Interestingly, we also find a dependence of the strength of the Bloch

oscillations on the strength of the excitations in the number variance. This can

be understood by taking into account that the Bloch oscillations are really a phe-

nomenon of a non-interacting system such as the original Bloch electrons in crystals

which could successfully be described in a single-particle model. With the increase

of localizing interactions, tunneling is increasingly less likely and Bloch oscillations

are weak. We will see that this weakening of the oscillations is still visible when

increasing the ratio U/J , see e.g. Fig. 6.5 where the Bloch oscillation has all but

disappeared for U/J = 20. When the number variance shows excitations, however,

that implies that atoms are less localized and thus more likely to Bloch oscillate.
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In other words, the strength of the Bloch oscillation is also an indicator of the

strength of the change in the number variance. A closer study of the frequencies
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Figure 6.3: These plots show the oscillation frequencies of the number variance (left) and added
energy (right) for U/J = 1 and Np = 1, Ns = 6. The magenta lines represent Bloch oscillations
at the frequencies νB and 2νB .

for a squeezed system (e.g. U/J = 20, see Fig. 6.4) shows a number of addi-

tional features to the Bloch oscillation νB. As we can see in the left plot of Fig.

6.4, the predicted additional frequencies νint = U
2π

of [124] are indeed visible (red

lines). We also find multiples of νint, i.e. 2νint and 3νint. Of special interest here,

though, are the resonance Bloch oscillation frequencies that we discussed earlier.

These oscillations appear to be dependent on the detuning δ of the applied force

from a resonance. For example, for the resonance at U , we find a dependency on

δ = |(Etilt − U)|. These oscillations have the same slope as the Bloch oscillation

originating from 0U , i.e. νres = (Fd− U)/(2π). Both resonance and origin oscilla-

tions are traced in the right-hand plot with white lines. One possible interpretation

of these resonance Bloch oscillations is to consider them in terms of origin Bloch

oscillations of the tilted lattice. The symmetry of these oscillations around their

point of origin is in good accordance with this possibility. In this interpretation,

we assume that the resonance excitation is strong enough that the eigenstates of

the tilted lattice are populated significantly.
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Similar to our results for the Bloch oscillations for U/J = 1 (Fig. 6.3), we again

see higher order oscillations at double the frequency, i.e. ν ′B = 2νB. This is true

even for the non-origin frequencies. This can be understood by using the Bragg

reflection interpretation. According to the Bragg criterion, reflection is possible

precisely then when the distance between reflection points is an integer multiple of

the wavelength.

It is also interesting to note that, in contrast to U/J = 1, the origin Bloch oscil-

lation is no longer the strongest frequency in the system. Instead, as we predicted

earlier, the resonance Bloch oscillation for Etilt = U grows progressively stronger

in contrast to the other effects with the increase of U/J . Fig. 6.5 shows this for

U/J = 1 and U/J = 20.
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Figure 6.4: Both plots show a contour plot of the fft spectrum for the dynamics of the number
variance over time for U/J = 20, Ns = 6 and Np = 1. In the left plot, interaction frequencies
(ν = U/2π) are drawn in red lines. In the right plot, origin and Bloch oscillations are shown in
white lines. Note that the spectrum strength is depicted on a log scale.

So far, we have discussed results for integer filling (i.e. Np ∈ N). Even though

the energy eigenspectrum changes for non-integer filling, the oscillations we observe

fall in the same categories as those already discussed above: there is the interac-

tion frequency νint = U
2π

, the origin Bloch frequency νB and the resonance Bloch

frequency νB,res. Frequencies for non-integer filling differ in the relative importance

of oscillations, though. This is a direct consequence of the results we found in
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Figure 6.5: These plots show the frequency spectrum for U/J = 1 (left plot) and U/J = 20
(right plot) for Np = 1 and Ns = 6. Origin Bloch oscillations are marked with white lines,
resonance oscillations with yellow lines.

Chapter 4 (see e.g. Fig. 4.6): due to the ‘extra’ atoms, higher order processes, e.g.

hopping at the resonance Etilt = 2U become much more likely. Consequently, the

Bloch oscillations of those resonances play a more prominent role in the Fourier

analysis spectrum.

The greater strength of resonance Bloch oscillations also allows us to distin-

guish between the various contributions at Etilt≈ U from the energy band. In

an infinite lattice, the energy values for states in one band are degenerate - i.e.

Bloch oscillations should occur at exactly Etilt = U . In a finite lattice, however,

the band will have a finite non-zero width. For example, for an applied energy

difference between sites Etilt ≈ U , resonance excitations could involve the creation

of particle-hole pairs at site 5 and 6, i.e. |111102 . . .〉 as well as particle-hole pairs

at 1 and 2, 3 and 4 and 5 and 6 (|020202〉). Due to the finite lattice size which

is expressed in a finite band width, these have different energies and resonances

thus occur for slightly different Etilt. The spread of resonant frequencies around,

for example, Etilt = U can then be used as an indicator on the band width.

We found in Chapter 4 that non-integer filling for finite systems has somewhat

different features to those predicted by the infinite lattice phase diagram as in Fig.
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3.1. In an infinite lattice, the non-compressibility of the MI phase implies that a

non-integer filling will lead to a superfluid ground state. Finite systems, however,

are characterized by a gradual phase transition rather than a sharp switch between

SF phase and MI phase. Consequently, there can be states with simultaneous

off-diagonal and diagonal long range order that show MI characteristics such as

evidence of an energy gap, but are no longer non-compressible and also possess SF

characteristics.

These SF phase characteristics can manifest themselves in the relative strength

of origin Bloch oscillations to the resonance Bloch oscillations at multiples of the

interaction energy U . This can be understood by reminding oneself of the fact that

the origin Bloch oscillations were originally a phenomenon of electrons in a crystal

that could approximately be treated as a non-interacting system. The eigenstates

of these so-called Bloch electrons are delocalized across the entire lattice. In an

optical lattice, this is equivalent to the SF phase where bosons are delocalized

across the lattice. The resonance Bloch oscillations at Etilt≈ nU are solely an MI

phenomenon as they imply that there is an energy gap caused by the (repulsive)

interactions of the bosons. Consequently, we should find that the ratio of the

strength of origin Bloch oscillations to resonance Bloch oscillations grows larger as

we approach the phase transition. For the SF phase, resonance Bloch oscillations

should have vanished entirely.

Our results support this argument. We find that a comparison of the frequency

spectrum for U/J = 1 and U/J = 20 (see Fig. 6.5) shows a clear change in the

prominence of origin Bloch oscillations and resonance Bloch oscillations.

Fig. 6.6 also shows results that agree well with this theory. For a dependence

of the ratio of resonance to origin Bloch oscillations on the phase of the system,

this makes sense as adding a non-integer filling is analogous to lowering U/J save

that we find the same U dependent oscillations. In other words, finding the same

effect for changing U/J as for changing Np is a strong indication that this ratio is

indeed dependent on the phase of the system.

6.5 Summary

We have been able to confirm Bloch oscillations with the Bloch frequency νB =

dF/(2π) as well as oscillations with frequency νint = U/(2π). In addition to this,

we find so-called resonance Bloch oscillations with frequencies that appear to be

dependent on the detuning from a resonant force. We give a possible interpretation
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of this effect and note that the relative strength of original Bloch oscillations to

resonance Bloch oscillations could be useful as an indicator of the phase of the

system.
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Figure 6.6: The left two plots show the frequency spectrum for Ns = 6, Np = 1 and U/J = 10
(top) and Ns = 6, Np = 7/6 and U/J = 10 (bottom). The right two plots show the same values
in a contour plot. The magenta line indicates the origin Bloch oscillation.



Chapter 7

Possible directions for future

work

In this chapter we will discuss prospects for future work and draw some final

conclusions with regard to this thesis.

7.1 Comparison of local and global variables

One of the challenges in detecting the SF-MI phase transition is the appropriate

choice of observable. It seems that none of the currently used experimental meth-

ods can accurately pinpoint the area of transition due to various limitations. The

main characteristic of the phase transition is the change from delocalization (SF)

to localization (MI). It might therefore be profitable to explore the relationship

between the number variance (local variable) and the phase coherence (global vari-

able) further. We are especially interested in the possibility of studying the phase

transition by tracking the relation between both variables. In principle, agreement

should be best in the transition phase where the system shows both SF and MI

characteristics simultaneously. At the same time, depending on the trapping po-

tential, it has been suggested that no global phases will form at all, but that we see

domains of MI phases, SF phases and mixed phases. As the number variance is a

local variable, its dynamics are dependent on the scale of the excitations. We thus

feel that the dynamic excitational spectrum of the number variance could provide

us with an idea of the extent of the domains.

78
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We would like to use a variety of approaches. For one, we are interested in

studying a numerical model where small clusters are linked by some defined cross-

ing between them. This would entail adding the possibility of loss to the system

conditions. One idea might be to use a mixture of mean-field and exact modelling

so that any cluster ‘sees’ a mean-field basin into which losses take place. The dy-

namics inside the cluster, though, would be treated with an exact model as in this

thesis.

An alternative approach might be to explore further simulation methods such

as the time-dependent density-matrix renormalization-group technique [134]. This

method incorporates a block-decimation technique while still retaining entangle-

ment between blocks (dependent on the dimension) and could consequently be ideal

to study the patterned lattice that we are interested in.

Thirdly, there has been some work done on the possibility of a reduction of the

lattice basis to lower computational cost of exact calculations. We would like to

explore whether a basis could be dynamically adopted to system parameters.

7.2 Dynamic excitations

In Chapter 5, we found that there are particular states for which resonance ex-

citation was possible. We suggest that it might be worth taking the idea of the

symmetries and anti-symmetries in the number state basis further and use this to

gain a better understanding of the nature of the excitational spectrum. This is

motivated by the fact that when the wave function is likely to be in the evenly

distributed state |n . . . n〉 where n = Np, it has a high probability of being in the

MI phase. In the delocalized SF phase, in contrast, we expect to find the wave

function spread out over the number state basis, i.e. the occurrence of antisym-

metric coefficients in the ground state and relevant excited states rises significantly.

With antisymmetric coefficients, we refer to the wave function amplitudes of states

that are the same apart from permutation (such as |20 . . .〉 and |02 . . .〉) and thus

have identical probability p, but whose values in the wave function have opposite

signs, i.e. −√
p and

√
p. In other words, when the wave function can be written

as ψ =
∑

i Ciψi, Ci is either equal to Cj or equal to −Cj when ψi and ψj are similar

apart from permutation.

This anti-symmetry can obviously not occur for the Fock state |n . . . n〉. Conse-

quently, as the overlap between states does depend on symmetry or anti-symmetry

(as we showed for two wells in Chapter 5), the makeup of the ground state with
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respect to localization or delocalization should be reflected in the excitational spec-

trum and we feel that the extent of this connection might be interesting.

7.3 Understanding the behaviour of resonance

Bloch oscillations

We have found resonance Bloch oscillations that are dependent on the validity

of a localized MI phase state. We would like to explore their sensitivity to the

phase transition more extensively. This could also entail further study of their

characteristics close to the resonance as we find evidence of deviation from the

linear Bloch oscillation slope there.

7.4 Extensions of the Bose-Hubbard model

We are also interested in what would happen if we relaxed some of the fundamental

assumptions on which the theory of MI - SF phase transitions in optical lattices

is based. The Bose-Hubbard model on which we have based all of the work in

this thesis incorporates a number of important approximations. One of them is

the limitation of interaction to on-site, zero-range scattering. With the possibil-

ity of tuning interaction coefficients to a wide range experimentally by exploiting

Feshbach resonances [135], it might be very interesting to look at a modified BHM

where the interaction range is assumed to be of the order of the lattice constant.

This should dramatically change some of the most characteristic properties of the

BHM.

7.5 Concluding remarks - main findings of the

thesis

In this thesis, we have used an exact model to study the dynamics of various

observables around the SF-MI phase transition. We have found that the number

variance is a very good indicator of system dynamics in the MI phase and leading

up to the phase transition and suggest that it could well be of use experimentally,

especially in conjunction with the observation of global observables such as the

interference pattern.
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We have found a number of new effects that are indicative of the system phase.

In particular, we see resonances at fractions of the expected values in the particle-

hole picture for both static and dynamic excitations. These fractions are of special

interest, because we may be able to use them to study relative values of experi-

mental observables, e.g. the ratio of the main resonance peak at U to a peak at

U/2. Potentially of most significance is the observation of Bloch oscillations for the

resonance energies. In consequence, they could serve as a direct indicator of the

energy spectrum. This is especially interesting as they are not a local effect and

can occur for delocalized states as well. That means that the onset of resonance

Bloch oscillations should be a sensitive measure of the phase transition.



Appendix A

Runge-Kutta numerical

approximation

The Runge-Kutta (RK) method is based on the Euler method in which small

increments are added to a function corresponding to derivatives (i.e. right-hand

sides of the equations) multiplied by stepsizes. When solving a differential equation

by use of an RK method, one then propagates the solution by making a number of

Euler-style steps and then using the information obtained to match a Taylor series

expansion up to some higher order. Further details of this method can be found in

[87].

For the numerical simulations carried out for the work in this thesis, we have

made use of the fifth-order RK method. The fifth order corresponds to the number

of Euler-style steps carried out within the routing. Thus, if the time derivative of

our wavefunction ψ is given by

i
∂ψ(t)

∂t
= Ĥψ, (A.1)

the propagation from t to t + δt is carried out by calculating [87]

k1 = −idt Ĥψ (A.2)

k2 = −idt Ĥ(ψ + 0.2k1) (A.3)

k3 = −idt Ĥ(ψ +
9

40
k2 +

3

40
k1) (A.4)

k4 = −idt Ĥ(ψ +
6

5
k3 − 9

10
k2 +

3

10
k1) (A.5)
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k5 = −idt Ĥ(ψ +
35

27
k4 − 70

27
k3 +

5

2
k2 − 11

54
k1) (A.6)

k6 = −idt Ĥ(ψ +
253

4096
k5 +

44275

110592
k4 +

575

13824
k3 (A.7)

+
175

512
k2 +

1631

55296
k1)

ψ(t+ dt ) = ψ +
37

378
k1 + 0k2 +

250

621
k3 +

125

594
k4 +

512

1771
k6, (A.8)

where dt is a (small) timestep. The numerical coefficients are so-called Cash-Karp

parameters [87].

In order to control the numerical error, we use this fifth order RK method

in conjunction with an adaptive stepsize control. This method controls the size

of increments to the wave function ψ - in rough terms, that means that more

rapid changes in the wave function corresponds to smaller time steps. One of

the advantages of the fifth order Runge-Kutta method set out above is the fact

that another combination of the six values of k gives a fourth-order Runge-Kutta

formula. This is known as an embedded method. The comparison of the result of

the embedded fourth-order formula with that of the fifth order method can then

be used as an estimate of the truncation error.

This allows us to set an upper limit for the truncation error and, if that limit

is breached, to lower the size of the timestep adaptively.
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